
CHAPTER 1: SMOOTH MANIFOLDS

DAVID GLICKENSTEIN

1. Introduction

This semester we will focus primarily on the basics of smooth manifold theory.
We will spend some time on what a manifold is and what its properties are. This
involves a discussion of the di¤erential theory of manifolds, including vector �elds
and tensor �elds. We will then discuss a bit about integration on manifolds, speci�-
cally the integration of di¤erential forms. Finally, the relationship between the two
is given by Stokes�Theorem.
Next semester we will tackle algebraic topology and its relation to di¤erential

forms and the work from this semester.
Reminder: the qualifying exam will also cover the basics of complex analysis.

This will not be covered in this class, though I hope to give some questions about
it throughout the semester.
You are expected to have a good grounding in multivariable calculus and point-

set topology already. You may want to review a bit.

2. Topological manifolds

We de�ne a topological manifold as follows:

De�nition 1. A topological space M is a manifold of dimension n if
(1) M is Hausdor¤, and
(2) M is second countable, and
(3) M is locally Euclidean of dimension n.

This de�nition depends on the following de�nitions:

De�nition 2. A topological space X is Hausdor¤ if for all x; y 2 X such that
x 6= y; there exist open sets U; V such that x 2 U; y 2 V and U \ V = ;:

De�nition 3. A topological space X is second countable if it has a countable basis
for the topology, i.e., there exists a countable collection of open sets fU�g�2N such
that for any open set U � X containing a point x; there exists a � 2 N such that
x 2 U� � U:

De�nition 4. A topological space X is locally Euclidean of dimension n if for each
x 2 X; there exists an open set U � X containing X and a map � : U ! Rn such
that � : U ! � (U) is a homeomorphism (in particular, � (U) is an open subset of
Rn).

The �rst two conditions are essentially technical conditions, with the third con-
dition giving the main condition on being a manifold.
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Remark 1. We sometimes use the terminology Mn is a manifold to mean that M
is a manifold of dimension n: We also say M is an n-dimensional manifold.

The set and map in the de�nition of locally Euclidean is called a coordinate
chart.

De�nition 5. A coordinate chart on M is a pair (U; �) where U �M is open and
� : U ! � (U) � Rn is a homeomorphism. The set U is called a coordinate domain
or coordinate neighborhood or coordinate patch. If � (U) is a ball in Rn; U is
called a coordinate ball. A coordinate chart (U; �) is centered at p if � (p) = 0:

Theorem 6. If M is a manifold, every point x 2 M is contained in a coordinate
ball centered at x.

Proof. Since M is locally Euclidean, x must be contained in a coordinate chart
(U; �) : Since � (U) is an open set containing � (x) ; by the topology of Rn there
must be an open ball B containing � (x) and contained in � (U) : The appropriate

coordinate ball is
�
��1 (B) ; �j��1(B)

�
: If we compose � with a translation taking

� (x) to 0; we have completed the proof. �

Example 1. The graph of a continuous function f : U ! Rk; where U � Rn; is a
manifold:

� (f) =
�
(x; y) 2 Rn � Rk : x 2 U and y = f (x)

	
:

� (f) is given the subspace topology (of Rn+k), so it is automatically Hausdor¤ and
second countable. It has a single coordinate chart given by (� (f) ; �1) where �1 is
projection onto the �rst coordinate. The inverse of �1 is the map x ! (x; f (x)) :
This map is continuous if and only if f is continuous.

Example 2. Spheres are manifolds. An n-sphere is de�ned as

Sn =
n
x 2 Rn+1 : jxj2 = 1

o
:

Since it is a subspace of Rn, it is Hausdor¤ and second countable. We can de�ne
coordinate charts as follows

U+k = fx 2 S
n : xk > 0g ;

�+k =
�
x1; x2; : : : ; xk�1;cxk; xk+1; : : : ; xn+1� ;

where cxk denotes that xk is not there (so �k : Uk ! Rn). The inverse of �k is

 k
�
y1; : : : ; yn

�
=

0@y1; y2; : : : ; yk�1;
vuut1� nX

j=1

(yj)
2
; yk; : : : ; yn

1A
(since xk > 0). To get charts that cover the sphere, we also need the corresponding�
U�k ; �

�
k

�
charts.

