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1 Introduction

In [21], Rippa proved a remarkable theorem about the optimality of Delaunay
triangulations. He considered a quantity he called the roughness R (f; T ) ; which
is a function of some values f on a collection of data points in the plane and a
(two-dimensional) triangulation T of the data points. The roughness is de�ned
as the Sobolev semi-norm

R (f; T ) =
X
i

Z
Ti

"�
@�i
@x

�2
+

�
@�i
@y

�2#
dxdy;

where �i is the linear interpolation of f over the triangle Ti in T and the sum is
over all triangles in the triangulation. One may consider changing the triangu-
lation by exchanging two triangles joined by an edge, forming a quadrilateral,
by the triangles obtained by switching the diagonal of the quadrilateral; this
is called an edge �ip or a 2 ! 2 bistellar �ip. He showed that the roughness
of a triangulation decreases when an edge is �ipped to make the edge Delau-
nay. Since every triangulation can be transformed into a Delaunay triangulation
by a sequence of edge �ips, this implies that the roughness is minimized by a
Delaunay triangulation.
The roughness is equal to the following functional, which we call the Dirichlet

energy:

E (f; T ) = 1

4

X
fi;jg2T

(cot�ij + cot�ij) (fj � fi)2 ;

where f is a function on the vertices of the triangulation T , and �ij ; �ij are
the two angles opposite the edge fi; jg (one of the terms is zero if fi; jg is
on the boundary). This formula is often called the cotan formula and goes at
least as far back as Du¢ n�s paper on lumped networks in 1959 [6]. It has been
popularized in the last ten years or so by the work of Pinkall and Polthier [19].
Using the notation of the Dirichlet energy, Rippa�s theorem may be stated as
follows. The precise de�nitions of Delaunay triangulation and bistellar �ip are
giving in Section 2.
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Theorem 1 ([21]) Let T be a triangulation of a �nite number of points in R2.
Let T0 be the vertices of the triangulation and let f : T0 ! R be a function.
Suppose T 0 is another triangulation of the same points which is gotten from T
by a 2 ! 2 bistellar �ip of an edge e (in particular, T0 = T 00 ;) such that the
hinge is Delaunay after the �ip. Then

E (f; T 0) � E (f; T ) ;

where ET and ET 0 are the Dirichlet energies corresponding to T and T 0: As a
consequence, the minimum is attained when all edges are Delaunay (and hence
the triangulation is a Delaunay triangulation).

The key step in Rippa�s proof is the exact calculation of E (f; T 0)�E (f; T ).
See also Powar�s method of calculating this quantity [20].
In this paper we generalize Rippa�s monotonicity lemma to the class of

weighted Delaunay triangulations, sometimes referred to as regular triangula-
tions or coherent triangulations in the literature (see, for instance, [1], [7], and
[9, Chapter 7]). The proof we provide has the advantage of being a straightfor-
ward calculation, but the disadvantage that this calculation is quite long and
complicated. It is an interesting observation that the Dirichlet energy de�ned
for weighted triangulations does not appear to come from a piecewise linear
interpolation except in the case of equal weights, when its formula is the cotan
formula. The formula is derived in parallel to the classical Dirichlet energy
instead of as an approximation to it.
The organization of the paper is as follows. We begin by introducing weighted

Delaunay triangulations and the notation used in the rest of the paper. We then
state and prove the �ip monotonicity result. Finally we comment about what
would be needed for a global theorem similar to Rippa�s.

