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1 Pipeline problems

Suppose you have several pipelines arranged in a complicated way (with junc-
tions and multiple input and output). Each pipe has a maximum capacity. We
might ask:

� What is the maximum amount of stu¤ (oil, water, electricity, etc) that
can be moved by the network from the inputs to the outputs?

� Is a certain collection of assigned inputs and outputs able to be attained
by adjustments in the �ow through the pipes?

This work is mostly from BM Chapter 7.

2 Networks and �ows

We will recall some de�nitions for networks and then talk about �ows.

De�nition 1 A network N is a digraph G together with a capacity function
c : E+ (G)! [0;1] and two disjoint sets of vertices X;Y � V (G) : The vertices
X are called the sources and the vertices Y are called the sinks. Vertices in
G� (X [ Y ) are called intermediate vertices and denoted as I:

De�nition 2 We will consider functions f from the directed edges E+ (G) to
some set of numbers (usually positive real or positive integer. We denote

f (K) =
X
e2K

f (e)

if K � E+ (G) : Suppose S � V (G) : Let (S; Sc) denote the set of all directed
edges from vertices in S to vertices in Sc = V (G)� S: We denote

f (S; Sc) = f+ (S)

f (Sc; S) = f� (S) :

1



In particular, f+ (v) is the sum of all values of f on arcs from v and f� (v) is
the sum of all values of f on arcs to v: Also note that f+ (S) = f� (Sc) and
f� (S) = f+ (Sc) :

De�nition 3 A �ow through a network N is a function f : E+ (G) ! Z�0
such that

f (e) � c (e) for all e 2 E+ (G)
f� (v) = f+ (v) if v 2 I:

We think of f as specifying the amount of stu¤ �owing through a particular
directed edge in the network. The �rst condition says we cannot exceed the
capacity of any one pipe. The second is a conservation condition, saying that
everything enters and leaves the network via X and Y:

De�nition 4 If S � V (G) and f is a �ow then we de�ne the resultant �ow
out of S relative to f to be

f+ (S)� f� (S) :

Similarly, the resultant �ow into S relative to f is

f� (S)� f+ (S) :

The resultant �ow tells how much net stu¤ leaves S (like a �ux). Note the
following:

Proposition 5 For any S � V (G) and �ow f;

f+ (S)� f� (S) =
X
v2S

�
f+ (v)� f� (v)

�
:

Note that it is not true that

f+ (S) =
X
v2S

f+ (v) :

Proposition 6 The resultant �ow out of X is equal to the resultant �ow into
Y:

Proof. We know that f+ (v) = 0 if v 2 I; and so

f+ (X)� f� (X) =
X
v2X

�
f+ (v)� f� (v)

�
=
X
v2Y c

�
f+ (v)� f� (v)

�
= f+ (Y c)� f� (Y c)
= f� (Y )� f+ (Y ) :
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De�nition 7 The value of f is de�ned as

val f = f+ (X)� f� (X) = f� (Y )� f+ (Y ) :

The value tells how much stu¤ is �owing through the network.

De�nition 8 A �ow f on a network N is a maximal �ow if there is no other
�ow on N with larger value.

Thus a maximal �ow is one which transmits the most stu¤ through the
network.

Proposition 9 For any network N; there is a new network N 0 such that X 0 =
fxg ; Y 0 = fyg ; and there is a one-to-one correspondence of �ows f on N and
�ows f 0 on N�such that

val f 0 = val f:

Proof. Let N 0 be the network obtained from N by adding vertices x and y;
arcs from x to each element of X and arcs from each element of Y to y: Give the
new arcs capacity equal to in�nity. Given a �ow f 0 on N 0, there is an obvious
sub�ow f on N: Given a �ow f on N; we can construct the �ow f 0 by setting

f 0 (a) =

8<: f (a) if a 2 E+ (N)
f+ (v)� f� (v) if a = (x; v)
f� (v)� f+ (v) if a = (v; y)

:

We see that val f 0 = val f:
For this reason, we will often con�ne ourselves to networks with a single

source x and a single sink y:

De�nition 10 Let N be a network with a single source x and a single sink y:
A cut in N is a set (S; Sc) of arcs where x 2 S and y 2 Sc:

Consider Figure 1. This shows a �ow. Notice that it is not maximal.

De�nition 11 The capacity of a cut K is equal to

capK =
X
a2K

c (a) :

A minimum cut is a cut K such that there is no cut K 0 with capK 0 < capK:

A minimum cut is like the �weakest link�in the chain. If one could turn the
network into a linear path from x to y; the minimum cut would be the smallest
capacity in that chain. Notice the cut in Figure 1.
The key theorem about maximum �ows and minimum cuts is the following.