Remark 2. There are other important coordinate charts for spheres, notably stere-
ographic projection. See problems.

Example 3. Real projective space RPn is a manifold. We de�ne real projective
space RPn to be the set of lines in Rn+1: We can represent it more formally, by
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writing a line in Rn+1 as an equivalence class of points v 2 Rn+1 n f0g such that
v � v0 if and only if v = tv0 for some t0 2 Rn f0g : Then RPn is the quotient�

Rn+1 n f0g
�
= � :

We can then give RPn the quotient topology (i.e., a set is open if and only if its
pre-image under the quotient map is open). We write

�
x0 : x1 : � � � : xn

�
for an

element in the quotient. We can de�ne coordinate charts

�i
�
x0 : x1 : � � � : xn

�
=

�
x0

xi
;
x1

xi
; : : : ;

xi�1

xi
;
xi+1

xi
; : : : ;

xn

xi

�
;

where the domain is

Ui =
��
x0 : x1 : � � � : xn

�
: xi 6= 0

	
:

We can see that this map is continuous by seeing that the quotient map composed
with this map is continuous. Notice that the image �i (Ui) = Rn and its inverse is

��1i
�
y1; : : : ; yn

�
=
�
y1 : � � � : yi�1 : 1 : yi+1 : � � � : yn

�
:

(Check this: it is not totally obvious!) This map is also continuous. One can check
that the space is Hausdor¤ and second countable.

Remark 3. It is not too hard to show that RPn is compact. You can rewrite RPn
as a quotient of Sn; showing that RPn is the continuous image of a compact space,
and hence compact.

Example 4. Products of manifolds are manifolds. If we have manifolds Mm and
Nn; then we can give M � N the product topology. If we have coordinate charts
(U; �) for M and (V;  ) for N; then there is a coordinate chart (U � V; ��  ) for
M �N: Given charts which cover M and N; we can construct charts which cover
M�N: By induction we can show that any �nite product of manifolds is a manifold
as well.

Example 5. The torus S1� S1 is a manifold. So are other tori S1� S1� � � � � S1.

Finally, we give some topological properties of manifolds that may come in useful.

Theorem 7. Every manifold has a countable basis of coordinate balls.

Corollary 8. Every manifold is locally compact (i.e., every point has a neighbor-
hood contained in a compact set).

Remark 4. We will use neighborhood of a point to mean an open set containing
that point. Some authors use neighborhood to mean any set which contains an open
set containing that point. Thus, we will always assume that a neighborhood is open.

De�nition 9. A topological space X is connected if there do not exist two disjoint,
nonempty sets whose union is X: The space X is path connected if every two
points are connected by a path (i.e., for any x; y 2 X; there exists a continuous map

 : [0; 1] ! X such that 
 (0) = x and 
 (1) = y). A topological space is locally
path connected if X has a basis of path connected sets (i.e., every point has a path
connected neighborhood).

Note that connected need not imply path connected, though the reverse impli-
cation is true. In a manifold, however, they are equivalent.
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Theorem 10. A connected manifold is connected if and only if it is path connected.
Furthermore, the components of a manifold are the same as its path components.

