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A NOTE ON THE ONSAGER MODEL OF NEMATIC PHASE
TRANSITIONS ∗

I. FATKULLIN † AND V. SLASTIKOV ‡

Abstract. We study Onsager’s free energy functional for nematic liquid crystals with an orien-
tation parameter on a unit circle. For a class of interaction potentials we obtain explicit expressions
for all critical points, analyze their stability, and construct the corresponding bifurcation diagram.
We also derive asymptotic expansions of the equilibrium density of orientations near the critical and
zero temperatures.
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1. Introduction
In his seminal paper [8] Onsager introduced a simple model describing nematic

phase transitions of rod-like polymers. His theory is based on the second-order virial
approximation of the free energy as a functional of density of rod orientations. Under
a suitable variational ansatz, he was able to demonstrate that at sufficiently high
concentrations, rod-like polymers form a nematic phase.

In this note we discuss Onsager’s model with an orientation parameter on a unit
circle. The corresponding free energy functional reads,

F [ρ] :=
∫ 2π

0

[
τρ(φ)lnρ(φ) +

1
2

ρ(φ)
∫ 2π

0

U(φ−ψ)ρ(ψ)dψ

]
dφ. (1.1)

Here ρ(φ) is a probability density of rod orientations (ρ≥0 with total integral one).
We assume that the interaction potential U(φ) is given by,

U(φ)=−cosnφ, n=1,2,... (1.2)

The generally accepted Maier-Saupe potential [7, 5] corresponds to n=2; however,
since our method is equally applicable to any n, we leave it as a parameter. Here
we fix the strength of the interaction and vary the temperature τ . We prove that
for τ >τc =1/2 there exists only one critical point (the global minimizer) of F —
the uniform density ρ̄=1/2π. This corresponds to the disordered phase. For τ <τc

the uniform density loses stability, and a family of rotation-equivalent critical points,
given by,

ρφ0(φ)=Z−1 eβ(τ)cosn(φ−φ0) (1.3)

emerges. Here φ0 is an arbitrary parameter and the function β(τ) is obtained by
inverting (2.10). These critical points become the global (non-isolated) minimizers
and correspond to the ordered nematic phase. No other critical points exist in this
system. In addition to this analysis we present asymptotic expansions of ρφ0(φ) as
τ ↓0 and τ ↑ τc, and discuss possible generalizations of our method.

Similar results have been obtained in the recent work of P. Constantin,
I. G. Kevrekidis, and E. S. Titi [2, 3]; and of C. Luo, H. Zhang, and P. Zhang [6].
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Both papers only consider the case n=2. Constantin et al., obtain the general form
of solutions (though in a different way), but do not make a precise statement about
the number of critical states (after submission of this manuscript it was communi-
cated to us by P. Constantin, that a simple way to account for all critical points was
also reported in [4]). C. Luo et al., analyze the structure of critical points in Fourier
representation, obtain the critical temperature τc, and classify all critical points. Our
method is more transparent and allows us to obtain explicit expressions for all critical
points. We hope that this note (our work has been completed independently of both
groups) has valuable methodological insights.

2. Euler-Lagrange equation and explicit expressions for critical points
The Euler-Lagrange equation for critical points of the free energy (1.1) reads

∫ 2π

0

U(φ−ψ)ρ(ψ)dψ + τ lnρ(φ)=µ, (2.1)

where µ is the Lagrange multiplier which assures that the integral of ρ is unity. Let
us introduce the thermodynamic potential Φ by relation

ρ(φ)=:Z−1 exp{−Φ(φ)}, Z=
∫ 2π

0

exp{−Φ(φ)}dφ. (2.2)

Note that both ρ and Φ implicitly depend on the temperature τ . The Euler-Lagrange
equation (2.1) can be written as

τ Φ(φ)=
∫ 2π

0

U(φ−ψ)ρ(ψ)dψ. (2.3)

Differentiating this equation twice with respect to φ, we obtain

∂2
φφΦ(φ)=−n2Φ(φ). (2.4)

Now let us show that any solution of this equation produces a legitimate solution of
the Euler-Lagrange equation (2.1) for some temperature τ .

