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Abstract

We present a theory of orientational order in nematic liquid crystals which interpolates between several distinct approaches based on the
director field (Oseen and Frank), order parameter tensor (Landau and de Gennes), and orientation probability density function (Onsager). As in
density-functional theories, the suggested free energy is a functional of spatially-dependent orientation distribution, however, the nonlocal effects
are taken into account via phenomenological elastic terms rather than by means of a direct pair-correlation function. In illustration of this approach
we consider a simplified model with orientation parameter on a circle and reveal its relation to the complex Ginzburg–Landau theory.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Two basic phenomenological theories addressing spatial
variations of orientational order in nematic liquid crystals are
the Oseen–Frank [1,2] and Landau–de Gennes [3] theories. The
central object in both these theories is a free energy functional;
in the former case it is a functional of the field of director
(locally-preferred orientation of liquid crystalline molecules),
whereas in the latter case it is a functional of the tensor field of
order parameter (see the next section for details). Minimizers
of the free energy functionals correspond to equilibrium states
of the liquid crystalline system — a common feature of all free
energy-based variational theories.

A microscopic approach to the derivation of the free energy
was suggested by Onsager [4]. From this point of view the
free energy is a functional depending on the probability density
function of orientations (of liquid crystalline molecules) and
may be derived via some cluster or virial expansion (Onsager
used the second virial approximation). One of the deficiencies
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of Onsager’s theory is insensitivity to spatial variation of
the orientation distribution, i.e., the latter is obtained via
sampling over all molecules in the system rather than via
local, “mesoscopic”, sampling. The modern density-functional
theories [5,6] (which are in many ways generalizations of
Onsager’s approach) attempt to solve this issue. Unfortunately,
some of their most essential quantities (e.g., the direct
pair-correlation function) cannot be readily computed from
microscopic principles, so phenomenological approximations
still have to be made if one wishes to obtain tangible results.

The goal of this work is to suggest a class of models that
may be analyzed and understood analytically (rather than by
means of computer simulations). Akin to the density-functional
method, we base our description on the spatially-dependent
orientation probability density. However, instead of following
the microscopic approach to full extent, we express the order-
parameter (or director) field by means of the appropriate
averaging, and employ the Oseen–Frank and Landau–de
Gennes -type ideas to express the elastic part of the free energy.
The principal reasons for using this scheme are its simplicity

and recent improvements in analytical techniques addressing
(spatially-homogeneous) Onsager-type models [7,8]. After

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.03.048



Author's personal copy

2578 I. Fatkullin, V. Slastikov / Physica D 237 (2008) 2577–2586

describing the general theory we concentrate on a specific
model in which the orientation parameter belongs to a circle
(rather than a sphere). This simplified model has many
properties of the full one and its analysis is quite illustrative
mathematically. Additionally, it has an intrinsic relation to
complex Ginzburg–Landau-type models and the problem of
harmonic mapping into a unit circle. In the last section we
discuss various extensions of this work such as incorporation
of additional physical features and a description of dynamical
phenomena in terms of gradient flows generated by the free
energy functionals.

2. Models for nematic liquid crystals

Let us begin with a brief summary of the theories (mentioned
in the introduction) that lay a foundation for our work.
Since their detailed review is not the goal of this paper, the
presentation is considerably simplified (e.g., some terms in the
free energy functionals are omitted). Reviews [9–11], or texts
such as [12,3] cover the missing details to a great extent.

In what follows we assume the convention that the liquid-
crystalline substance is contained in some spatial domain
Ω ⊂ R3, the corresponding coordinates are denoted by x, y,
etc. The orientational degree of freedom may be completely
characterized by a point on a sphere S2 imbedded in a three-
dimensional Euclidean space, i.e., S2 = {s ∈ R3 : |s| = 1}.
(Strictly speaking if a rod-like molecule is symmetric with
respect to inversion its orientation is characterized by point on
a two-dimensional projective plane, however it is simpler to use
S2 which can be nicely imbedded into R3.)

2.1. Phenomenological models

Most phenomenological continuum models describe liquid
crystalline systems via macroscopic order-parameter fields. The
free energy is considered as a functional of these fields and
is constructed using symmetries, qualitative analogies, etc., to
possess all essential features known from experiments. Various
parameters in such models are tuned so that the theoretical
predictions match with experimental observations. In such
theories the lack of connection with microscopic (molecular)
properties of real liquid crystalline systems is compensated by
the relative simplicity of mathematical apparatus and good (at
least qualitative) agreement with experimental data.

