CHAPTER 3: TANGENT SPACE

DAVID GLICKENSTEIN

1. Tangent space

We shall define the tangent space in several ways. We first try gluing them together. We know vectors in a Euclidean space require a basepoint $x \in U \subset \mathbb{R}^n$ and a vector $v \in \mathbb{R}^n$. A C^∞-manifold consists of a number of pieces of \mathbb{R}^n glued together via coordinate charts, so we can define all tangents as follows. Consider what happens during a change of parametrization $\phi: V \to U$. It will take a vector v to $d\phi(v)$. This motivates the following:

Definition 1. $T^{\text{glue}}M = \bigsqcup_i (U_i \times \mathbb{R}^n) / \sim$ where for $(x, v) \in U_i \times \mathbb{R}^n$, $(y, w) \in U_j \times \mathbb{R}^n$ we have $(x, v) \sim (y, w)$ if and only if $y = \phi_j \phi_i^{-1}(x)$ and $w = d(\phi_j \phi_i^{-1})_x(v)$.

The nice thing about this definition is it puts things together and gives the vectors in a good way. We define the tangent space at a point $p \in M$ as $T^{\text{glue}}pM = \{[p, v] : v \in \mathbb{R}^n\}$. It is easy to see that $T^{\text{glue}}M$ is an n-dimensional vector space. It is also easy to see that there is a map $\pi: T^{\text{glue}}M \to M$ defined by $\pi([p, v]) = p$ (since the parts of M are really equivalence classes modulo equivalence. It also makes it clear that $T^{\text{glue}}M$ is a C^∞ manifold.

We can define tangent spaces in two other ways.

Definition 2. $T^{\text{path}}pM = \{\text{paths } \gamma: (-\varepsilon, \varepsilon) \to M \text{ such that } \gamma(0) = p\} / \sim$ where $\alpha \sim \beta$ if $(\phi_i \circ \alpha)'(0) = (\phi_i \circ \beta)'(0)$ for every i such that $p \in U_i$. $T^{\text{path}}M = \bigsqcup_{p \in M} T^{\text{path}}pM$.

This is a more geometric definition. Note that there is a map $\pi: T^{\text{path}}M \to M$ defined by $\pi(\gamma) = \gamma(0)$.

We shall show that $T^{\text{path}}M$ and $T^{\text{glue}}M$ are equivalent. The maps are

$\Phi: T^{\text{path}}pM \to T^{\text{glue}}pM$

defined by

$\Phi([\gamma]) = [\phi_i \circ \gamma(0), (\phi_i \circ \gamma)'(0)]$.

The inverse map is

$\Psi: T^{\text{glue}}pM \to T^{\text{path}}pM$

defined by

$\Psi([\phi_i(p), v]) = [t \to \phi_i^{-1}(\phi_i(p) + tv)]$.

It is clear that if well defined, they are inverses of each other. We need to show that Φ and Ψ are well-defined. Clearly Φ is well defined because $\phi_i \circ \gamma(0) = [4.25]
\(\phi_i \circ \beta (0), (\phi_i \circ \gamma)' (0) = (\phi_i \circ \beta)' (0) \) for any \(\beta \in [\gamma] \). Also for any \((\phi_j (p), w) \in [\phi_i (p), v] \) must satisfy \(d (\phi_i \circ \phi_j^{-1})_{\phi_i (p)} v = w \). Notice that

\[
\left\{ \phi_j \phi_i^{-1} (\phi_i (p) + tv) \right\}' (0) = d (\phi_j \circ \phi_i^{-1})_{\phi_i (p)} v = w = (\phi_j (p) + tw)' (0).
\]

The third way is in terms of germs of functions. A germ of a function is an equivalence class of functions.

Definition 3. Germs \(p \) is the set of functions \(f \in C^\infty (U_f) \) for \(p \in U_f \subset M \) modulo the equivalence that \([f] = [g] \) iff \(f (x) = g (x) \) for all \(x \in U_f \cap U_g \). Note that Germs \(p \) are an algebra since \([f] + [g] = [f + g] \) is well-defined, etc.