An arbitrary solution of (2.4) is given by Φ(φ)=−β cosn(φ−φ0) for some β≥0
and φ0 (shifting φ0 by π/n changes the sign of β). Define a candidate solution of
(2.1), %(φ), by

%(φ):=Z−1 eβcosn(φ−φ0), Z=
∫ 2π

0

eβcosnψ dψ. (2.5)

Observe that β =0 generates the uniform density %= ρ̄,

ρ̄(φ)=
1
2π

, (2.6)

which solves (2.1) for all temperatures τ . From now on we will assume β >0. Let us
verify that any % given by (2.5) satisfies the Euler-Lagrange equation (2.1) for some
τ . Substituting % and Φ into (2.3) and recollecting (1.2), we obtain that

βτ cosn(φ−φ0) = −
∫ 2π

0

U(φ−ψ)%(ψ)dψ = Z−1

∫ 2π

0

cosn(φ−ψ) eβcosn(ψ−φ0)dψ

(2.7)
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should hold for all φ and some constant (independent on φ) τ . Using

cosn(φ−ψ)=cosn(φ−φ0)cosn(ψ−φ0)+sinn(φ−φ0)sinn(ψ−φ0)

and integrating (the term with sinn(φ−φ0) disappears) we get

βτ cosn(φ−φ0) = Z−1 cosn(φ−φ0)
∫ 2π

0

cosnψ eβcosnψ dψ. (2.8)

The fact that dependence on φ appears on both sides only through cosn(φ−φ0)
guarantees that τ (if it exists for given β) does not depend on φ, as required. Using
the definition of Z, (2.5), we can rewrite (2.8) as,

τ =
1
β

d
dβ

lnZ =
1
β

d
dβ

ln
∫ 2π

0

eβcosnψ dψ. (2.9)

This integral can be computed employing Sommerfeld’s representation for Bessel func-
tions [1], and we readily obtain,

τ =
1
β

d
dβ

lnI0(β) =
1
β

I1(β)
I0(β)

. (2.10)

The function on the right-hand side is symmetric and positive, thus this equation
has a positive solution τ(β) for any β. We conclude that every solution of (2.4)
induces a proper solution of the Euler-Lagrange equation (2.1). In order to relate the
temperature τ in (2.1) to solutions of (2.4), we have to find all values of τ , such that
equation (2.10) can be resolved for β. Let us show that τ(β) is a positive bell-like
function of β with unique extremum (maximum) at β =0, as displayed on Fig. 2.1.
For this we prove that β =0 is the only root of τ ′(β)=0. After some manipulations
with Bessel functions we find

dτ

dβ
=

A(β)
2β I20(β)

, A(β) = I0(β)I2(β)− I21(β). (2.11)

A′=I0(I3− I1)/2, thus A(β)≤0, equality is only achieved at β =0. In the limit as
β→0, A(β)=O(

β2
)
, thus the only root of τ ′(β)=0 is zero and the function τ(β) is

monotone-decreasing for β >0. τ(0)=1/2 and as β→∞, τ ↓0, therefore the inverse
function β(τ) has domain (0,1/2] within which it has a unique positive branch.

We summarize that for τ ≥ τc :=1/2 the only solution of (2.1) is the uniform
density ρ̄(φ) given by (2.6). For τ <τc, except ρ̄, there exists a family (parameterized
by φ0) of rotation-equivalent solutions

ρφ0(φ):=Z−1 eβ(τ)cosn(φ−φ0), Z=
∫ 2π

0

eβ(τ)cosnψ dψ, (2.12)

where β(τ) is a unique positive solution of (2.10) (recollect that negative β can be
obtained shifting φ0 by π/n and is accounted for by freedom in choosing φ0). Observe
that solutions ρφ0(φ) are n-periodic: ρφ0(φ+2π/n)=ρφ0(φ), different solutions are
only obtained for φ0∈ [0,2π/n). Note also that τc does not depend on n, i. e., the
number of wells in the potential U(φ).
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Fig. 2.1.