2 Weighted Delaunay triangulations

In this section we �x notation and review the de�nitions of weighted Delau-
nay triangulations. We denote simplices with braces fg such as fig for a ver-
tex, fi; jg for an edge, and fi; j; kg for a triangle. We shall often omit the
braces for a vertex, denoting it simply as i: The entire triangulation is denoted
T = fT0; T1; T2g where T0 are the vertices (0-dimensional simplices), T1 are the
edges (1-dimensional simplices), and T2 are the triangles (2-dimensional sim-
plices). In practice we may specify T by only specifying T2, where the other
pieces can be seen as the vertices and edges in the triangles listed.
Two triangles adjacent to a common edge is called a hinge, and always has

the form ffi; j; kg ; fi; j; `gg : A triangulation can be altered by bistellar �ips,
the most important for our purposes being 2 ! 2 bistellar �ips, which we will
call edge �ips or just �ips. A �ip replaces the hinge ffi; j; kg ; fi; j; `gg by the
hinge ffi; k; `g ; fj; k; `gg : Such a �ip can be seen in Figure 1.
We shall study the triangulations of a given set of points T0 in R2: The

lengths of edges in the triangulation (gotten as the distance between the points
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Figure 1: Hinges T and T 0 di¤ering by a bistellar �ip. The dual edges are also
shown.

in R2) is given by a function

` : T1 ! (0;1) ;

where we write `ij as the length of edge fi; jg 2 T1: The triangulation has the
concepts of volume of a one-simplex (length) jfi; jgj = `ij and two-simplex (area
of a Euclidean triangle) jfi; j; kgj. If a hinge is convex, then a �ip makes sense
and change the function `, where the new length can be calculated as the length
of the other diagonal.
We shall now add the weights to the structure.

De�nition 2 A weighted triangulation (T ; w) is a triangulation T together
with weights

w : T0 ! R:

We think of the weight wi as the square of the radius of a circle centered
at the vertex i: These weighted triangulations are used in the literature on
regular triangulations such as [1] and [8]. Thinking of the weights in this way,
in each triangle there exists a circle which is orthogonal to each of the circles
centered at the vertices (this means they are perpendicular if they intersect, or
else orthogonal in the sense described in [18, Section 40]). In this way, each
triangle � has a corresponding center C (�) ; which is the center of this circle,
and the center has a weight wC(�) which is the square of the radius of this
circle. Figure 2 shows a triangle with weights wi and circles centered at the
vertices with radius

p
wi as well as the circle at the center of the triangle with

radius pwC(�); which is orthogonal to the other three circles. Note that since
weights are only de�ned on vertices, �ips are well de�ned operations on weighted
triangulations. All of these ideas still make sense if the weights are negative if
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Figure 2: A weighted triangle with circles corresponding to the weights at the
vertices. Central orthogonal circle and dual edges are also shown.

we use the formalism of [18, Section 40]. Note that since �ips preserve the vertex
set, they make sense on weighted triangulations. A �ip will not change the set
of vertex weights, although it will change the set of center weights.
An important particular case of weighted triangulations is when wi = 0 for all

vertices i: Delaunay triangulations are such (although Delaunay triangulations
satisfy an extra condition, as noted below).
We now recall the de�nition of a weighted Delaunay triangulation (see, for

instance, [1] or [7]). We �rst de�ne centers which give geometric structure to
the Poincaré dual of the triangulation. We will only need the (signed) length of
edges F fi; jg dual to edges fi; jg ; although one can de�ne signed volumes of
all of the Poincaré duals of simplices (in any dimension) as is done in [12].
Let d (x; p) be the Euclidean distance between points p and x: De�ne the

power distance
�p : R2 ! R

by
�p (x) = d (x; p)

2 � wp (1)

if p is a point weighted with wp: The power is important as a function which
is zero on the circle centered at p with radius

