Calculus in AI and Machine Learning 1

Qiyam Tung

G-TEAMS
Department of Computer Science
University of Arizona

November 10, 2011
Linear Regression is one of the tools we use in machine learning.

- Predicting house prices as a function of its size.
- Predicting consumption spending (a large number of input variables).
- Predicting the effect of factories on environments.
For each problem, find the parameters for the line given a set of points. If the line doesn't exist, explain why not.

1. (1,1) (2,2)
2. (2,2) (4, 10)
3. (1,7)
4. (1,1) (2,3) (3,2) (4,4)
Figure: (1,1) (2,2)
Figure: (2,2) (4,10)
Introduction
Linear Regression
Exact Lines
Estimating Lines
Minimization

Figure: (1.7)
Figure: (1,1) (2,3) (3,2) (4,4)
How do you estimate a line?

Figure: When we fit a line, we want to minimize the average distance of the points to the line we’re fitting. The distance is indicated by the vertical lines from the point to the line.
Error = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \quad (1)
Error = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 \quad (1)

Scary!
\[Error = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 \] (1)

Scary!

Hold on...
\[h_\theta(x) - y = (\theta_0 + \theta_1 x) - y \] \hspace{1cm} (2)

Distance from line?

Qiyam Tung Calculus and AI 1
\[(h_\theta(x) - y)^2 = ((\theta_0 + \theta_1x) - y)^2\] (3)

Squaring it always gives us a positive error. We don’t want the errors to cancel out.
We want to minimize the **average distance** of the points to the **line** we’re fitting. The **distance/error** is indicated by the vertical lines from the point to the line.

\[
Error = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2
\] (4)
We want to minimize the **average distance** of the points to the **line** we’re fitting. The **distance/error** is indicated by the vertical lines from the point to the line.

\[
\text{Error} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2
\]

(4)

- Average: \(\frac{1}{m} \)
We want to minimize the *average distance* of the points to the line we’re fitting. The *distance/error* is indicated by the vertical lines from the point to the line.

\[
Error = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2
\]

- Average: \(\frac{1}{m} \)
- “Distance” or mean-squared-error: \((h_\theta(x^{(i)}) - y^{(i)})^2 \)
We want to minimize the **average distance** of the points to the **line** we’re fitting. The **distance/error** is indicated by the vertical lines from the point to the line.

\[
Error = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2
\]

- **Average**: \(\frac{1}{m} \)
- “Distance” or mean-squared-error: \((h_\theta(x^{(i)}) - y^{(i)})^2 \)
- **Input**: \(x^{(1)}, x^{(2)}, \ldots, x^{(m)} \)
We want to minimize the **average distance** of the points to the **line** we’re fitting. The **distance/error** is indicated by the vertical lines from the point to the line.

$$\text{Error} = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 \quad (4)$$

- **Average:** $\frac{1}{m}$
- “**Distance**” or mean-squared-error: $(h_\theta(x^{(i)}) - y^{(i)})^2$
- **Input:** $x^{(1)}, x^{(2)}, ..., x^{(m)}$
- **Line:** $h_\theta(x^{(i)})$
We want to minimize the **average distance** of the points to the **line** we’re fitting. The **distance/error** is indicated by the vertical lines from the point to the line.

\[
Error = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2
\]

- Average: \(\frac{1}{m} \)
- “Distance” or mean-squared-error: \((h_\theta(x^{(i)}) - y^{(i)})^2 \)
- Input: \(x^{(1)}, x^{(2)}, \ldots, x^{(m)} \)
- Line: \(h_\theta(x^{(i)}) \)
- Output: \(y^{(1)}, y^{(2)}, \ldots, y^{(m)} \)
\begin{align*}
\text{Error} &= \frac{1}{4} \sum_{i=1}^{4} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \\
\end{align*}
\[\text{Error} = \frac{1}{4} \sum_{i=1}^{4} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \]

\[\text{Error} = \frac{1}{4} \left((\theta_0 + \theta_1 x^{(1)} - y^{(1)})^2 + (\theta_0 + \theta_1 x^{(2)} - y^{(2)})^2 + (\theta_0 + \theta_1 x^{(3)} - y^{(3)})^2 + (\theta_0 + \theta_1 x^{(4)} - y^{(4)})^2 \right) \]
Introduction

Linear Regression

Exact Lines

Estimating Lines

Minimization

Error = \frac{1}{4} \sum_{i=1}^{4} (h_\theta (x^{(i)}) - y^{(i)})^2

(5)

Error = \frac{1}{4} \left((\theta_0 + \theta_1 x^{(1)} - y^{(1)})^2 + \\
(\theta_0 + \theta_1 x^{(2)} - y^{(2)})^2 + \\
(\theta_0 + \theta_1 x^{(3)} - y^{(3)})^2 + \\
(\theta_0 + \theta_1 x^{(4)} - y^{(4)})^2 \right)

(6)
Given the data \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), (x^{(4)}, y^{(4)})\) or \((1,1), (2,3), (3,2), (4,4)\), find the error of each of the lines with the given parameters.

1. \(\theta_0 = 2, \theta_1 = 0\)
2. \(\theta_0 = 0, \theta_1 = 1\)
Figure: As we decrease the slope, the error increases dramatically
Figure: Similarly, if we increase the slope the error also increases dramatically
Figure: The error plotted as a function of theta.

How do you minimize the function? In other words, how do you find the minimum y for this error function?