Perhaps the oldest theory that addresses spatial variations of
nematic ordering is the Oseen–Frank elastic theory. The state
of the system is described via the field of director, n(x) —
the space-dependent average orientation of liquid crystalline
molecules. In essence, it is assumed that the liquid crystalline
system is in a nematic state and at every macroscopic location
x ∈ Ω ⊂ R3, n(x) ∈ S2 is well-defined. In its most basic form
the free energy functional is given by (the surface terms as well
as some other contributions are omitted)

EOF[n] = 1
2

∫

Ω

{
κ11(∇ · n)2 + κ22(n · ∇ × n)2

+ κ33|n × ∇ × n|2
}

dx. (1)

The elastic moduli καβ are matched with experiments or
microscopic theories [13,14] and may themselves be nontrivial
functions of temperature, concentration, etc. (Generally, the
indices α and β vary from one to six and additional terms
may be present in (1). However, due to symmetries only five
out of thirty six καβ are independent.) The functional (1), even
in the reduced form presented here, is intractable analytically,
and a simpler model may be obtained under the assumption
that κ11 = κ22 = κ33. In this case the free energy density
becomes κ|∇n|2/2, which is the usual Dirichlet (elastic)
energy. (Needless to say that this simplification is bound to
impose additional limitations on the class of phenomena that
may be described within this framework.)

Another phenomenological theory is that of Landau and de
Gennes. Instead of the director field, here we have the ten-
sor (traceless and symmetric) order-parameter field, O(x). In
essence, the components Oαβ(x) (α, β = 1, 2, 3) are meso-
scopic averages of the quantities sαsβ − δαβ/3 over the liquid
crystalline molecules located at macroscopic coordinate x.

The Landau–de Gennes free energy may be written as

ELdG[O] =
∫

Ω

{κ1

2
|∇O|2 + κ2

2
|∇ · O|2 + a Tr O2

− b Tr O3 + c
[
Tr O2

]2
}

dx. (2)

The gradient terms model elastic interactions whereas the
nonlinear terms appear as the result of expansion of the
free energy and bear the structure necessary to allow for the
isotropic-nematic phase transition. Unlike the Oseen–Frank
theory, Landau–de Gennes theory also captures variations in
the strength of nematic ordering, e.g., one may think of Tr O2

as a scalar order parameter with Tr O2 = 0 corresponding to
isotropic state and Tr O2 ≈ 2/3 corresponding to nematic state.
Even though the functional (2) is the simplest functional of the
order parameter field (among those that encode all important
physical features), its analysis is still very nontrivial as it
contains highly nonlinear functions of a tensor field O(x).

2.2. Onsager model

Unlike the above theories, the Onsager theory is to a large
extent microscopic, i.e., its free energy functional may be
(quite rigorously) derived for long rod-like molecules in the
limit of small concentration. Onsager’s idea is to consider
the free energy as a functional of orientation probability
density, %(s), and to use asymptotic expansion of this functional
with respect to concentration. He assumed that the liquid
crystalline molecules may be represented as hard rods of
length & and diameter d (& ) d) and expanded the free
energy (per unit volume) up to second order with respect to
concentration, c (this approximation is known as the second
virial approximation) obtaining

FOns[%] =
∫

S2
%(s) ln %(s)ds

+ γ

2

∫∫

S2
U (s, s′) %(s)%(s′)dsds′. (3)
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(A few terms irrelevant for our study are omitted here.)
Unlike parameters in the Oseen–Frank and Landau–de Gennes
theories, γ is directly related to microscopic properties of liquid
crystalline molecules: γ = 2cd&2 (F is measured in the units of
kBT ). The interaction potential, U (s, s′), is the so-called second
virial coefficient (a multiplicative factor is absorbed into γ ). In
the original Onsager model

UOns(s, s′) =
[
1 − (s · s′)2

]1/2
= |s × s′|, (4)

which corresponds to the excluded-volume (hard cores)
interaction of liquid-crystalline molecules.

Note also that a phenomenological (mean-field) Maier–Saupe
theory [15] produces a free energy functional of Onsager type
(3). In their model, however, the interaction (and the parameter
γ ) is not explicitly derived from the microscopic properties of
the system and is rather prescribed as

UMS(s, s′) := 1
3

− (s · s′)2. (5)

Nevertheless, this interaction has been commonly used since it
preserves all essential features of the model and does not suffer
from the lack of analyticity as UOns does. Even though γ in
the Maier–Saupe approximation is phenomenological, it is still
directly proportional to concentration and will be referred to as
concentration further on. (Let us also comment that γ in the
Maier–Saupe approximation may be thought of as a factor in a
multi-pole expansion of the true second virial coefficient, and
their model is in this sense a quadrupole approximation.)

In [8] we have shown that all critical points of the Onsager
functional with Maier–Saupe interaction (also called P2-
Onsager model) are given by

%(s) = Z−1 exp−r(γ )(3 cos2 ϑ−1), (6)

where the constant Z is obtained from normalization condition,
the order parameter r and concentration γ are related by

1
γ

= 1
6r

d
dr

lnZ(r). (7)

See Fig. 1 for the corresponding phase (isotropic-nematic)
diagram.

