
Math 443/543 Graph Theory Notes 4:
Connector Problems

David Glickenstein

September 19, 2012

1 Trees and the Minimal Connector Problem

Here is the problem: Suppose we have a collection of cities which we want
to connect by a system of railway lines. Also suppose we know the cost of
constructing lines between pairs of cities. How do we construct the system so
that the cost is minimal, regardless of the inconvenience to the passengers.

De�nition 1 A network (or weighted graph) is a graph G together with a map
� : E ! R. The function � may represent the length of an edge, or conductivity,
or cross-sectional area or many other things.

Given a network (G;�) ; we can de�ne the weight of a subgraph H � G to
be

� (H) =
X

e2E(H)

� (e) :

The problem is then: given two vertices u0; v0 2 V (G) ; �nd a u0v0-path of
smallest weight (where we consider the path as a subgraph).
NOTE: We will assume that � (e) > 0 for the remainder of the section, as

this simpli�es exposition.
We are trying to construct a network of minimal cost. Here are some obser-

vations:

� The solution must be connected.

� The solution should contain no cycles, for if there were any cycles, we
could remove one of the edges to get a smaller cost, and passengers could
still get from one place to the other. Thus we want every edge to be a
bridge.

Such a graph is called a tree.

De�nition 2 A graph with no cycles is called a forest. A connected graph with
no cycles is called a tree.

1

Note that each component of a forest is a tree. Trees kind of look like
branches of a tree, which is where the name comes from.
Here are some properties of trees.

Theorem 3 Let u and v be two vertices of a tree G: Then there is exactly one
uv-path in G:

Proof. Since G is connected, there is at least one uv-path. Suppose there were
two uv-paths, P = v0; v1; v2; : : : ; vk and P 0 = v00; v

0
1; v

0
2; : : : ; v

0
k0 (note that k

need not equal k0). If P 6= P 0; then we can de�ne s and f as

s = min
�
i : vi+1 6= v0i+1

	
f = max

�
i : vi�1 6= v0i�1

	
:

We can then construct two disjoint paths between vs and vf ; producing a cycle.
But there are no cycles in G; so we must have P = P 0:
Also, recall the following:

Theorem 4 If a (p; q)-graph G is a tree, then q = p� 1:

We come back to the minimal connector problem.

De�nition 5 If G is a connected graph, a subgraph T which is a tree and con-
tains every vertex of G is called a spanning tree.

We wish to �nd a spanning tree of minimal value. Let�s �nd a particular
tree called an economy tree. We construct the subgraph TE starting with all of
the vertices of G and then add edges one at a time:

1. First add the edge of minimal weight.

2. Continue to add edges of minimal weight unless they would form a cycle
with the previously added edges.

3. Stop when the graph is connected.

Since no cycles are produced and the graph ends up connected and reaching
every vertex, we produce a spanning tree. One might ask whether we can, in
fact do this; that is, is it possible that no edges can be added that would not
result in a cycle, yet the graph is not connected. If the subgraph TE at some
stage is not connected, then consider a path between two di¤erent components
(which exists since G was connected). If all edges on the path not already in
TE (there must be some) create a cycle when added, then the two components
were already connected (by the other part of the cycle), a contradiction.
Note that the economy tree is not necessarily unique. We may have many

of them.
The theorem is that the economy tree solves the minimal connector problem.

2

Theorem 6 Let (G;�) be a network. The economy tree TE has minimal weight
among all spanning trees.

Proof. Let T0 be a spanning tree of minimal weight. We will show that � (TE) �
� (T0) ; which implies equality since � (T0) is minimal among all spanning trees.
We can order the edges in TE by the weights, i.e., E (TE) = fe1; e2; : : : ; ep�1g
where

� (ei) � � (ei+1) :
Now let ej be the �rst edge in TE which is not in T0: Let G0 = T0 + ej : Since
T0 is a spanning tree, G0 must have a cycle C: Since TE is a tree, there must
be an edge e0 in C which is not in TE : In particular, e0 2 T0: We can consider
the graph T 00 = G0 � e0; which has no cycles and is connected, so it is also a
spanning tree. We notice that