The bell-shaped curve is the graph of τ(β), given by (2.10); this function is symmetric
so only β≥0 is displayed. The dashed lines represent asymptotic expansions as given
by (4.1) and (4.2). The thick solid line marks the stable branches: for τ >1/2 the
uniform density ρ̄=1/2π is the the global minimizer, which corresponds to β =0. It
loses stability for τ <1/2 (marked by thick dotted line) and ρφ0(φ) become the global
minimizers.

3. Stability of critical points
To determine stability of the uniform density ρ̄=1/2π, we compute the second

variation of the free energy functional:

D2F|ρ̄[η] = 2πτ

∫ 2π

0

η2(φ)dφ − 1
2

∫∫ 2π

0

cosn(φ−η)η(φ)η(ψ)dψdφ. (3.1)

In Fourier coordinates this reads,

D2F|ρ̄[η] = −2π|η̂n|2 +4πτ

∞∑

k=1

|η̂k|2. (3.2)

We used the fact that η̂0 =0, since ρ is a probability density. From (3.2) we see that
the second variation of F is positive for any η 6≡0 if and only if τ >1/2= τc. Thus the
uniform density ρ̄ is the global (isolated) minimizer for τ >τc.

For τ <τc the uniform density ρ̄ loses stability. At the same time for τ <τc we have
a family of critical points ρφ0(φ) (which all lie on a continuous curve parameterized
by φ0, and have the same energy). Since minimizers of F exist for any positive τ , and
ρφ0 are the only other critical points, we conclude that the latter become global (non-
isolated) minimizers. At τ = τc we have a unique critical point ρ̄, which is therefore
the global minimizer.

The bifurcation diagram corresponding to the transfer of stability from ρ̄ to ρφ0

at τ = τc is also displayed on Fig. 2.1. The thick solid line corresponds to the stable
branches: ρ̄ for τ >τc, and ρφ0 for τ <τc. The thick dotted line corresponds to the
uniform density at τ <τc, when it becomes a saddle point. Thus the bifurcation which
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occurs in this system can be classified as pitchfork: at τ = τc stability is transferred
from a stable node, which then becomes a saddle, to the family of rotation-equivalent
stable points. Note that each of ρφ0 is stable, but not asymptotically stable, since
they are all connected by a continuous curve.

4. Asymptotic expansions
Having an explicit expression (2.10) and using the well-known asymptotic expan-

sions for Bessel functions [1], we can readily obtain asymptotic expansions of β(τ) as
τ ↓0 or τ ↑ τc. We will limit ourselves to the leading terms only. Near τ =0 we obtain,
as expected,

β(τ)=
1
τ

+O(1), as τ ↓0. (4.1)

Expansion near τ = τc =1/2, corresponds to β→0. We get

β4(τ)=16(τc−τ)+O(τc−τ)2 , as τ ↑ τc. (4.2)

These approximate expressions are displayed on Fig. 2.1 together with the exact
solution and demonstrate a reasonable match even in the leading order. Asymptotic
expansions for ρφ0 are obtained by direct substitution of expansions for β(τ) into
(2.12): ρφ0(φ) only depends on τ through β.

5. Discussion
Let us summarize that we have obtained a complete classification of all critical

points of the free energy functional (1.1) and have given their explicit representation
(2.12). The first crucial step in our approach is transition from (2.3) to (2.4). It is
based on the observation that if the interaction potential U(φ,ψ) satisfies a linear
differential equation L̂U(φ)=0, then the thermodynamic potential Φ(φ) necessarily
satisfies the same equation. This observation remains valid if the orientation param-
eter φ belongs to a higher-dimensional sphere, e. g., S2, and the potential U(φ,ψ) is
invariant under the respective symmetry group. In this case L̂ is the Laplace-Beltrami
(or a more general, rotation invariant) operator on the unit sphere.

The next crucial step is to determine when solutions of L̂Φ =0 generate legitimate
solutions of the original Euler-Lagrange equation. In our case this step corresponds
to the observation that in (2.8) dependence on φ appears on both sides only through
cosn(φ−φ0). Generally, one has to choose such solutions Φ(φ), that certain solvability
conditions are satisfied. Although for a class of potentials considered here it comes out
“for free”, it is the most nontrivial step in generalization of our approach: it assures
existence of temperature τ (which should be independent of φ).
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