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1 Planar graphs

The Three Houses and Three Utilities Problem: Given three houses and three
utilities, can we connect each house to all three utilities so that the utility lines
do not cross.

We can represent this problem with a graph, connecting each house to each
utility. We notice that this graph is bipartite:

Definition 1 A bipartite graph is one in which the vertices can be partitioned
into two sets X and Y such that every edge joins one vertex in X with one
vertex in Y. The partition (X,Y') is called a bipartition. A complete bipartite
graph is one such that each vertex of X is joined with every vertex of Y. The
complete bipartite graph such that the order of X is m and the order of Y isn
is denoted Ky, , or K (m,n).

It is easy to see that the relevant graph in the problem above is K3 3. Now,
we wish to embed this graph in the plane such that no two edges cross except
at a vertex.

Definition 2 A planar graph is a graph that can be drawn in the plane such
that no two edges cross except at a verter. A planar graph drawn in the plane
n a way such that no two edges cross except at a vertex is called a plane graph.

Note that it says “can be drawn” not “is drawn.” The problem is that even
if a graph is drawn with crossings, it could potentially be drawn in another way
so that there are no crossings.

Thus the Three Houses and Three Utilities Problem is whether or not K3 3
is a planar graph.

A planar graph divides the plane into regions. That is, if we remove the
vertices and edges from the plane, there are a number of disconnected pieces,
each of which we call a region. The boundary of a given region is all of the edges
and vertices incident on the region. Notice that there is always one exterior
region which contains all of the unbounded parts of the plane.



Look at examples. Notice that p — ¢ + 7 = 2. A theorem of Euler says that
this is always true. For the following theorem, we will need the definition of a
tree.

Definition 3 A connected graph with no cycles is called a tree.
Note the following fact about trees.
Proposition 4 A tree with p vertices and q edges satisfies p = q + 1.

Proof. This can be proven by induction on the number of edges, since each
time a new edge is attached, it must come with a new vertex. This is because
if we attach two vertices with an edge, since the tree in the previous step is
connected, we had a path between the two vertices and are hence introducing a
cycle. m

Theorem 5 (Euler’s Theorem) Let G be a connected plane graph with p ver-
tices, q edges, and r regions. Then

p—q+r=2.

We remark that the number 2 has to do with the plane, and will become
important when we look at topology.
Proof. We induct on q. If ¢ = 0, then we must have p = 1 and r = 1. Thus
p—q+7r=1—0+1= 2. Now suppose it is true for all graphs with k or fewer
edges. Consider a connected graph G with k + 1 edges. If G is a tree, then we
know that p = ¢ + 1 = k 4+ 2. Furthermore, since there are no cycles in a tree,
r = 1. Thus

p—q+r=(k+2)—-(k+1)+1=2.

If G is not a tree, then it contains a cycle. Let e € G be an edge on a cycle. If
we look at G’ = G — ¢, it has k edges, and p’ = p, ¢ = k = q — 1, and by the
inductive hypothesis,
p—q+r =2
We see that 7’ = r — 1 since removing the edge e joins the regions on either side
of the e. Thus
p—qtr=p —(d+1)+ (" +1)=2
]
Notice the following corollary:

Corollary 6 Any representation of a planar graph as a plane graph has the
same number of regions.

We can now solve the Problem of Three Houses and Three Utilities.

Theorem 7 The graph K33 is not planar.



Proof. Suppose we can represent K33 as a plane graph. We know that p = 6
and ¢ = 9, so we need to understand something about r. Since K3 3 is bipartite,
we see that all regions have boundaries with at least 4 edges. Suppose the graph
divides the plane into regions Ry, Ra, ..., R,. Let B (R) be the number of edges
in the boundary of region R. Consider the number

N:iB(Ri).

Since all regions have boundaries with at least 4 edges, we have
N > 4r.

However, since each edge is counted twice, we have that

N =2q=18.
Thus
4r < 18
or
r <4.5.

However, that would mean that
p—q+r=6—-94+7r<1.5,

which is impossible if the graph is a plane graph. =
One might ask about other non-planar graphs. Another important one is
K5. Here is a theorem that allows us to show this.

Theorem 8 Let G be a connected, planar graph with p vertices and q edges,
with p > 3. Then
q < 3p—6.