Onsager’s theory captures well the isotropic-nematic phase
transition and is explicitly solvable, which makes it a perfect
starting point for the development of more complicated theories
that incorporate dependence of the orientation probability
density on the spatial coordinate x. It became a precursor
to modern density-functional theories where the state of
the system is described via %(x, s) (or more complex joint
probability density functions) and the free energy is written
down as a functional of the state. Generally, this functional has
a form similar to (3) except the interaction U itself becomes a
functional of % (this object is known as direct pair-correlation
function). The catch is that no systematic way of computing
U [%](s, s′) is currently known and some phenomenological
or ad-hoc approximations still have to be made for obtaining
tangible results. (Moreover, the assumption that U may be

Fig. 1. Isotropic-nematic diagram for the Onsager model (3) with Maier–Saupe
interaction (5). The branch r = 0 corresponds to isotropic phase which is stable
when γ < 15/2. The curve γ (r) obtained from (7) corresponds to nematic
states. These states may be prolate (r < 0) or oblate (r > 0). Oblate states are
always unstable, whereas the prolate states may be both stable (left branch) and
unstable. At γ ≈ 6.76 (not pictured) the isotropic state becomes “metastable,”
i.e., it stops being a global minimizer of the free energy functional (remaining
a local minimizer while γ < 15/2).

considered as a functional of % alone does not have to hold
and, strictly speaking, the whole hierarchy of joint probability
density functions has to be taken into account in a truly
complete microscopic theory.)

2.3. A framework for semi-microscopic models

Here we present a class of models that in some sense
interpolate between Onsager’s model and phenomenological
models of Oseen–Frank and Landau–de Gennes. The idea is
to use Onsager’s model on a “mesoscopic” level and to model
the spatial interactions via elastic-like terms as in Oseen–Frank
and Landau–de Gennes theories. We base our description on
the space-dependent orientation probability density function,
%(x, s), assuming that at every macroscopic location x ∈ Ω the
latter is well-defined. (Generally, if liquid-crystalline molecules
have additional relevant degrees of freedom, s may belong to
a more complicated manifold than S2, see Section 4.2 for a
discussion.)

Such description allows us to recover the order-parameter
field of Landau–de Gennes theory: the elements Oαβ(x) may
be represented as

Oαβ(x) =
∫

S2
sαsβ%(x, s)ds − δαβ

3
. (8)

Recovery of the director field n(x) is a more complicated
matter and may not even be possible. The reason, of course, is
that the description in terms of %(x, s) is more complete and
incorporates the states for which the director simply cannot
be properly defined. Formally, one can find n(x) minimizing
the distance between %(x, s) and δn(s) (atomic measure split in
equal halves between n ∈ S2 and the opposite point) in some
reasonable metric (e.g., Wasserstein-2 [16]).
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Following [17], we suggest to employ a five-dimensional
director field defining

n(x) :=
∫

S2
Y(s)%(x, s)ds, (9)

Y(s) denotes a vector of second-order spherical harmonics
[ Y2,−2(s), . . . , Y2,2(s)]. Note that n(x) contains precisely the
same information as the Landau–de Gennes order-parameter
tensor O(x), since second-order spherical harmonics are the
orthogonalized second-order homogeneous polynomials of s.
The reason to use the averages of spherical harmonics Y2,m(s)
rather than the averages of products sαsβ is that they enjoy a
number of nice mathematical properties and are convenient to
work with.

Within the framework of our theory the total (bulk) free
energy is decomposed into two parts:

E[%] =
∫

Ω
{Fo(x) + Fe(x)} dx. (10)

The first term, Fo(x) is the Onsager-type orientational entropy
density (3), which now becomes a function of x. The second
term, Fe(x) is a phenomenological elastic energy density
penalizing variations of orientational ordering. In the case of
linear elasticity (the energy is quadratic with respect to spatial
derivatives of n) we have

Fe[n(x)] = 1
2
(∂n, κ̂∂n), (11)

where the operator ∂ has components

∂0 = ∂z, ∂±1 = (∂x ± i∂y)/
√

2, (12)

and κ̂ is a 15 × 15 matrix containing elastic moduli. As shown
in [17], due to symmetry considerations, only three entries of κ̂

are independent. Indeed, the products ∂i n j may be combined
to form three irreducible tensors (l = 1, 2, 3; m = −l . . . l)

[∂ ⊗ n](l)m =
1∑

i=−1

2∑

j=−2

(
1 2 l
i j m

)
∂i n j . (13)

Here the weighting factors are the Clebsch–Gordan coefficients
(3 j-symbols). Contracting these tensors we may form three
scalar invariants (one for each l)

I (l) =
l∑

m=−l

(
l l 0
m −m 0

)
[∂ ⊗ n](l)m [∂ ⊗ n](l)−m . (14)

Thus the elastic energy (11) may be represented as

Fe[n(x)] = κ1 I (1) + κ2 I (2) + κ3 I (2). (15)

Explicit expressions for I (l) may be found in [17]. Some
possible generalizations for Fe(x) are discussed in Section 4.1.

