Making Formulas to Solve Linear Systems

Qiyam Tung

September 25, 2011

1 Creating a formula

Formulae are plug-and-chug methods of finding an unknown quantity. For example, you know the formula to calculate the slope of a line:

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]

However, how do you come up with formulae? Wouldn’t it be nice if there were a method easier than what you’re currently doing to solve systems of linear equations?

For example, let’s say we have two equations

\[2x + y = 3 \]

\[3x + y = 5 \]

You know how to solve this. But let’s say we see lots of systems of equations, like \(\frac{15}{7}x + y = 13 \), \(\frac{13}{7}x + y = 10 \), etc. What similarities do all these equations share? All the y-coefficients are one. Perhaps we can make life simpler if we found a faster method of solving systems of linear equations when y has a coefficient of one.

To generalize, first let’s assume the coefficient of x can be anything, call it A. Let’s also call the constant C. So now we have

\[Ax + y = C \]

But wait, we need two equations to solve for this right? We can’t call both x coefficients A, otherwise that means they’re the same number. So, let’s modify it so that the x coefficients of the first equation are called \(A_1 \) and the second equation’s is \(A_2 \). Same thing with C.

\[A_1x + y = C_1 \]

\[A_2x + y = C_2 \]

How would we solve for this equation? Well, cancel the y’s first. Subtract \(5 \) from \(6 \).

\[(A_2 - A_1)x = C_2 - C_1 \]

\[x = \frac{C_2 - C_1}{A_2 - A_1} \]

Putting this back in for x, we get

\[A_2x + y = C_2 \]

\[A_2 \cdot \frac{C_2 - C_1}{A_2 - A_1} + y = C_2 \]

\[y = C_2 - A_2 \cdot \frac{C_2 - C_1}{A_2 - A_1} \]

Does this really work? Let’s try it.

\[2x + y = 3 \]
\[3x + y = 5 \quad (13) \]

\[A_1 = 2, \ A_2 = 3, \ C_1 = 3, \ C_2 = 5. \]

\[y = 5 - 3 \cdot \frac{5 - 3}{3 - 2} \quad (14) \]

\[y = 5 - 6 \]

\[y = -1 \quad (15) \]

\[x = \frac{5 - 3}{3 - 2} \]

\[x = \frac{2}{1} \quad (17) \]

\[x = 2 \quad (18) \]

So, \(x = 2 \) and \(y = -1 \). Plugging those numbers back in confirms it.

Do the same for

\[x + B_1 y = C_1 \quad (20) \]

\[x + B_2 y = C_2 \quad (21) \]