Proof. The proof is quite similar to that of the previous theorem. For p = 3,
we certainly have ¢ < 3. For p > 4, we consider a representation of G as a
plane graph, which gives us r regions. Denote the regions as Ry, Ra, ..., R,. We
compute again

N:iB(R,»).

This time, we note that B (R) > 3 for each region, and a similar argument give
us that
3r <N < 2q.

Using Euler Theorem, we have that

2=p—q+r
< +2 _ 1
SP=aT39=P— 34



or
qg < 3p—6.

[
Corollary 9 The complete graph Ks is not planar.
Proof. We see that K5 has p=>5 and ¢ = (g) = 10, and so

q=10>15—6=3p — 6.

2 Kuratowski’s theorem

We saw that K5 and K33 are not planar. It easily follows that any graph
containing one of these as a subgraph (technically, any graph with a subgraph
isomorphic to one of these two graphs) is not planar either. In fact, we can
do slightly better by seeing that any graph with a subgraph isomorphic to a
subdivision of K5 or K33 is not planar.

Definition 10 A subdivision of a graph G is a new graph obtained by adding
vertices inside the edges. (The new vertices are all of degree 2.)

It is then clear that :
Proposition 11 If a subdivision of G is planar, then G is planar.

Proof. Given a representation of the subdivision of G as a plane graph, simply
remove the vertices which form the subdivision and we arrive at a plane graph
representation of G. m

Stated another way, if G is not planar, then any subdivision is not planar.
Thus any subdivision of K5 and K3 3 is nonplanar.

Proposition 12 If G is planar, then every subgraph is planar.

Proof. Represent G as a plane graph, then the subgraphs are also plane graphs.
]

Thus if a subgraph of G is a subdivision of K5 or K3 3, then it is not planar,
and thus G is not planar.

Kuratowski’s theorem is the converse:

Theorem 13 (Kuratowski) If a graph is not planar, then it contains a sub-
graph isomorphic to a subdivision of K5 or K3 3.

Proof is in BM1, BM2, or D. We may do it later in the semester.



3 Topology comments

Plane graphs are also graphs on spheres. Using stereographic projection, one
can convert any plane graph to a graph on the sphere with no vertex at the north
pole. Stereographic projection is a map from the sphere except the north pole
to the plane which is a homeomorphism (i.e., a bijection which is continuous
with continuous inverse). The map is defined as follows. Consider the plane
in R? and the xy-plane, R2. For any point P on the sphere, draw a line in R?
from the north pole to that point. It will intersect the plane R? at a point P’.
Stereographic projection is the map P — P’. With some basic geometry, one
can explicitly write down the map, which is

send = (1 1L,

The inverse map can also be written explicitly, as

¢1(x,y)=( 2 2y x2+y21>.

22+ + U2+ + 1 22+ 2+ 1
We have the following:

Proposition 14 Let v € V (G) for a planar graph G. There is a plane graph
representing G such that v is in the boundary of the exterior region.

Proof. Take a plane graph representing GG. Map it by inverse stereographic
projection to the sphere. Some region contains v in its boundary. Rotate the
sphere so that a point in that region is at the north pole, then use stereographic
projection to project it back to the plane. m

Recall that our proof of nonembeddability of K33 and K5 used Euler’s the-
orem, which is essentially a theorem about topology. We can replace the use of
Euler’s theorem with a different topological theorem, the Jordan curve theorem.

Theorem 15 (Jordan curve theorem) A Jordan curve is a curve in the
plane with no self-intersection except that it begins and ends at the same point.
A Jordan curve divides the plane into two regions, each of whose boundary is
the curve itself. One region is unbounded, and called the exterior region and
the other is bounded and called the interior region. Any path between the two
regions must intersect the curve.

We will not prove the theorem here, but show a quick proof that Kj is not
embeddable.