Proof. Since path connected implies connected, we need only prove that connected
implies path connected. Consider a manifold Mn and let x 2 M: Let S be the
set of all points y in M for which there exists a path from x to y: We will show
that S is open and closed. Suppose y 2 S: Then there is a coordinate chart (U; �)
around y (i.e., U is a neighborhood of y) and so � (U) � Rn: Since � (U) is open,
there exists a path 
 from � (y) to z for every z in a su¢ ciently small open ball
B around � (y) : B is an open set, so ��1 (B) is open in M; and contained in S
(since we can extend the continuous path from x to y by ��1 � 
). Thus S is open.
Now suppose y is a limit point of S: Then for every open neighborhood of y there
is a point x0 2 S: Take a coordinate ball (U; �) centered at y: Then there exists
x0 2 S \U: Since x0 2 S; there is a path 
 from x to x0: Furthermore, since � (U) is
a ball, there is a path � from � (x0) to 0; so by juxtaposing 
 with ��1 � �; there
is a path from x to y; thus y 2 S and S is closed. Since S is open and closed and
M is connected, we must have that S is everything and M is path connected. The
second part follows easily. �
Furthermore, we have the following two theorems.

Theorem 11. Every topological manifold is locally path connected.

Proof. Every point is contained in a coordinate ball, so the result follows. �
Theorem 12. A topological manifold has at most countably many components,
each of which is a topological manifold.

Proof. Suppose the manifold had uncountably many components. Then it is im-
possible to have a countable basis for the topology, since one can take each of the
components separately and each must contain a di¤erent coordinate neighborhood.
Each component is clearly a manifold. �

3. Smooth manifolds

First we review smooth maps between subsets of Rn: Let U � Rn and V � Rm
be open sets.

De�nition 13. A map f : U ! V is smooth (or C1) if each of its component
functions has continuous partial derivatives of all orders at every point. If f is
bijective with smooth inverse, it is called a di¤eomorphism.

Since a smooth map is continuous, we have that a di¤eomorphism is a homeo-
morphism.

Remark 5. In this �eld, usually functions refer to maps whose codomain is R,
whereas maps can be between any two manifolds. However, sometimes the term
function is used in place of map.

Since each point in a manifold is contained in a coordinate patch, one can consider
smoothness when pre- and post-composing with the coordinate maps. I.e., we want

a map f :M ! N to be smooth if ��f � �1 : U ! V; is smooth where
�
~U; 

�
is a

coordinate patch for M;
�
~V ; �

�
is a coordinate patch for N; and U �  

�
~U
�
� Rn

and V � �
�
~V
�
� Rm: In particular, the identity map should be smooth.



SMOOTH MANIFOLDS 5

De�nition 14. Let (U; �) and (V;  ) be coordinate patches such that U \ V 6= ?:
A map of the form  � ��1 : � (U \ V ) !  (U \ V ) is called a transition map
(note that it is a homeomorphism). The two charts are smoothly compatible if the
transition map is a di¤eomorphism. (Note if U \V = ?; we still say the transition
map is smooth.)

De�nition 15. An atlas for M is a collection of charts whose domains cover M:
A smooth atlas is an atlas such that any two charts are smoothly compatible.

De�nition 16. A function f :M ! R on a manifold with an atlas A is smooth if
for every (U; �) 2 A, the function f � ��1 is smooth.
It may be the case that di¤erent atlases give the same collection of smooth

functions.

Proposition 17. If A and A0 are smooth atlases on M; then they determine the
same set of smooth functions if and only if A [A0 is a smooth atlas.
Proof. Suppose they determine the same set of smooth functions. Then one can
decompose the set of transition maps into components functions. The fact that the
functions are smooth shows that transitions between patches in each atlas must be
smooth. Conversely, suppose there is a function f : M ! R that is smooth in A
but not in A0: Then there exists (U 0; �0) 2 A�such that f � (�0)�1 is not smooth,
say at a point �0 (p) : Let (U; �) be a coordinate neighborhood of p: We claim that
� � (�0)�1 is not smooth, since if it were smooth, then

f � (�0)�1 =
�
f � ��1

�
�
h
� � (�0)�1

i
is a composition of smooth maps and hence smooth. Thus A [A0 is not a smooth
atlas. �
Let�s give some examples of atlases:

Example 6. On the manifold R, the set f(R,Id)g is a smooth atlas.
Example 7. We can also consider the manifold R together with the set f(R; �)g ;
where � : R! R is de�ned by � (x) = x1=3: This is an atlas. Note, however,
that with this atlas, f : R! R given by f (x) = x1=3 is a smooth function, since
f � ��1 (x) = x is smooth. However, in the previous example, f is not a smooth
function!