Finally, let us mention that in this work we do not analyze
the surface effects in such a generality and, instead, illustrate
a few possible scenarios on specific examples in the following
section.

Fig. 2. Graph of T(r) = I1(r)/ I0(r). As r → ±∞, T(r) → ±1. Slope of T(r)

at r = 0 is 1/2 (the dashed line) reflecting that (18) has nonzero solutions when
γ > 2.

3. A two-dimensional (S1) model

In order to illustrate some of the principal features of the
suggested class of models, let us study in greater detail one
particular example in which the orientation parameter belongs
to a unit circle, S1, parameterized by a number in [0, 2π). The
full three-dimensional case (the orientation parameter belongs
to a sphere, S2) shares lots of similarity with this simplified
example and may be analyzed by similar methods. It is,
however, more technical and will be considered in a separate
paper [18].

As discussed in the previous section, we use an Onsager-type
functional (a few irrelevant terms are omitted),

Fo[%] :=
∫ 2π

0
%(ϕ) ln %(ϕ)dϕ

− γ

2

∫∫ 2π

0
cos 2(ϕ − ϕ′)%(ϕ)%(ϕ′)dϕ dϕ′, (16)

for the orientational free energy density. Note that our
interaction, cos 2(ϕ − ϕ′), is equivalent to the Maier–Saupe
interaction (5). As it was shown in [7], all critical points of (16)
are given by

%(ϕ) = exp{r cos 2(ϕ − ψ)}
2π I0(r)

, (17)

where the order parameter r is either zero or is related to
concentration γ by

1
γ

= T(r)

r
, T(r) := I1(r)

I0(r)
. (18)

Here In(r) are the modified Bessel functions of the first kind;
the ratio I1(r)/ I0(r) appears quite often in what follows, so
we designate a special symbol, T(r), for it (see Fig. 2 for the
graph of T(r)). The graph of functional dependence of γ on r
is presented in Fig. 3. For small concentrations (γ ≤ 2) r = 0 is
the only critical point (and the global minimizer); when γ > 2 it
loses stability and a rotation-equivalent family (parameterized
by ψ) (17) of nontrivial global minimizers emerges. Here the
major difference with the full S2-model can be spotted: the
phase transition in the S1-model is of the second order and does
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Fig. 3. Isotropic-nematic phase diagram for the free energy functional (16).
The vertical line, r = 0, corresponds to isotropic state which is stable when
γ < 2. The curved line is the graph of γ (r) obtained from (18); it corresponds
to stable nematic states.

not allow for coexistence of stable isotropic and nematic phases
(compare Figs. 1 and 3). In particular, this implies that the full
treatment is necessary in order to describe such phenomena as
isotropic-nematic interfaces.

For the elastic free energy density we pick the simplest
Dirichlet-type functional

Fe[%] := κ

2
|∇n|2

= κ

2

∫∫ 2π

0
cos 2(ϕ − ϕ′)∇%(ϕ) · ∇%(ϕ′)dϕ dϕ′. (19)

The gradient ∇ is with respect to the spatial variable x ∈ Ω .
Here we related the order-parameter field n(x) to the spatially-
dependent orientation density function %(x, ϕ) via

n(x) :=
∫ 2π

0
e2iϕ%(x, ϕ)dϕ. (20)

(In the S1-model n is two-dimensional rather than five-
dimensional as it would be in the S2-model, cf (9)). Note that
we often treat n(x) as a complex scalar field rather than a two-
dimensional real vector-field (this simplifies notation and plays
no essential role otherwise).

The total free energy is obtained by integrating both
contributions, (16) and (19), over the spatial domain Ω :

E[%] :=
∫

Ω
{Fo[%] + Fe[%]} dx. (21)

Now the equilibrium states of the system may be found via
minimization of the total free energy (21). This energy, in
general, has to be augmented by the boundary terms arising due
to interaction of polymers with the container or other surface
effects. Typically, the boundary contribution is given by

Ebnd[%] := −
∫

∂Ω
n(x) · u(x)ds(x), (22)

where u(x) is a boundary potential (it provides the preferred
orientation of n(x) on the boundary) and ds(x) is the area of the
surface element. It is also possible to use a somewhat simplified

approach prescribing the boundary conditions for the argument
of n(x) directly. Such treatment corresponds to an assumption
that it is experimentally feasible to control orientation of liquid-
crystalline molecules on the boundary of the system.