p
wp, positive outside the circle,

and negative inside the circle. Notice that if p is a vertex of a simplex � and
c = C (�) then �c (p) = wp and �p (c) = wc; where the weight wc is de�ned as
the square of the radius of the orthogonal circle. If no orthogonal circle exists,
a degenerate circle with negative weight can be found using the methods in
[18, Section 40]. One may consider the space of circles in the plane as a vector
space in 3-space given a particular inde�nite inner product which generalizes
the notion of two circles being orthogonal. In this way we have de�ned centers
C (fi; j; kg) of triangles. Centers C (fi; jg) of edges are de�ned to be the points
x on the line containing fi; jg where �i (x) = �j (x) :
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The distance from a triangle center C (fi; j; kg) to an edge center C (fi; jg)
may be de�ned to be the positive distance from C (fi; j; kg) to C (fi; jg) if
the center C (fi; j; kg) is on the same side of the line determined by fi; jg as
fi; j; kg is and to be negative one times that distance if the center is on the
opposite side from the triangle fi; j; kg :We denote by hij;k this signed distance
from C (fi; j; kg) to C (fi; jg) ; referring to the fact that hij;k is like a height
of fi; jg inside fi; j; kg : Once can calculate hij;k explicitly as follows. Use a
Euclidean motion to move fi; j; kg so that i is at the origin and fi; jg is along the
positive x-axis. Then hij;k is the y-component of C (fi; j; kg) : The components
of C (fi; j; kg) can be found using the linear algebra of circles described in [18,
Section 40], �nding the circle which is orthogonal to the circles centered at
the vertices of fi; j; kg with radii pwi;

p
wj ;

p
wk: Simplifying the answer, one

arrives at the following:

hij;k =
`ij
2

 
cot 
kij +

wi
`2ij
cot 
jik +

wj
`2ij
cot 
ijk �

wk
2Aijk

!
; (2)

where `ij = jfi; jgj is the length, Aijk = jfi; j; kgj is the area, and 
ijk is
the interior angle at vertex i in triangle fi; j; kg : You can see the altitudes
corresponding to hij;k in Figures 1 and 2. The dual to edge f1; 2g in Figure 1
has negative length. Note that the signed distance is de�ned so that `ijhij;k +
`ikhik;j + `jkhjk;i = 2Aijk:
We de�ne the Dirichlet energy of a function f : T0 ! R on a weighted

triangulation of a hinge T = ffi; j; kg ; fi; j; `gg to be

E (f; T ; w) = hij;k + hij;`
2`ij

(fj � fi)2 +
hik;j
2`ik

(fk � fi)2 +
hjk;i
2`jk

(fj � fk)2

+
hi`;j
2`i`

(f` � fi)2 +
hj`;i
2`j`

(fj � f`)2 :

For a general triangulation we can write the Dirichlet energy as

E (f; T ; w) = 1

2

X
fi;jg2T1

jF fi; jgj
jfi; jgj (fj � fi)

2 (3)

where jF fi; jgj denotes the (signed) length of the edge dual to fi; jg ; which
is equal to hij;k + hij;` if fi; jg is an interior edge and hij;k if fi; jg is on the
boundary. Notice that the dual edgeF fi; jg is orthogonal to the corresponding
edge fi; jg :
The lengths jF fi; jgj being positive is equivalent to the following classical

de�nition of weighted Delaunay.

De�nition 3 An edge fi; jg adjacent to the two triangles fi; j; kg and fi; j; `g
is weighted Delaunay if �C(fi;j;kg) (`) > w` and �C(fi;j;`g) (k) > wk; where
C (fi; j; kg) is the center of fi; j; kg and similarly for fi; j; `g : If the weights
at the vertices are all equal to zero, a weighted Delaunay edge is said to be
Delaunay.
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Sometimes we will instead say that the hinge is weighted Delaunay. A hinge
is Delaunay if and only if it satis�es the local empty circumcircle property: the
circle circumscribing fi; j; kg does not contain `. This is simply the interpreta-
tion of the de�nition when the weights are equal to zero. It is easy to see that
an edge fi; jg contained in a hinge ffi; j; kg ; fi; j; `gg is weighted Delaunay if
and only if jF fi; jgj � 0. The proof is essentially the same as the correspond-
ing theorem for Delaunay triangulations, which goes back at least to Rivin [22].
Details may be found in [11] or simply proved by looking at when the length of
the dual edge is equal to zero. The formula for hij;k makes it easy to see that
the condition for being weighted Delaunay is unchanged by a weight scaling of
the type fwi ! wi + cgi2T0 ; where c is some constant independent of i; since
hij;k is una¤ected by such a deformation.
The formula for the Dirichlet energy is motivated as follows. We wish to

write the Dirichlet energy as

E (f; T ; w) = �1
2

X
fi4fiAi

where 4 is a Laplacian operator and Ai = jFij is the area of the dual to the
vertex i. We can write a general form for a Laplacian in terms of integration by
parts Z