Definition 4. A derivation of germs is an \(\mathbb{R} \)-linear map \(X : \text{Germs}_p \rightarrow \mathbb{R} \) which satisfies

\[
X (fg) = f (p) X (g) + X (f) g (p).
\]

Definition 5. We define \(T_p^{der} M \) to be the set of derivations of germs at \(p \).

Proposition 6. Alternately, we may define the \(T_p^{der} M \) to be the set of derivations of smooth functions at \(p \).

Proof. Suppose \(X : C^\infty (M) \rightarrow \mathbb{R} \) is a derivation at \(p \). Then it determines a derivation of germs in the obvious way. Conversely, suppose \([f] \) is a germ at \(p \). Then there is a representative \(f : U \rightarrow \mathbb{R} \), and within that open set is a coordinate ball \(B \) centered at \(p \). Taking a smaller ball, we have a compact (closed) coordinate ball \(B' \) around \(p \) within the domain \(U \) of \(f \). We can consider the function \(x \rightarrow b (x) f (x) \), where \(b \) is a smooth bump function supported in \(U \) that is one on the ball \(B' \). These

This definition is nice because it shows how tangent vectors act on functions. We note derivations are a vector space since

\[
(X + Y) (fg) = X (f) g (p) + f (p) X (g) + Y (f) g (p) + f (p) Y (g)
= (X + Y) (f) g (p) + f (p) (X + Y) (g).
\]

A good example of a germ on \(U \subset \mathbb{R}^n \) is \(\frac{\partial}{\partial x^i} \bigg|_p \) since

\[
\frac{\partial}{\partial x^i} \bigg|_p (fg) = \frac{\partial f}{\partial x^i} (p) g (p) + f (p) \frac{\partial g}{\partial x^i} (p).
\]

These are linearly independent since \(\frac{\partial}{\partial x^i} \bigg|_p x^j = I^j_i \). We see that

\[
X (1) = 1 \cdot X (1) + X (1) \cdot 1
\]

so \(X (1) = 0 \). Similarly,

\[
X \left((x^i - p^i) (x^j - p^j) \right) = 0.
\]

So by Taylor series:

\[
f (x) = f (p) + \frac{\partial f}{\partial x^i} \bigg|_p (x^i - p^i) + O \left(|x - p|^2 \right).
\]
We have formally that \(\frac{\partial}{\partial x^i} \big|_p \) span \(T^\text{der}_p U \). To make this argument rigorous, we know that

\[
f(x) = f(p) + \int_0^1 \frac{df}{dx^i}(tx + (1-t)p)\,dt
= f(p) + \int_0^1 \frac{\partial f}{\partial x^i} \big|_{tx+(1-t)p} (x^i - p^i)\,dt.
\]

Hence if we apply a derivation \(X \) we have

\[
X(f) = \int_0^1 \frac{\partial f}{\partial x^i} \big|_p \,dt \cdot X(x^i - p^i) + X \left(\int_0^1 \frac{\partial f}{\partial x^i} \big|_{tx+(1-t)p} \,dt \right) \cdot (p^i - p^i)
= \frac{\partial f}{\partial x^i} \big|_p \cdot X(x^i - p^i).
\]

Hence for \(U \subset \mathbb{R}^n \) we have a correspondence

\[
T^\text{der}_p U \to \mathbb{R}^n
\]

given by

\[
X \to (X(x^1 - p^1), \ldots, X(x^n - p^n))
\]

which is an invertible linear map with inverse

\[
\mathbb{R}^n \to T^\text{der}_p U
\]

\[
(s^1, \ldots, s^n) \to \left(X(f) = \frac{\partial f}{\partial x^i} \big|_p s^i \right).
\]

On a manifold, we define

\[
\frac{\partial}{\partial x^i} \big|_p f = \frac{\partial}{\partial x^i} \big|_{\phi_i(p)} (f \circ \phi_i)
\]

for coordinates \((x^1, \ldots, x^n) = \phi_i(p)\). Notice that under a change of coordinates from \((y^1, \ldots, y^n) = \phi_j(p)\) we have that

\[
\frac{\partial}{\partial x^k} = \frac{\partial}{\partial x^k} \big|_{\phi_i(p)} (f \circ \phi_i)
= \frac{\partial}{\partial x^k} \big|_{\phi_j \circ \phi_i^{-1} \circ \phi_i(p)} (f \circ \phi_j \circ \phi_i^{-1} \circ \phi_i)
= \frac{\partial y^j}{\partial x^k} \big|_{\phi_i(p)} \frac{\partial}{\partial y^i} \big|_{\phi_j(p)} (f \circ \phi_j).
\]

Also, we have the projection \(\pi : T^\text{der} M \to M \).