Theorem 12 (Max Flow/Min Cut Theorem) If f� is the maximum �ow
and K� is the minimum cut, then

val f� = capK�:
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Figure 1: A �ow

We will prove this soon, but �rst let�s prove a more modest few things.

Lemma 13 For any �ow f and any cut (S; Sc) in N;

val f = f+ (S)� f� (S) :

Proof. We know that
f+ (x)� f� (x) = val f

and that
f+ (v)� f� (v) = 0

for any v 2 S � x: Thus we get that

val f =
X
v2S

�
f+ (v)� f� (v)

�
= f+ (S)� f� (S) :

Theorem 14 For any �ow f and any cut K = (S; Sc) in N;

val f � capK:

Equality holds only if and only if f (a) = c (a) for all a 2 (S; Sc) and if f (a) = 0
for all a 2 (Sc; S) :
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Corollary 15 If f� is the maximum �ow and K� is the minimum cut, then

val f� � capK�:

Note, we have proved one half of the Max Flow/Min Cut Theorem. The
other inequality will be proven later.

Corollary 16 If f is a �ow and K is a cut such that val f = capK; then f is
a maximum �ow and K is a minimum cut.

Proof. We have that

val f � val f� � capK� � capK;

but the assumptions imply that these are all equalities. In particular, f is a
maximum �ow and K is a minimum cut.

Corollary 17 For any �ow f and any cut K = (S; Sc) in N; if f (a) = c (a)
for all a 2 (S; Sc) and if f (a) = 0 for all a 2 (Sc; S) ; then f is a maximum
�ow and K is a minimum cut.

Proof of Theorem 14. We know that

f+ (S) � capK
f� (S) � 0

so

val f = f+ (S)� f� (S)
� capK:

The equality is if f+ (S) = capK and f� (S) = 0; so the second statement
follows.

3 Proof of Max Flow/Min Cut Theorem

In this section, we will consider the following types of paths (which are di¤erent
from directed paths considered earlier).

De�nition 18 A v0vk+1-semipath is a list v0; a0; v1; a1; v2; a2; v3; : : : ; ak; vk+1
where vi are vertices and ai are arcs such that either ai = (vi; vi+1) or ai =
(vi+1; vi) ; and no vertex is repeated. Arcs of the �rst type are called forward
arcs and arcs of the second type are called reverse arcs.

We note that given a �ow f on a network N together with a semipath P
from x to y; we can produce a new �ow ~f by making

~f (a) =

8<: f (a) + " if a is a forward arc
f (a)� " if a is a reverse arc
f (a) otherwise

;
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as long as f (a) + " � c (a) and f (a) � " � 0: The construction is designed to
ensure that f+ (v) = f� (v) if v 2 I:
We will now consider a way to use these semipaths to increase the value of

a �ow. For a xy-path P; de�ne

� (a) =

�
c (a)� f (a) if a is a forward arc in P

f (a) if a is a reverse arc in P

and de�ne
� (P ) = min

a2P
� (v) :

Note that � (a) is how much we can increase the forward �ow or decrease the
backward �ow. We can now choose a new semipath

f̂ (a) =

8<: f (a) + � (P ) if a is a forward arc
f (a)� � (P ) if a is a reverse arc

f (a) otherwise
:

Note that f̂ is a new �ow, since it satis�es the conditions to ensure 0 � f̂ (a) �
c (a) : Also note that

val f̂ = val f + � (P ) :

Theorem 19 A �ow f is a maximum �ow if and only if N contains no xy-
semipaths P with � (P ) > 0:

Proof. If N contains such a semipath P; we have shown how to increase the
value of f; and so f is not a maximum. Now suppose N contains no such
semipaths. We let S be the set of all vertices v such that there is a xv-semipath
Pv such that � (Pv) > 0; together with x: We know that y is not in this set (by
assumption), and so (S; Sc) is a cut. We will now show that each arc in (S; Sc)
satis�es f (a) = c (a) and every arc in (Sc; S) satis�es f (a) = 0: By Corollary,
17 this would imply that f is a maximum �ow. Now suppose a 2 (S; Sc)
and a = (v; w) : Then There is a xv-path Pv in N such that � (Pv) > 0: if
f (a) < c (a) ; then we could extend Pv to a xw-path, so we must have that
f (a) = c (a) : Similarly, if we have a 2 (Sc; S) and a = (w; v) ; then if f (a) > 0
then we could extend Pv to a xw-semipath. This completes the proof.
Thus, in the process of the proof, we have shown that, given a �ow, we can

construct a maximum �ow by incrementally considering xy-semipaths P with
� (P ) > 0 (these are called f -incremental paths in BM), �nding new �ows f̂ ; and
continuing until there are no such semipaths left. This �ow will be a maximum
and its value will be equal to the minimum cut, also shown in the proof. Thus,
we have proven the Max Flow/Min Cut Theorem.
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