Suppose G were a plane curve isomorphic to K5 and label the vertices
V (G) = {v1,...v5}. There is a subgraph defined by the cycle C = vy, vy, vs.
This cycle must form a Jordan curve. Thus v4 must be either in the interior or
exterior regions. Suppose it is in the interior region. Then We can consider the
graph G — vs, which consists of the cycle and some edges inside the cycle. If
the vertex vs is in the exterior region to C, then the edge v4vs must intersect



C, a contradiction. Otherwise, vs is inside one of the cycles Cio = vy, v, v4,

Ci3 = v1,03,v4, or Ca3 = vg,v3,v4. Say it is inside C1s. Then the edge vsvs

must intersect Ci9, a contradiction. Similar arguments deal with the remaining

cases.
Although K5 cannot be embedded in the plane, it can be embedded in the

torus. So can K3 3. They can also be embedded in a Moebius band. Pictures

are courtesy of Wolfram Mathematica,
http://demonstrations.wolfram.com/Embeddings0fGraphsInATorusAndInAMoebiusStrip/.
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http://demonstrations.wolfram.com/EmbeddingsOfGraphsInATorusAndInAMoebiusStrip/
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We can now rethink the theorem that p — ¢ +r = 2. This is true for plane
graphs, but not for graphs embedded in the torus. The theorem of Euler is that
if a graph divides the torus up into regions each of which is simply connected,
then p — g 4+ r is the same no matter which graph. Simply connected means
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[

that any loop can be deformed into a point. Notice that there are regions of the
torus for which this is not true.

Definition 16 A surface is a sphere with handles attached. The number of
handles is called the genus of the surface.

Definition 17 An embedding of a graph G in a surface is a drawing of G on
the surface with no edge crossings (except at vertices).

Proposition 18 If a graph can be embedded on a surface of genus g, then it
can be embedded on a surface of genus h for any h > g with no edge crossings.

Proof. Draw the graph on the surface of genus g, then attach handles inside
on of the regions. m

Definition 19 The genus of a graph G is the smallest number g such that G
can be embedded in a surface of genus g. Planar graphs are graphs of genus 0.

Proposition 20 Every graph has a genus.

Proof. Draw the graph in the plane (it may have crossings). We can resolve
these crossings by inserting handles where the crossings are, which allow one
to have an overpass so that the two edges no longer cross. This gives one
embedding, and an upper bound on the genus. =

Here are some theorems that we will not prove for now:

Theorem 21 K, K¢ K7 each have genus 1. Kg has genus 2.



4 Scheduling problem

Suppose you wish to assign times for final exams. You should schedule them so
that no student has two exams scheduled at the same time. We can represent
this as a graph, where the vertices are the courses and there is an edge if any
student is taking both courses. We will assign colors to the vertices to indicate
the time of the exam. Clearly, we want adjacent edges to have different colors.
This is called a coloring of the graph.

Definition 22 A coloring of a graph G is function f : V (G) — S, for some set
S, such that f (v) # f (w) if vw € E(G). Often we will choose S C {1,2,3,...}.
An n-coloring is a coloring where S has n elments.

Remark 23 If G is a (p,q)-graph, then there is always a p-coloring. It is more
interesting to find the smallest n for which G has an n-coloring.

Definition 24 The chromatic number x (G) is the minimal n such that G has
an n-coloring.

Consider G; and G5 on C-p. 204. We see that G has a 5-coloring. However,
clearly we can reduce this. We can find a 3-coloring. However, it does not
have a 2-coloring. Graph G, has a 4-coloring as shown. But no 3-coloring.
Thus x (G1) = 3, x (G2) = 4. We can also see that graph H on C-p. 205 has
x (H) = 4.

Proposition 25 The minimum number of exam periods is given by the chro-
matic number of the graph.

Proof. The chromatic number is realized by a coloring of the graph, and on the
coloring, no two classes which share a student have the same time slot (color).
We just need to show that this is the minimal number of exam periods. Suppose
we have an assignment of exam periods which has fewer time slots. Then these
produce an n-coloring where n < x (G), which is a contradiction. ®

Unfortunately, it is generally very difficult to compute a chromatic number.
Here is a result.

Theorem 26 Let A (G) = max{deg(v):v €V (G)}. Then
X(G)<1+A(G).