Proposition 7. Let \(M = \mathbb{R}^n \). The derivations \(\frac{\partial}{\partial x^i} \big|_p \) form a basis for the derivations at \(p \).
Proof. We first see that \(X(c) = 0 \) if \(c \) is a constant function. By linearity of the derivation, we need only show that \(X(1) = 0 \). We compute:

\[
X(1) = X(1 \cdot 1) = 1 \cdot X(1) + X(1) \cdot 1 = 2X(1).
\]

We conclude that \(X(1) = 0 \).

Now, let \(X \) be a derivation and \(f \) a smooth function. We can write \(f \) as

\[
f(x) = f(p) + \int_0^1 \frac{\partial f}{\partial x^i} \bigg|_{tx+(1-t)p} (x^i - p^i) \, dt.
\]

By linearity and the derivation property, we have

\[
X(f) = X(f(p)) + X \left(\int_0^1 \frac{\partial f}{\partial x^i} \bigg|_{tx+(1-t)p} (x^i - p^i) \, dt \right).
\]

So, \(X(x^i - p^i) \) are just some numbers, and so we see that \(X \) is a linear combination of \(\frac{\partial}{\partial x^i} \mid_p \), meaning that these span the space of derivations! Since it is clear that \(\frac{\partial}{\partial x^i} \mid_p \) and \(\frac{\partial}{\partial x^j} \mid_p \) are linearly independent for each \(i \neq j \) (consider the functions \(x^i - p^i \)), the result follows.

\[\square\]

Definition 8. Given any smooth map \(F : M \to N \), there is a push forward \(F_* : T_pM \to T_{F(p)}M \) given as follows:

\[
F_*^{\text{path}}[\gamma] = [F \circ \gamma]
\]

\[
(F_*^{\text{der}} X) f = X(f \circ F).
\]

Definition 9. In any coordinate neighborhood \((U, \phi) \) of \(p \), we define the derivation \(\frac{\partial}{\partial x^i} \mid_p \) by

\[
\frac{\partial}{\partial x^i} \bigg|_p = \phi_*^{-1} \frac{\partial}{\partial x^i} \bigg|_{\phi(p)}
\]

We may now see that \(T_p^{\text{der}} M \) is isomorphic to \(T_p^{\text{path}} M \). The map is

\[
[\gamma] \to \left\{ f \to \frac{d}{dt} \bigg|_{t=0} f(\gamma(t)) \right\}.
\]

We note that

\[
\frac{d}{dt} \bigg|_{t=0} f(\gamma(t)) = \frac{\partial (f \circ \phi_i^{-1})}{\partial x^j} \bigg|_{\phi_i \circ \gamma(0)} \cdot \frac{d(\phi_i \circ \gamma)^j}{dt} \bigg|_{t=0}
\]
and hence it is well-defined up to equivalence of paths. Note that \(\{ \phi^{-1}_i (p + t e_k) \}_{k=1}^n \) form a basis for \(\gamma \) and map to \(\frac{\partial}{\partial x^k} \bigg|_p \), so this is a linear isometry.

We will now use whichever definition we wish. Also note the following:

Proposition 10. If \(p \in U \subseteq M \) is an open set, then

\[T_p M \cong T_p U. \]

Therefore, we will not make a distinction.