3.1. Euler-Lagrange equations

Let us consider the Euler-Lagrange equations associated
with (21). It is convenient to make a change of variables,
introducing a potential Ψ := ln %+const, choosing the constant
so that Ψ(ϕ) integrates to zero over ϕ ∈ [0, 2π). We have

%(x, ϕ) = Z−1(x)eΨ (x,ϕ), (23)

where the partition integral, Z , is given by

Z(x) =
∫ 2π

0
eΨ (x,ϕ)dϕ. (24)

A straightforward computation shows that the Euler-Lagrange
equation for the critical points of (21) may be written as

Ψ(x, ϕ) =
∫ 2π

0
cos 2(ϕ − ϕ′) [γ + κ-] %(x, ϕ′)dϕ′. (25)

(Laplacian, -, only acts on the spatial variable x.) The
boundary contributions into the total free energy supply the
boundary conditions, e.g., (22) produces

κ∂⊥n(x) = u(x), x ∈ ∂Ω , (26)

where ∂⊥ denotes the normal derivative. Differentiating both
sides of (25) twice with respect to ϕ, we immediately find that
Ψ satisfies

Ψϕϕ(x, ϕ) = −4Ψ(x, ϕ) (27)

which implies that it may be represented as

Ψ(x, ϕ) = r(x) cos 2[ϕ − ψ(x)]. (28)

Substituting this in (24) and integrating we get

Z(x) = 2π I0(r(x)), (29)

which implies that critical points of the free energy are given by

%(x, ϕ) = exp{r(x) cos 2[ϕ − ψ(x)]}
2π I0(r(x))

. (30)

It is rather remarkable that in the x-dependent model (21)
the structure of the critical points is very similar to the
“homogeneous” case (16): the parameters r and ψ here become
the x-dependent fields while the structure of the orientation
probability density remains the same, cf (17). The problem is
now reduced to finding r(x) and ψ(x).

Before proceeding with analysis of the Euler-Lagrange
equation let us reveal a intimate connection of our free energy
functional with Ginzburg–Landau-type functionals.

3.2. Reduction to a Ginzburg–Landau-type model

Since we know that all critical points satisfy (30) we may
express the free energy as a functional of n(x) (or r(x) and
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Fig. 4. Graphs of W (r) given by (35). The dashed line corresponds to the
critical value, γ = 2; the dotted line — to γ = 0.2; the solid line — to γ = 4.
The logarithmic subplot demonstrates that W (r) → ∞ as r → ∞ (the growth
is logarithmically slow).

ψ(x)). Integrating (20) using (30) we obtain

n(x) = e2iψ(x) T(r(x)). (31)

Inverting this relation (denoting n = |n| and introducing A(n),
the inverse function of T(r)) we may express r as a function of
n

r = A(n). (32)

Now let us integrate over ϕ in (16). The % ln %-part yields

r T(r) − ln[2π I0(r)]. (33)

The interaction part of (16) becomes

−γ

2
T2(r). (34)

Thus we obtain

Fo[%] = W (r)

= r T(r) − γ

2
T2(r) − ln I0(r) − ln 2π. (35)

The graphs of W (r) for several values of γ are presented in
Fig. 4. Expressing Fo as a function of n we get

Fo[%] = V (n) := W (r(n))

= n A(n) − γ n2

2
− ln I0(A(n)) − ln 2π. (36)

A few graphs of V (n) are presented in Fig. 5. Observe that
when γ ≥ 2 existence of nematic ordering is manifested
through appearance of potential wells in W (r) and V (n),
characteristic for Landau-type theories of second-order phase
transitions.

The total free energy (21) may now be written as

E[n] =
∫

Ω

{κ

2
|∇n|2 + V (n)

}
dx. (37)

Since

|∇n|2 = | T′(r)∇r |2 + 4| T(r)∇ψ |2, (38)

Fig. 5. Graphs of V (n) given by (36). The dashed line corresponds to the
critical value, γ = 2; the dotted line — to γ = 0.2; the solid line — to γ = 4.

this is equivalent to

E[r, ψ] =
∫

Ω

{κ

2
| T′(r)∇r |2 + 2κ| T(r)∇ψ |2 + W (r)

}
dx.

(39)

One can immediately recognize a similarity between (37) and
the canonical Ginzburg–Landau energy for which V (n) =
(1 − n2)2. Our potential (36) is more complicated, however it
maintains the same double-well structure (when γ > 2). In
the limit as γ ↗ ∞ the functional (21) is, in fact, a different
regularization of Dirichlet energy for harmonic mapping from
Ω into a unit circle. This connection requires a more detailed
consideration and will be studied elsewhere.