U

4fdA =
Z
@U

@f

@n
dS

where @f
@n is the normal derivative and dS is the measure on the boundary. In

our case we take U =Fi and this formula takes the form

4fiAi =
X
j

jF fi; jgj
jfi; jgj (fj � fi)

if we choose the dual structure properly. This leads to the formula (3). This is
the derivation of the Laplacian using Discrete Exterior Calculus as introduced in
[13]. Special cases of Laplacians with this form have been studied, for instance,
in [2] [3] [10] [11] [16] [17] [19]. These Laplacians are all Laplacians on the graph
determined by the one-skeleton of the triangulation that the coe¢ cients may be
negative. In [6], Du¢ n interprets this type of Laplacian in terms of an electrical
network on the one-skeleton of the triangulation. Each wire (edge) fi; jg has a
resistor with resistance jfi; jgj = jF fi; jgj. This make sense since the resistance
of a wire should be proportional to its length and inversely proportional to its
cross-sectional area. See [4] for general theory of graph Laplacians.

3 Monotonicity for weighted Delaunay triangu-
lations

We now prove the main theorem for the Dirichlet energy on weighted triangu-
lations.
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Theorem 4 Let (T ; w) be a weighted triangulation of some points in R2 weights
w. Let T0 be the vertices of the triangulation and let f : T0 ! R be a function.
Suppose (T 0; w) is another weighted triangulation which is gotten from (T ; w)
by a 2! 2 bistellar �ip on edge e such that the hinge is weighted Delaunay after
the �ip. Then

E (f; T 0; w) � E (f; T ; w) ;
where E (f; T ; w) and E (f; T 0; w) are the Dirichlet energies of f corresponding
to (T ; w) and (T 0; w) :

The proof depends on the following generalization of Rippa�s key lemma [21,
Lemma 2.2] (see also [20]). Refer to Figure 1 for a picture of the hinges.

Lemma 5 Let T = ff1; 2; 3g ; f1; 2; 4gg and T 0 = ff1; 3; 4g ; f2; 3; 4gg be two
hinges di¤ering by a �ip along f1; 2g. Then

E (f; T 0; w)� E (f; T ; w) = (fT 0 (c)� fT (c))2A21234�

where

� =
2 (r3r4 � r1r2)A1234 + w1A234 + w2A134 � w3A124 � w4A123

8A123A134A234A124
; (4)

Aijk is the area of fi; j; kg ;

A1234 = A123 +A124 = A134 +A234 (5)

is the area of the hinge, c is the intersection of the diagonals, ri is the distance
between c and vertex i; and fT 0 and fT are the piecewise linear interpolations
of f with respect to the di¤erent triangulations. One can write

fT (c) =
r1
`12
f2 +

r2
`12
f1

fT 0 (c) =
r3
`34
f4 +

r4
`34
f3:

The proof is somewhat involved, although straightforward. We use a proof
which is more direct than the ones given by Rippa [21] and Powar [20] for the
case of Delaunay triangulations.
Proof. Recall the de�nition of hij;k from (2), which we think of as the height
of the triangle fi; j; C (fi; j; kg)g : For any function f; we can compute