Proof. Induct on the order of G. Suppose p = 1, then A (G) =0 and x (G) = 1.
This is the base case. For the inductive step, we assume that x (G) <1+ A (G)
for any graph of order P or less. Let G be a graph of order P+1. Let v be a vertex
of maximal degree. G—v hasa (1 + A (G — v))-coloring. If deg (v) < A (G —v),
then we have A (G) = A (G —v), and furthermore there is a free color to use
to color v (since there are A (G —v) + 1 colors available, but only A (G —v)
vertices adjacent to v). If degv > A (G — v), then we can introduce a new color
and color v with that color. m
Note, that we actually proved something stronger:

Proposition 27 x (G) <min{l+A(G),2+ A (G —v)}.



5 Four color theorem

Consider a map. We wish to color the map in such a way that adjacent countries
have different colors. The map coloring problem is to find the minimal number
of such colors. This can be translated into the question of finding the chromatic
number of graphs representing the adjacency between countries. The four color
theorem states that

Theorem 28 For any planar graph G, x (G) < 4.

In other words, we can always color a planar graph with 4 colors. This
problem has an interesting history. There were a number of false proofs since
the problem began in 1852, proposed by Francis Guthrie in 1858, and told to
the mathematical community some years later by his brother. It was finally
solved by Appel and Haken in 1976. Their proof required a large number of
cases (nearly 2000) that were each checked with a computer. Subsequently,
the number of cases has been reduced to around 600, but still too many for
any person to check by hand. Whether this constituted a proof was extremely
controversial in the mathematics community (and, in some instances, is still
controversial).

We will prove that 5 colors is enough, which is much easier.

Lemma 29 FEwvery planar graph G contains a vertex v such that degv < 5.

Proof. We may assume G has at least 7 vertices (since otherwise this is ob-
vious). The sum of all of the degrees of the vertices is equal to 2¢. If every
vertex has degree larger then or equal to 6, then 2¢ > 6p. On the other hand,
we proved that since G is planar, that ¢ < 3p — 6. Thus we would have that
6p < 2¢q < 6p — 12, a contradiction. m

Theorem 30 (Five Color Theorem) For any planar graph G, x (G) < 5.

Proof. We induct on the order of the graph p. If p = 1, then the chromatic
number is 1. Now suppose x (G) < 5 if p < P. Let G be a graph of order
P + 1. By the lemma, there is a vertex v with degv < 5. By the inductive
hypothesis, G — v has a 5-coloring. If degv < 4, then we can easily color v to
get a 5-coloring of GG, so we may assume that degv = 5. We may number the
vertices adjacent to v as vy, vs,vs,v4,vs5 in a cyclical ordering around v (in the
plane graph representation of G). If all 5 colors are not represented among the
neighbors of v, then we can produce a 5-coloring, so we may assume that v; has
color 1, vy has color 2, etc. We will now consider paths in G — v with only 2
colors (the colors must alternate because it is a coloring). First suppose there
is no path from v to vs with only colors 1 and 3. Consider all paths from v;
with only colors 1 and 3 and call this graph H. H is a subgraph of G —v. We
can switch all of the colors in H (1 becomes 3, 3 becomes 1), since any edge
from a vertex in H to a vertex not in H must be between a vertex colored 1
or 3 (in H) and a vertex colored 2, 4,or 5 (not in H). Then v has no neighbor
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colored 1 and so we can color v with 1. However, if v3 € H, then switching the
colors would not result in a free color. So, suppose v3 € H. Then there is a cycle
in G given by P followed by wvs3,v,v;. This cycle has an interior region and an
exterior region, and so vy is either in the interior region or the exterior region
and vy is in the other. By the Jordan curve theorem, any path from vs to vy
must cross this cycle, which means that there is no path from v, to vy with all
vertices of color 2 or 4. Now procede as we did in the case there is no path from
v1 to vg with only colors 1 and 3. m

There is an alternate proof. Proceed as before until we know we have v
with degree 5. We claim that we can find 2 vertices adjacent to v that are
not adjacent. If not, then there would be a subgraph of G with a subgraph
isomorphic to K5, which would mean there is an plane graph isomorphic to Kj5
(false!). Let u,w be vertices adjacent to v but not adjacent to each other. We
can form a graph from G — v by identifying u and w, and that graph is planar
(we can turn it into a plane graph by deforming v and w to v along uv and wv).
Thus there is a 5-coloring for this graph, but that gives a 5-coloring on G — v
which has 4 or fewer colors adjacent to v.
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