3.3. A few special solutions

Let us now proceed with analysis of the Euler-Lagrange
equations for the free energy functional (21). Since we
have shown equivalence of the critical points of (21) and
(37), we will actually study the latter functional (employing
methods associated with Ginzburg–Landau equations). A
straightforward derivation produces the following equation

κ-n = n
n

V ′(n) = n
n

A(n) − γ n. (40)

Representing (note that φ below is different from ψ introduced
in (31) by a factor of two)

n = neiφ, (41)

we may rewrite (40) as a system

κ-n + γ n = κn|∇φ|2 + A(n), (42)
2∇n · ∇φ + n-φ = 0. (43)

Eq. (40), or (42) and (43), has to be solved within the
spatial domain Ω and should be complimented by the boundary
conditions arising from the appropriate boundary terms in the
total free energy functional. In what follows we consider the
boundary conditions of Neumann type (26), and simplified
Dirichlet boundary conditions on Arg n(x). We generally
assume that γ > 2 (γ ≤ 2 corresponds to the isotropic state
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in which case V (n) does not have a double-well shape and thus
the structure of solutions is trivial).
A one-dimensional domain Let the physical set up be such
that the system is translation-invariant in all but one spatial
dimension. Effectively we get a one-dimensional domain, Ω =
(0, L). In this case Eq. (43) conceals a conserved quantity,

α = n2φx , (44)

and may be integrated. Thus we may express φ through n:

φ(x) = φ(0) + α

∫ x

0

dy
n2(y)

. (45)

(The integral may not diverge since this would yield infinite
variation of φ and divergence of energy.) The value of α needs
to be determined using the boundary data. Substituting back
into (42) we obtain a single equation for n(x):

κnxx = A(n) − γ n + κα2

n3 . (46)

Now let us consider a few specific boundary data. In the
simplest case one may prescribe the values for φ = Arg n, φ(0)

and φ(L). Since |nx |2 = n2
x + n2φ2

x and φx = α/n2, we may
rewrite the total energy (for critical points) as

E[n] =
∫ L

0

{κ

2
n2

x + V (n)
}

dx + κδϕ2

2

[∫ L

0

dx
n2

]−1

, (47)

where δϕ = φ(L)−φ(0) (up to a possible factor of 2πk). Since
for this kind of boundary conditions δϕ is fixed, the minimizers
are necessarily constants. Indeed, minimizing the last two terms
independently of the Dirichlet term we obtain n(x) ≡ const.
However this also minimizes the Dirichlet term, so the whole
energy is also minimized by a constant function. Eq. (46) then
becomes

n

[

γ − κ

(
δϕ

L

)2
]

= A(n). (48)

So essentially this leads to renormalization of concentration
γ . If δϕ < L

√
(γ − 2)/κ , (48) has a nontrivial solution,

n = nc > 0, and the system is in a (chiral) nematic phase:
φ(x) = ϕ(0) + δϕ x/L . Otherwise the only solution of (48) is
n ≡ 0, and the system is in a uniformly isotropic state.

More interesting solutions may be obtained if we use the
boundary data arising from the boundary terms in the total free
energy, e.g., (26). In the one-dimensional case this corresponds
to

κnx (0) = −u0, κnx (L) = uL , (49)

which may be converted into

κ2α2 = n2(u2 − κ2n2
x ), (50)

φ = ∓Arg u − arccos
κnx

u
, x = 0, L . (51)

In this formulation α is an unknown constant to be determined
so that (46) and (45) may be solved subject to (51).

Fig. 6. Schematic representation of the phase portrait of (46) near the
equilibrium point n = nc . The fixed point itself is the solution when the
boundary conditions are imposed on Arg n. Solutions to more complicated
cases are displayed using the thick lines. For half-line, L = ∞, the solution
is given by a portion of separatrix with endpoint (A) satisfying κnx = −u0.
For finite L , solution for a prescribed α is given by an orbit whose endpoints
(B,C) satisfy the boundary data (50) and the “time” of travel from B to C is
exactly L .

Consider a semi-infinite domain, L = ∞ (the boundary
data is only given at x = 0). From the energy standpoint we
immediately get that φx → 0 as x ↗ ∞ and thus α = 0
(otherwise the energy is not optimal). Thus we get

φ(x) ≡ Arg u0, (52)

while n(x) corresponds to the separatrix of (46), see Fig. 6, and
may be found inverting

x = κ

2

∫ n

nc

[V (p) − V (nc)]−1/2 dp. (53)

(Unfortunately, no closed analytical expression for this integral
may be found.)