E (f; T 0; w)� E (f; T ; w) = 1

2

4X
i;j=1

aijfifj ;

where

a12 =
h12;3
`12

+
h12;4
`12

; a13 =
h13;2
`13

� h13;4
`13

;

a14 =
h14;2
`14

� h14;3
`14

; a23 =
h23;1
`23

� h23;4
`23

;

a24 =
h24;1
`24

� h24;3
`24

; a34 = �
h34;1
`34

� h34;2
`34

;
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and aii = �
P

j 6=i aij (where we have symmetrized aij = aji). We now wish to
factor the coe¢ cients.
We can easily �gure out ri in terms of areas in the following way. Let vi be

the point in the plane representing fig : We see that c = v1 +
r1
`12
(v2 � v1) =

v3 +
r3
`13
(v4 � v3) : By taking the cross product with v2 � v1 or v4 � v3 we �nd

that

r1 =
`12A134
A1234

and r3 =
`34A123
A1234

;

(recall the de�nition of A1234 from (5)) . Similarly,

r2 =
`12A234
A1234

and r4 =
`34A124
A1234

:

Thus

fT 0 (c)� fT (c) =
r3
`34
f4 +

r4
`34
f3 �

r1
`12
f2 �

r2
`12
f1

=
1

A1234
(A123f4 +A124f3 �A134f2 �A234f1) :

Also useful will be the calculation

r3r4 � r1r2 =
1

A21234

�
`234A123A124 � `212A234A134

�
: (6)

There are essentially two di¤erent types of coe¢ cients to consider. We need
only consider a12 and a13 since the others are similar. Let 
ijk be the angle at
vertex i in triangle fi; j; kg : Consider a12:

a12 =
h12;3
`12

+
h12;4
`12

=
1

2
cot 
312 +

w1
2`212

cot 
213 +
w2
2`212

cot 
123 �
w3
4A123

+
1

2
cot 
412 +

w1
2`212

cot 
214 +
w2
2`212

cot 
124 �
w4
4A124

=
1

2
(cot 
312 + cot 
412) +

w1
2`212

(cot 
213 + cot 
214)

+
w2
2`212

(cot 
123 + cot 
124)�
w3
4A123

� w4
4A124

: (7)
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Let � be the angle at c in the triangle f1; 3; cg :We shall use the fact that in any
triangle fi; j; kg we have `ij = `ik cos 
ijk + `jk cos 
jik to compute the parts.

cot 
312 + cot 
412 =
`13`23 cos 
312

2A123
+
`14`24 cos 
412

2A124

=
`213 � `12`13 cos 
123

2A123
+
`214 � `12`14 cos 
124

2A124

=
`213
2A123

+
`214
2A124

�
��

sin 
314
sin � sin 
123

� cot �
�
+

�
sin 
413

sin � sin 
124
+ cot �

��
=

`213
2A123

+
`214
2A124

� 1

sin �

�
sin 
314
sin 
123

+
sin 
413
sin 
124

�
=

`213
2A123

+
`214
2A124

� 1

sin �

`12A134A1234
`34A123A124

=
`213A124 + `

2
14A123 � `212A134

2A123A124

=
`213 + `

2
14

2A1234
+
`213A

2
124 + `

2
14A

2
123 � `212A2134

2A123A124A1234
� `212A134A234
2A123A124A1234

since
sin 
314 = cos 
123 sin � + sin 
123 cos �

and
sin 
413 = cos 
124 sin � � sin 
124 cos �:

Furthermore,

`213A
2
124 + `

2
14A

2
123 � `212A2134 =

1

4
`212`

2
13`

2
14

�
sin2 
124 + sin

2 
123 � sin2 (
123 + 
124)
�

= �1
2
`212`

2
13`

2
14 (sin 
123 sin 
124 cos 
134)

= �2A123A124`13`14 cos 
134

since
sin2A+ sin2B � sin2 (A+B) = �2 sinA sinB cos (A+B) :

