Recall Dijkstra's algorithm.

- 1. Let $\ell(u_0) = 0$ and let $\ell(v) = \infty$ for all $v \neq u_0$. Let $S_0 = \{u_0\}$ and let i = 0. We refer to i as the step.
- 2. For each $v \in S_i^c$, replace $\ell(v)$ with

$$\min_{u \in S_i} \left\{ \ell\left(v\right), \ell\left(u\right) + \phi\left(uv\right) \right\}.$$

3. Compute M to be

$$M = \min_{v \in S_i^c} \left\{ \ell\left(v\right) \right\}$$

and let u_{i+1} be the vertex which attains M.

- 4. Let $S_{i+1} = S_i \cup \{u_{i+1}\}$.
- 5. If i = p 1, stop. If i , then replace i with <math>i + 1 and goto step 2.

We will show that it finds the shortest path, that is, at the end $\ell(u) = d(u_0, u)$ for all vertices u. In fact, we prove something stronger: at each step i, $\ell(u) = d(u_0, u)$ for all $u \in S_i$. We will prove this by induction on i.

- 1) Show the base case i = 0 is true.
- 2) We now suppose the inductive hypothesis and need to prove that after step i+1, $\ell(u)=d(u_0,u)$ for all $u\in S_{i+1}$. In particular, we just need to show that after step i+1, $\ell(u_{i+1})=d(u_0,u_{i+1})$. Let $P=v_1,\ldots,v_k$ be a minimal path from $v_1=u_0$ to $v_k=u_{i+1}$, i.e., $\phi(P)=d(u_0,u_{i+1})$. Argue that v_1,\ldots,v_j is a minimal path for any $j\leq k$.
- 3) Now show that if $v_{k-1} \in S_i$ (suppose this for problems 3,4,5) then $P' = v_1, \ldots, v_{k-1}$ is a minimal path and

$$\phi\left(P'\right) = \ell\left(v_{k-1}\right).$$

4) Show that

$$d(u_0, u_{i+1}) = \phi(P) = \ell(v_{k-1}) + \phi(v_{k-1}u_{i+1})$$

and that

$$\ell(v_{k-1}) + \phi(v_{k-1}u_{i+1}) \ge \ell(u_{i+1})$$

using the steps in the algorithm.

5) Show that

$$d\left(u_{0},u_{i+1}\right)\leq\ell\left(u_{i+1}\right)$$

because $\ell(u_{i+1})$ corresponds to the length of some path. Conclude that $d(u_0, u_{i+1}) = \ell(u_{i+1})$.

6) We still need to show that $v_{k-1} \in S_i$. Let j be the smallest number such that $v_j \notin S_i$. Argue that

$$\ell\left(v_{j}\right) \leq \ell\left(v_{j-1}\right) + \phi\left(v_{j-1}v_{j}\right)$$

(using the algorithm) and argue that if P_j is the path v_1,\dots,v_j

$$\ell\left(v_{j-1}\right) + \phi\left(v_{j-1}v_{j}\right) = \phi\left(P_{j}\right) \le \phi\left(P\right)$$

and that

$$\phi\left(P\right) \leq \ell\left(u_{i+1}\right).$$

7) But since v_{j} is not in S_{i} , argue that $\ell\left(u_{i+1}\right) \leq \ell\left(v_{k}\right)$. Conclude that

$$\ell(v_j) = \ell(v_{j-1}) + \phi(v_{j-1}v_j) = \phi(P_j) = \phi(P) = \ell(u_{i+1})$$

by considering all of the above equalities. Therefore, $P_j = P$, so j = k and $v_{k-1} \in S_i$.

Compute all shortest paths from v_0 in the following graph.