When L is finite, finding the value of α is a nontrivial
“eigenvalue” problem: for any fixed α we can solve the
boundary-value problem (50) for (46), see Fig. 6. Using (51)
we then may find φ(0) and, integrating (45), φ(L). This value,
however, will only satisfy the boundary condition (51) at x = L
for some particular α (the “eigenvalue”).
Vortex solution One of the most important special solutions for
two-dimensional spatial domains is a vortex solution. Let us set

φ(x) = arctan(x1/x2) (54)

and demand that n(x) be a radial function with n(0) = 0. Eq.
(43) for φ(x) is immediately satisfied, whereas Eq. (42) for n(x)
becomes

n′′ + 1
z

n′ +
(

1 − 1
z2

)
n = 1

γ
A(n), (55)

where we introduced z := √
γ /κ x . The linear part of (55)

is the Bessel equation, however the nonlinearity on the right-
hand side does not allow us to obtain explicit solutions. Still, a
qualitative analysis is possible. As z ↗ ∞, the O(1) terms on
the right- and left-hand sides have to be balanced, thus we get
n(z) → n0, where n0 solves

γ n0 = A(n0). (56)
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Fig. 7. Profile n(z) of the vortex solution for γ = 4 (the corresponding
equilibrium value n0 ≈ 0.83). The dashed lines represent approximate
asymptotic solutions given by (57) and (59), and approximate numerical value
for the constant C in (59) is 0.86.

This is an analogue of (18) with n0 corresponding to the
nematic state (remember, a nonzero solution exists if γ > 2).
So, far away from the origin the solution describes the nematic
phase whose director is orthogonal to the ray from the origin.
The next-order correction may be found in a straightforward
manner and we get (using the original variable, x) that as
x ↗ ∞,

n(x) = n0

[
1 − κ

A′(n0) − γ

1
x2

]
+ O(x−4). (57)

It is not as trivial to obtain asymptotics for n(x) as x ↘ 0.
Since A(n) ∼ 2n as n ↘ 0, in the neighborhood of zero (55) is
equivalent to

n′′ + 1
z

n′ +
(

1 − 2
γ

− 1
z2

)
n = 0. (58)

Thus the required solution behaves as

n(z) ∼ C J1(
√

(γ − 2)/γ z). (59)

(J1 denotes the Bessel function of the first order.) Finding the
constant C , however, amounts to solving a nonlinear “eigen-
value” problem and cannot be accomplished analytically. In-
deed, trying to solve (55) with initial data n(0) = 0, n′(0) = c,
one finds that for small values of c, the solution behaves like
(59) for all z, whereas for c large, it reaches n = 1 while z is
still finite. There exists precisely one value of c (and the corre-
sponding value of C) at which n has the required behavior (57)
at infinity. Numerical solution of (55) is presented in Fig. 7.

We see that near the origin the nematic phase “melts”
allowing the director to rotate. The width of the melted layer
is proportional to

√
κ and roughly to 1/

√
γ as γ ↗ ∞

(dependence on γ is less trivial when γ ≈ 2 because of
isotropic-nematic phase transition at γ = 2). Unlike the γ ↗
∞ limit, the limit as κ ↘ 0 is not particularly interesting, since
it simply removes all spatial interactions. In the former case the
vortex solution becomes the “true vortex,”

n(x) = ix
x

(60)

(here we treat x as a complex variable, x1 + ix2). Generally, if
we fix a finite domain Ω and impose the boundary conditions
such that the argument of n(x) runs around [0, 2π)k times, the
minimizer will contain k vortices. The problem of finding their
precise locations is quite nontrivial and is closely related to
similar problems arising in various models describing pattern
formation [19,20].

4. Discussion

In conclusion let us discuss a few ideas, generalizations,
and promising directions for subsequent research within the
outlined theory. The first immediate task is analysis of the
full three-dimensional model instead of the simplified one
considered in Section 3 (s ∈ S2 rather than s ∈ S1). The
mathematical apparatus employed here for the S1 case carries
over to S2-model with little effort, and an analogue of (30) may
be easily derived. The following analysis, however, is more
technical due to the fact that one must deal with spherical
harmonics (basis on S2) instead of the usual cosine functions
(basis on S1). This analysis will be carried out in a follow-up to
this paper [18].

4.1. More on elasticity and nonlocal interactions

A complete and rigorous microscopic derivation of elastic
terms such as Fe[%] in our model, or more general, nonlocal
terms (involving spatial gradients or values of various quantities
at different spatial locations) in free energy functionals for
liquid crystalline systems has not been accomplished yet. On
a phenomenological level elastic-like terms of Oseen–Frank
and Landau–de Gennes theories are quite satisfactory and are
commonly used in contemporary research. The microscopic
density-functional theories may be appropriate for a better
understanding of elasticity of liquid crystals, however, most
of the studies in this direction are primarily concerned with
expressing the phenomenological constants (e.g. elastic moduli
καβ , or constants in Landau–de Gennes theory) by means of
direct pair-correlation function rather than with an explicit
derivation of the functional form of nonlocal terms.