Thus, using (6), we have

cot 
312 + cot 
412 =

�
`213 + `

2
14 � 2`13`14 cos 
134

�
2A1234

� `212A134A234
2A123A124A1234

=
`234A123A124 � `212A134A234

2A1234A123A124

=
A1234

A123A124
(r3r4 � r1r2) :
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For the other parts,

cot 
213 + cot 
214 =
cos 
213
sin 
213

+
cos 
214
sin 
214

=
sin 
234

sin 
213 sin 
214

=
`212A234
2A123A124

and

cot 
123 + cot 
124 =
`212A134
2A123A124

:

Thus (7) implies that

a12 =
A234A134

4A123A134A234A124
(2A1234 (r3r4 � r1r2) + w1A234 + w2A134 � w3A124 � w4A123)

= 2A234A134�

using the de�nition of � in (4).
Now consider a13: We can compute

a13 =
h13;2
`13

� h13;4
`13

=
1

2
cot 
213 +

w1
2`213

cot 
312 +
w3
2`213

cot 
123 �
w2
4A123

�
�
1

2
cot 
413 +

w1
2`213

cot 
314 +
w3
2`213

cot 
134 �
w4
4A134

�
=
1

2
(cot 
213 � cot 
413) +

w1
2`213

(cot 
312 � cot 
314)

+
w3
2`213

(cot 
123 � cot 
134)�
w2
4A123

+
w4
4A134

:

We see that

cot 
213 � cot 
413 =
sin 
324

sin 
213 sin �
� sin 
124
sin 
413 sin �

=
`212A134A234 � `234A123A124

2A1234A123A134

since sin 
324 = � cos � sin 
213+sin � cos 
213 and similarly sin 
124 = � cos � sin 
413+
sin � cos 
413: We also get

cot 
312 � cot 
314 =
cos 
312 sin 
314 � cos 
314 sin 
312

sin 
312 sin 
314

= � sin 
324
sin 
312 sin 
314

= � `213A234
2A123A134
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and

cot 
123 � cot 
134 =
`213A124
2A123A134

:

And so, using (6) and (4),

a13 =
�A234A124

4A123A134A234A124
(2A1234 (r3r4 � r1r2) + w1A234 � w3A124 + w2A134 � w4A123)

= �2A234A124�:

A similar argument gives the other coe¢ cients. Then we see, for instance,
that

a11 = �a12 � a13 � a14
= 2 (�A234A134 +A234A124 +A234A123) �
= 2A2234�

with similar expressions for a22; a33; and a44: Finally, we get that

E (f; T 0; w)� E (f; T ; w) = (A123f4 +A124f3 �A234f1 �A134f2)2 �;

which is equivalent to the lemma.
Now we can prove the theorem.

Proof of Theorem 4. Since the coe¢ cient a12 =
jFf1;2gj
jf1;2gj and a34 = �

jFf3;4gj
jf3;4gj ;

we see that a12 < 0 and a34 < 0 if and only if T is not weighted Delaunay and
T 0 is weighted Delaunay. Since all areas Aijk are positive, a12 < 0 if and only
if � < 0 by formula (7) for a12; and hence the result is proven.
Note that in the proof we have shown that � < 0 if and only if T is not

weighted Delaunay and T 0 is weighted Delaunay.

4 Remarks on a global theorem

Rippa�s theorem (3) includes the implication that the Delaunay triangulation,
a triangulation in which every edge is Delaunay, minimizes the Dirichlet energy.
This follows immediately from the monotonicity under �ips, since a Delaunay
triangulation can be derived from any other triangulation by a sequence of �ips.
This ��ip algorithm� was proposed by Lawson [15]. For proof that the �ip
algorithm �nds the Delaunay triangulation, see [1] [7] [22].
In order to get the global statement for weighted Delaunay triangulations in