2. Computation in coordinates

Let’s compute the push-forward in coordinates. Recall that \(\left\{ \frac{\partial}{\partial x^k} \bigg|_p \right\}_{k=1}^m \) is a basis for \(T_p M \). Now, suppose that \(\left\{ \frac{\partial}{\partial y^a} \bigg|_{F(p)} \right\}_{a=1}^n \) is a basis for \(T_{F(p)} N \). Given a smooth map \(F : M \to N \), we should be able to compute the push forward in coordinates. If \(X \in T_p M \), we can write it in terms of the basis,

\[X = X^k \frac{\partial}{\partial x^k} \bigg|_p \]

for some numbers \(X^k \in \mathbb{R} \). To compute the push forward, which is a linear map, we have that

\[F_* X = X^k F_* \frac{\partial}{\partial x^k} \bigg|_p. \]

First, let’s suppose \(M = \mathbb{R}^m \) and \(N = \mathbb{R}^n \). To compute \(F_* \frac{\partial}{\partial x^k} \bigg|_p \), for \(f \in C^\infty (N) \) we need to compute

\[\left(F_* \frac{\partial}{\partial x^k} \bigg|_p \right) f = \frac{\partial}{\partial x^k} \bigg|_p (f \circ F) \]

\[= \frac{\partial f}{\partial y^a} \bigg|_{F(p)} \frac{\partial y^a}{\partial x^k} \bigg|_p \]

(note the summation) where, in the second expression, we really mean

\[\frac{\partial y^a}{\partial x^k} \bigg|_p = \frac{\partial y^a (F(x))}{\partial x^k} \bigg|_p = \frac{\partial F^a}{\partial x^k} \bigg|_p \]

if \(F = (F^1, \ldots, F^n) \) is written in \(y \)-coordinates. Notice that once we have specified the coordinates, we have an expression for \(F_* \) in terms of the differential.

Now suppose we are on a manifold, then

\[\left(F_* \frac{\partial}{\partial x^k} \bigg|_p \right) = \left(\psi_*^{-1} (\psi^* F_* \phi^{-1}) \phi_* \frac{\partial}{\partial x^k} \bigg|_\phi \right) \]

The middle map is known to us, as it is the differential of a map between \(\mathbb{R}^m \) and \(\mathbb{R}^n \), that is

\[\psi_* F_* \phi^{-1} = \left(\frac{\partial F^a}{\partial x^k} (\phi (p)) \right)_{k=1, \ldots, m}^{a=1, \ldots, n} \]
where \(\hat{F} = \psi \circ F \circ \phi^{-1} \). In particular, we get

\[
\left(F_*, \frac{\partial}{\partial x^k} \big|_p \right) = \frac{\partial \hat{F}^a}{\partial y^a} \left(\phi(p) \right) \frac{\partial}{\partial y^a} \big|_{F(p)}
\]

One can also consider change of coordinates. If \((U, \phi)\) and \((V, \psi)\) are coordinate charts with coordinates \((x^i)\) and \((\tilde{x}^i)\), then any tangent vector can be written as

\[
X = X^i \frac{\partial}{\partial x^i} \big|_p = \tilde{X}^i \frac{\partial}{\partial \tilde{x}^i} \big|_p.
\]

How are \(X^i\) and \(\tilde{X}^i\) related? We can compute:

\[
\tilde{X}^i \frac{\partial}{\partial \tilde{x}^i} \big|_p = \tilde{X}^i \psi_*^{-1} \frac{\partial}{\partial x^i} \big|_{\psi(p)}
\]
\[
= \tilde{X}^i \phi_*^{-1} \phi_* \psi_*^{-1} \frac{\partial}{\partial x^i} \big|_{\psi(p)}
\]
\[
= \tilde{X}^i \phi_*^{-1} \left(\phi \circ \psi^{-1} \right)_* \frac{\partial}{\partial x^i} \big|_{\psi(p)}
\]
\[
= \tilde{X}^i \phi_*^{-1} \left[\frac{\partial (\phi \circ \psi^{-1})^k}{\partial x^i} (\psi(p)) \frac{\partial}{\partial x^k} \big|_{\phi(p)} \right]
\]
\[
= \tilde{X}^i \frac{\partial (\phi \circ \psi^{-1})^k}{\partial \tilde{x}^i} (\psi(p)) \frac{\partial}{\partial x^k} \big|_p
\]

and so

\[
X^k = \tilde{X}^i \frac{\partial (\phi \circ \psi^{-1})^k}{\partial \tilde{x}^i} (\psi(p)).
\]

Example 1. Calculate the differential of the map \(F : \mathbb{C}^2 \setminus \{(0,0)\} \to \mathbb{C}P^1\).