� (T 00) = � (T0) + � (ej)� � (e0) :

Since T0 is minimal, we have

� (T0) � � (T 00) = � (T0) + � (ej)� � (e0)

and hence
� (e0) � � (ej) :

However, � (ej) was chosen to have minimal weight among edges in G not in TE
in the construction, which means we must have that

� (e0) = � (ej) :

Thus
� (T 00) = � (T0) :

So T 00 is also minimal. We now consider T
0
0 instead of T0: We may do the same

construction as before, �nding the �rst edge ej0 which is in TE but not T 00: We
note that j0 � j + 1: We may continue to do this until we construct a minimal
spanning tree which is equal to TE :
See Example in Figure 4.11 in C.
Note, the algorithm of constructing the economy tree is called Kruskal�s

algorithm. BM-8.5
Note that Kruskal�s algorithm can give a minimal spanning forest as well.

2 Shortest path problems and Dijkstra�s algo-
rithm

We consider the shortest path problem: Given a railway network connecting
various towns, determine the shortest route between a given pair of towns.
Often, we will refer to the the weight of an edge as a length and the value of

the smallest weight as the distance. We will present the algorithm of Dijkstra
and Whiting-Hillier (found independently). In the sequel, we will assume that
� is de�ned on all pairs of vertices and � (uv) =1 if uv =2 E (G) :

3

De�nition 7 The distance between two vertices u; v 2 V (G) is equal to

d (u; v) = dG (u; v) = min f� (P) : P is a path from u to vg :

A path P which attains the minimum is called a shortest path.

We then have the following algorithm, known as Dijkstra�s algorithm:

1. Let ` (u0) = 0 and let ` (v) = 1 for all v 6= u0: Let S0 = fu0g and let
i = 0:

2. For each v 2 Sci ; replace ` (v) with

min
u2Si

f` (v) ; ` (u) + � (uv)g :

3. Compute M to be
M = min

v2Sci
f` (v)g

and let ui+1 be the vertex which attains M:

4. Let Si+1 = Si [fui+1g :

5. If i = p� 1; stop. If i < p� 1; then replace i with i+ 1 and goto step 2.

Lemma 8 If v0; v1; : : : ; vk is a shortest path, then v0; v1; : : : ; vj is a shortest
path for any j � k:

Proof. If there were a shorter path from v0 to vj ; then we could replace the
current path with a shorter beginning and get a shorter path to vk:
Let�s prove that at the termination of the algorithm, ` (u) = d (u; u0) : We

will induct on i: Clearly, this is true for i = 0: We will make the following
inductive hypothesis:

� For every u 2 Si; ` (u) = d (u; u0).

We have the base case, so we need only prove the inductive step. Suppose
it is true for Si: We must show that

d (u0; ui+1) = ` (ui+1) :

Let P = v0; v1; v2; � � � ; vk; where v0 = u0 and vk = ui+1; be a u0ui+1-path such
that

d (u0; ui+1) = � (P) :

If vk�1 2 Si; then the path P 0 = v0; v1; v2; � � � ; vk�1 is a shortest path and by
the inductive hypothesis � (P 0) = ` (vk�1) : Thus

d (u0; ui+1) = � (P) = ` (vk�1) + � (vk�1ui+1) � ` (ui+1)

4

but since d (u0; ui+1) is the minimum length path and ` (ui+1) is the length of
some path, then we must have equality. Thus the inductive step is proven if
vk�1 2 Si.
We now show vk�1 2 Si: Take the smallest j such that vj =2 Si: Then since

Pj = v0; v1; : : : ; vj is a shortest path, we have, since vj�1 2 Si; that

` (vj) � ` (vj�1) + � (vj�1vj) = � (Pj) � � (P) � ` (ui+1) :

since ` (ui+1) = min f` (u) : u 2 Sci g ; that means that all of the inequalities are
equalities and j = k (since Pj = P) and vk�1 2 Si: By the previous argument,
we are done.
We do not discuss the complexity of this algorithm. It turns out to be a

good algorithm.

5