Example 8. The charts we gave for the sphere and RPn also make atlases.

There are two ways to describe smooth structure: (1) as an equivalence class of
manifolds with smooth atlases and (2) as a maximal smooth atlas. They amount
to the same thing.

De�nition 18. Two smooth atlases A and A0 on a manifold M are equivalent if
A [A0 is a smooth atlas. This is an equivalence relation.
Note there is a partial ordering of atlases determined by the property of being a

subset. Since unions are atlases, there is a maximal atlas determined as the union
of all equivalent smooth atlases.

De�nition 19. An atlas is maximal if it is not contained in another atlas. A
smooth structure on a manifold M is a maximal smooth atlas. A smooth manifold
is a manifold together with a maximal smooth atlas.
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Lemma 20. Every smooth atlas for M is contained in a unique maximal smooth
atlas.

Proof. Let A be a smooth atlas for M: Let A denote the set of all charts smoothly
compatible with every chart in A. We need to show that if (U; �) and (V;  ) are
charts in A, then they are smoothly compatible, which would imply that A is a
smooth atlas. We need only show that the transition map  � ��1 : � (U \ V ) !
 (U \ V ) is smooth, since it must already be a bijection and the continuity of
the inverse follows from the fact that its inverse is � �  �1 (which would also be
smooth since � and  are arbitrary). To show smoothness, it su¢ ces to show it
at a point p 2 � (U \ V ) : Since A is an atlas, there is a chart (W;�) 2 A such
that ��1 (p) 2W: Since (U; �) and (V;  ) are smoothly compatible with (W;�) ; we
have that  � ��1 and � � ��1 are smooth in a neighborhood of � � ��1 (p) and p
respectively. But since the composition of smooth maps is smooth, we must have
that  � ��1 is smooth in a neighborhood of � (p) and we have shown that A is an
atlas.
We now need to show that A is maximal and unique. Suppose A is contained

in another atlas, A0: Then clearly A is contained in A0; and so all charts in A0 are
compatible with all charts in A. Thus A0 is contained in A: It follows that A = A0:
Now suppose that there is another maximal atlas A00 containing A. Since every
chart in A00 is compatible with every chart in A, we must have that A00 � A: Since
A00 is maximal, it follows that A00 = A: �

This says that we do not need to specify the maximal atlas to determine the
smooth structure, only some atlas. Many of the examples of manifolds we have
given so far have standard smooth structures, such as the spheres, projective spaces,
and R.

Remark 6. An interesting question is whether there are many smooth structures
on simple objects like the sphere. The answer is quite remarkable, and we will talk
about this a bit later in the course.

Remark 7. By changing the compatibility requirement to Ck or analytic or some-
thing else, one creates other types of manifolds.

Now, we have the notion of smooth coordinate chart (which must be in the atlas),
and all of the corresponding terminology as in the topological manifold case. In the
smooth setting, coordinate charts are often described in the following way. Suppose
(U; �) is a smooth coordinate chart. We can then identify U and ~U = � (U) � Rn:
For any p 2 U; we often write

� (p) =
�
x1 (p) ; x2 (p) ; : : : ; xn (p)

�
as the local coordinates at p: Note that if p 2 V; another coordinate chart, then
there is an identi�cation with y (p) = � (p) given by a (smooth) transition map.