the same way, one would need to know that a weighted Delaunay triangulation
can be found using �ips. This is not true in general (see [8, Section 5]). How-
ever, there are some conditions which ensure that the naive �ip algorithm does
work (see [12]), in which case one would conclude that the weighted Delaunay
triangulation minimizes the Dirichlet energy, however these conditions are not
particularly natural. In general, one may need to eliminate vertices which have
empty dual cells in the weighted Delaunay triangulation (i.e., vertices i which
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have negative jFij with an appropriate de�nition of the dual area). One might
try to eliminate vertices using 3 ! 1 �ips, which replace three triangles with
a single triangle. However, even allowing such �ips, we see by the example in
[8, Section 5] that there are local minima which are not weighted Delaunay. In
order to transform this example into a weighted Delaunay triangulation, one
would have to �ip weighted Delaunay edges incident on the inside triangles to
become non-weighted Delaunay and then eliminate the vertices using a 3 ! 1
�ip. Hence in order to �nd the weighted Delaunay triangulation, we cannot
only perform �ips which decreases the Dirichlet energy.
Weighted Delaunay triangulations can be formed using the incremental al-

gorithm in [8], which adds vertices incrementally only if the dual cell would have
positive area, performing edge �ips along the way in order to make the triangu-
lation weighted Delaunay before adding the next vertex. It is shown that if one
vertex is added to a weighted Delaunay triangulation, then a weighted Delaunay
triangulation is reachable via edge �ips. Theorem 4 says that once the vertex
is added, the Dirichlet energy decreases until it reaches the weighted Delaunay
triangulation. The addition of a new vertex may increase the Dirichlet energy.

5 Further remarks

It is an interesting fact that if the weights are all equal to zero, the Dirichlet
energy (3) is always nonnegative because it is the restriction of the smooth
Dirichlet energy Z

jrf j2 dA

to the space of piecewise-linear �nite elements. It does not appear that the
Dirichlet energy has this interpretation in the case of varying weights. This leads
to the question of when (3) is necessarily positive. We can give a partial answer
to this question by looking at the restriction to each triangle. On a triangle
f1; 2; 3g, the Dirichlet energy is the quadratic form Q represented by the matrix
A = (aij)i;j=1;2;3 where aij = hij;k=`ij if i 6= j and aii = �hij;k=`ij � hik;j=`ik:
It is easy to see that (1; 1; 1)T is an eigenvector with eigenvalue 0 for this matrix.
It is su¢ cient to give conditions for when this matrix is rank 2: We �nd that
the 2� 2 minors all look like

M =
h12;3h13;2
`12`13

+
h12;3h23;1
`12`23

+
h13;2h23;1
`13`23

=
h12;3h13;2 sin 
123
`12`13 sin 
123

+
h12;3h23;1 sin 
213
`12`23 sin 
213

+
h13;2h23;1 sin 
312
`13`23 sin 
312

=
~A123
A123

where ~A123 is the area of the �pedal triangle�whose vertices are the intersections
of the altitudes through the center C (f1; 2; 3g) with each of the sides. The
area is actually signed according to whether the values of hij;k are positive or
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negative. It is well known that the area of a pedal triangle is the same if we
move the center along a circle centered at the circumcenter and zero along the
circumcircle (see, for instance, [5, Theorems 62 and 63]). Thus we see that the
minor M is positive if C (f1; 2; 3g) is inside the circumcircle. Hence if this is
true for all triangles, then the Dirichlet energy must be positive. The maximum
value forM is 1=4, realized when all the weights are zero (or equal) since in this
case C (f1; 2; 3g) is the circumcenter.
Delaunay triangulations of closed surfaces have also been studied, for in-

stance in [22] and later [14]. Bobenko and Springborn [2] note that Rivin�s
result that any Delaunay triangulation of a surface can be gotten by a sequence
of �ips (see [22]) implies that the full statement of Rippa�s theorem applies to
closed surfaces as well. The notion of weighted Delaunay extends to triangula-
tions of a surface as well, but there is the same di¢ culty of using �ips to �nd a
weighted Delaunay that occurs in the planar case.
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