From the mathematical standpoint there exist two common
types of nonlocal terms in free energy functionals — elastic-
like terms involving spatial gradients of various quantities
at the same spatial location, e.g., (dropping differentials for
compactness)
∫

Ω

∫

S2
F (%(x, s), ∇Ω%(x, s)) ; (61)

and “truly nonlocal” terms involving values of the fields at
different points, e.g.,
∫∫

Ω

∫∫

S2
V (x, x′; s, s′)%(x, s)%(x′, s′). (62)

Quite often, however, there is little difference between
them. For example, F(%, ∇Ω%) = |∇Ω%|2 is equivalent to
V (x, x′; s, s′) = −δs(s′)-Ω δ(x − x′). From the microscopic
physical standpoint only the latter type of interactions (62) is
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directly justifiable (n-tuple integrals appear in various cluster
expansions and correspond to n-particle effects). The gradient
terms of the first type appear when one makes a transition from
microscopic to macroscopic scale, i.e, some kind of asymptotic
limit has been taken in the process. For example, if in such a
limit V (x, x′; s, s′) converges in the sense of distributions to
−Vαβ(s, s′) ∂2

αβ δ(x − x′) (summing over α, β = 1, 2, 3), we
obtain a more general form of elastic energy density. Skipping
the field of director, n(x), and expressing Fe directly as a
functional of %(x, s), we get

Fe[%] =
∫∫

S2
Vαβ(s, s′)∂α%(x, s)∂β%(x, s′). (63)

Observe that (11) is a particular case of (63) corresponding
to a specific choice of potentials Vαβ(s, s′). In general, varying
this potential provides additional freedom for modeling of
elastic interactions.

Finally, it is important to understand that all the terms in
free energies suggested here have been at most quadratic with
respect to %(x, s). This essentially means that we have only
taken into account the two-particle interactions. This may not
be sufficient for quantitative description of systems with high
concentration of liquid crystalline molecules and terms of cubic
or higher order in % (or more complex joint probability density
functions) must be present to address such cases.

4.2. A few comments on cholesterics

Cholesteric liquid crystals possess the so called chirality
— their director rotates in space with a characteristic length-
scale (the pitch) even when the system is in equilibrium and
has no external constraints. The microscopic reasons for this
behavior are not completely understood, however, it is clear
that this phenomenon is related to the fact that the molecules
of such liquid crystals possess less symmetry than simple rods.
Mathematically this means that the space of the orientation
parameter has to be extended from S2 to a more complicated
manifold. Since orientations of a generic molecule may be
parameterized by rotations in a three-dimensional space, the
simplest extension would be to SO3 (group of rotations). A
necessary step in extending our approach to systems of this kind
is a derivation of a proper interaction potential U (s, s′) for the
Onsager-type functional in case s, s′ ∈ SO3. Unfortunately, we
are not aware of any progress in this direction.

4.3. Dynamics

Study of the critical points of free energy functionals
provides information about equilibrium states of liquid
crystalline systems. In order to explore their properties in
out-of-equilibrium conditions one has to look into associated
dynamics. A rigorous derivation of dynamic equations has not
yet been attained and is related to the problem of closure of
various BBGKY-type hierarchies of kinetic equations. It is quite
common (and often goes along with some closure assumption)
to consider dissipative gradient flow dynamics on the free
energy landscape (more complex models may be obtained by

coupling such dynamics with hydrodynamic equations, see
[21] for a recent review). For example, the classical Doi-
Smoluchowski (diffusive transport) dynamics [22] for Onsager
free energy functionals is governed by

∂t%(s, t) = ∇S2 ·
{
%(s) ∇S2

δFOns[%]
δ%(s)

}
. (64)

This is the gradient flow in the so called Wasserstein-
2 metric [16] of probability measures. (Note that here the
probability density of orientations, %(s), is x-independent and
the divergence and gradient operators are native to the sphere
S2.) At the same time dynamics for theories based on the order
parameter, e.g, Landau–de Gennes theory, is described by the
usual gradient flow (in L2 metric)

∂t O(x, t) = −δELdG[O]
δO(x)

. (65)

As demonstrated in the previous sections, within the frame-
work of our theory there is a direct relation between the or-
der parameter field and x-dependent orientation density. Thus
this theory provides a natural setting for studying the question
of whether it is possible to relate the Doi-Smoluchowski-type
dynamics for %(x, s) with Landau-type dynamics of the order
parameter fields. For example, the gradient flow equation for
evolution of %(x, s) could be identical to (64) except the gra-
dient and divergence operators would then act in the full space
Ω × S2 and the full free energy (10) would replace FOns[%].
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