Example 9. The standard smooth structure on Rn is generated by the identity
map when one chooses the standard basis. If one has an abstract vector space V of
dimension n; one can identify it with Rn by choosing a basis E1; : : : ; En; and the
identi�cation is

�
�
x1E1 + � � �+ xnEn

�
=
�
x1; : : : ; xn

�
:
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One gets additional charts in the smooth structure by considering a change of basis
(invertible) matrix Aji ; so that there is another basis

Fk =
nX
i=1

AikEi:

In general, we do not write the sum, since we are summing on one up and one
down index that is repeated, so we write

Fk = AikEi:

We call this Einstein summation notation. Note that in these coordinates, the point

looks di¤erent. The transition map sends
�
x1; : : : ; xn

�
to
��
A�1

�1
k
xk; : : : ;

�
A�1

�n
k
xk
�

since
xkEk = xj

�
A�1

�k
j
AikEi = xj

�
A�1

�k
j
Fk:

Remark 8. We will discuss Einstein summation notation and up/down indices in
more detail later in the course. However, it is important to note that coordinate
functions always have upper indices since basis vectors have lower indices. Linear
transformations always have one up and one down index.

Example 10. The following are also all examples of smooth manifolds:
� Open subsets of smooth manifolds.
� The set of all matrices.
� The set of invertible matrices (an open subset of the set of all matrices)
� Products of smooth manifolds.

There are two important ways of constructing manifolds: as zero sets of functions
(using implicit function theorems) and by gluing together open sets. The main
result in this section is to characterize how to glue together charts to make a
manifold.

Lemma 21 (Smooth manifold construction lemma). Let M be a set and suppose
we are given a collection fU�g of subsets of M together with injective maps �� :
U� ! Rn for each � satisfying:

(1) For each �; the set �� (U�) is an open subset of Rn:
(2) For each � and �; the set �� (U� \ U�) is an open subset of Rn:
(3) Whenever U� \ U� 6= ?; the map �� � ��1� : �� (U� \ U�)! �� (U� \ U�)

is a di¤eomorphism.
(4) There is a countable subset of fU�g that covers M:
(5) Whenever p and q are distinct points in M; either there is an � such that

p; q 2 U� or there are disjoint sets U� and U� such that p 2 U� and q 2 U� :
Then M has a unique smooth manifold structure such that (U�; ��) are smooth
coordinate charts for each �:

Proof. We claim that the sets ��1� (V ) ; where V is open in Rn; form a basis for a
topology, and we take this topology on M: To check that these form a basis, we
need that if ��1� (V )\ ��1� (V 0) 6= ?, then for any p 2 ��1� (V )\ ��1� (V 0) there
exists a neighborhood �
 (V 00) of p (such that V 00 is open in Rn). In fact, we can
show that ��1� (V )\ ��1� (V 0) = ��1� (V 00) : Let U = ��1� (V ) and U 0 = ��1� (V 0) :
We simply let

V 00 = V \ �� � ��1� (V 0) :
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The set V 00 is open since the range of �� � ��1� ; namely �� (U� \ U�) ; is open by
(2) and since �� ���1� is a di¤eomorphism (hence homeomorphism). One can then
check that ��1� (V 00) = ��1� (V ) \ ��1� (V 0) since �� is injective.
With this topology, the coordinate maps are homeomorphisms, and give that

the manifold is locally Euclidean. We can use (5) to show that M is Hausdor¤
(one can separate points either within a coordinate chart using balls in Rn or by
separating them in disjoint coordinate neighborhoods. Finally, if one takes the
countable subset from (4), each one can be given a countable basis by pulling back
one from Rn: The union of these is a countable basis for M:
By (2) and (3), the U� form a smooth atlas, determining a unique smooth

structure. �

4. Manifolds with boundary

I just want to introduce the notion of manifold with boundary, but not do much
with it at this time. A manifold is locally Euclidean, meaning that it is like the
model space Rn near every point. Manifolds with boundary can sometimes be like
a half space.

De�nition 22. The upper half space Hn � Rn is the set
Hn =

��
x1; : : : ; xn

�
2 Rn : xn � 0

	
:

De�nition 23. An n-dimensional (topological) manifold with boundary is a second-
countable, Hausdor¤ space in which every point is homeomorphic to an open subset
of Hn.

De�nition 24. A smooth atlas for an n-dimensional manifold with boundary is a
collection of charts so that transition maps can be extended to smooth maps between
open subsets of Rn:


