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1. Introduction

The pentagram map was introduced by R. Schwartz more than 20 years ago [36]. The 
map acts on plane polygons by drawing the “short” diagonals that connect second-nearest 
vertices of a polygon and forming a new polygon, whose vertices are their consecutive 
intersection points, see Fig. 1. The pentagram map commutes with projective trans-
formations, and therefore acts on the projective equivalence classes of polygons in the 
projective plane.

In fact, the pentagram map acts on a larger class of twisted polygons. A twisted 
n-gon is an infinite sequence of points Vi ∈ RP2 such that Vi+n = M(Vi) for all i ∈ Z
and a fixed projective transformation M , called the monodromy. The projective group 
PGL(3, R) naturally acts on twisted polygons. A polygon is closed if the monodromy is 
the identity.

Denote by Pn the moduli space of projective equivalence classes of twisted n-gons, 
and by Cn its subspace consisting of closed polygons. Then Pn and Cn are varieties of 
dimensions 2n and 2n − 8, respectively. Denote by T : Pn → Pn the pentagram map 
(the ith vertex of the image is the intersection of diagonals (Vi, Vi+2) and (Vi+1, Vi+3)).
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Fig. 1. Pentagram map.

One can introduce coordinates X1, Y1, . . . , Xn, Yn in Pn where Xi, Yi are the so-called 
corner invariants associated with ith vertex, discrete versions of projective curvature, 
see [38]. In these coordinates, the pentagram map is a rational transformation

X∗
i = Xi

1 −Xi−1 Yi−1

1 −Xi+1 Yi+1
, Y ∗

i = Yi+1
1 −Xi+2 Yi+2

1 −Xi Yi
(1.1)

(the indices are taken mod n).
In [37], Schwartz proved that the pentagram map was recurrent, and in [38], he proved 

that the pentagram map had 2�n/2� + 2 independent integrals, polynomial in the vari-
ables Xi, Yi. He conjectured that the pentagram map was a discrete completely integrable 
system.

This was proved in [31,32]: the space Pn has a T -invariant Poisson structure whose 
corank equals 2 or 4, according to whether n is odd or even, and the integrals are in 
involution. This provides Liouville integrability of the pentagram map on the space of 
twisted polygons.

F. Soloviev [42] established algebraic–geometric integrability of the pentagram map by 
constructing its Lax (zero curvature) representation. His approach established complete 
integrability of the pentagram map on the space of closed polygons Cn as well; a different 
proof of this result was given in [33].

It is worth mentioning that the continuous limit as n → ∞ of the pentagram map is 
the Boussinesq equation, one of the best known completely integrable PDEs. More specif-
ically, in the limit, a twisted polygon becomes a parametric curve (with monodromy) 
in the projective plane, and the map becomes a flow on the moduli space of projective 
equivalence classes of such curves. This flow is identified with the Boussinesq equation, 
see [36,32]. Thus the pentagram map is a discretization, both space- and time-wise, of 
the Boussinesq equation.

R. Schwartz and S. Tabachnikov discovered several configuration theorems of projec-
tive geometry related to the pentagram map in [40] and found identities between the 
integrals of the pentagram map on polygons inscribed into a conic in [41]. R. Schwartz [39]
proved that the integrals of the pentagram map do not change in the 1-parameter family 
of Poncelet polygons (polygons inscribed into a conic and circumscribed about a conic).
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It was shown in [38] that the pentagram map was intimately related to the so-called 
octahedral recurrence (also known as the discrete Hirota equation), and it was conjec-
tured in [31,32] that the pentagram map was related to cluster transformations. This 
relation was discovered and explored by Glick [16] who proved that the pentagram map, 
acting on the quotient space Pn/R∗ (the action of R∗ commutes with the map and is 
given by the formula Xi �→ tXi, Yi �→ t−1Yi), is described by coefficient dynamics [10] – 
also known as τ -transformations, see Chapter 4 in [13] – for a certain cluster structure.

In this paper, expanding on the research announcement [11], we generalize Glick’s 
work by including the pentagram map into a family of discrete completely integrable 
systems. Our main tool is Poisson geometry of weighted directed networks on surfaces. 
The ingredients necessary for complete integrability – invariant Poisson brackets, inte-
grals of motion in involution, Lax representation – are recovered from combinatorics of 
the networks.

A. Postnikov [34] introduced such networks in the case of a disk and investigated 
their transformations and their relation to cluster transformations; most of his results are 
local, and hence remain valid for networks on any surface. Poisson properties of weighted 
directed networks in a disk and their relation to r-matrix structures on GLn are studied 
in [12]. In [15] these results were further extended to networks in an annulus and r-matrix 
Poisson structures on matrix-valued rational functions. Applications of these techniques 
to the study of integrable systems can be found in [14]. A detailed presentation of the 
theory of weighted directed networks from a cluster algebra perspective can be found in 
Chapters 8–10 of [13].

Our integrable systems, Tk, depend on one discrete parameter k ≥ 2. The geometric 
meaning of k − 1 is the dimension of the ambient projective space. The case k = 3
corresponds to the pentagram map, acting on planar polygons.

For k ≥ 4, we interpret Tk as a transformation of a class of twisted polygons in RPk−1, 
called corrugated polygons. The map is given by intersecting consecutive diagonals of 
combinatorial length k− 1 (i.e., connecting vertex Vi with Vi+k−1); corrugated polygons 
are defined as the ones for which such consecutive diagonals are coplanar. The map Tk

is closely related with a pentagram-like map in the plane, involving deeper diagonals of 
polygons.

For k = 2, we give a different geometric interpretation of our system: the map T2

acts on pairs of twisted polygons in RP1 having the same monodromy (these polygons 
may be thought of as ideal polygons in the hyperbolic plane by identifying RP1 with 
the circle at infinity), and the action is given by an explicit construction that we call the 
leapfrog map whereby one polygon “jumps” over another, see a description in Section 5. 
If the ground field is C, we interpret the map T2 in terms of circle patterns studied by 
O. Schramm [35,4].

The pentagram map is coming of age, and we finish this introduction by briefly men-
tioning, in random order, some related work that appeared since our initial research 
announcement [11] was written.
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Fig. 2. The quiver Qk,n.

• A variety of multi-dimensional versions of the pentagram map, integrable and 
non-integrable, was studied by B. Khesin and F. Soloviev [22,23,25,24], and by 
G. Mari-Beffa [27,28]. The continuous limits of these maps are identified with the 
Adler–Gelfand–Dikii flows.

• V. Fock and A. Marshakov [9] described a class of integrable systems on Poisson 
submanifolds of the affine Poisson–Lie groups PGL(N). The pentagram map is a 
particular example. The quotient of the corresponding integrable system by the scal-
ing action (see p-dynamics T̄k defined in Section 2) coincides with the integrable 
system constructed by A. Goncharov and R. Kenyon out of dimer models on a two-
dimensional torus and classified by the Newton polygons [19].

• M. Glick [17,18] established the singularity confinement property of the pentagram 
map and some other discrete dynamical systems.

• R. Kedem and P. Vichitkunakorn [21] interpreted the pentagram map in terms of 
T -systems.

• The pentagram map is amenable for tropicalization. A study of the tropical limit of 
the pentagram map was done by T. Kato [20].

2. Generalized Glick’s quivers and the (p, q)-dynamics

For any integer n ≥ 2, let p = (p1, . . . , pn) and q = (q1, . . . , qn) be independent 
variables. Fix an integer k, 2 ≤ k ≤ n, and consider the quiver (an oriented multigraph 
without loops and cycles of length two) Qk,n defined as follows: Qk,n is a bipartite graph 
on 2n vertices labeled p1, . . . , pn and q1, . . . , qn (the labeling is cyclic, so that n + 1 is 
the same as 1). The graph is invariant under the shift i �→ i + 1. Each vertex has two 
incoming and two outgoing edges. The number k is the “span” of the quiver, that is, the 
distance between two outgoing edges from a p-vertex, see Fig. 2 where r = �k/2� −1 and 
r + r′ = k − 2 (in other words, r′ = r for k even and r′ = r + 1 for k odd). For k = 3, 
we have Glick’s quiver [16].

Let us equip the (p, q)-space with a Poisson structure {·, ·}k as follows. Denote by 
A = (aij) the 2n × 2n skew-adjacency matrix of Qk,n, assuming that the first n rows 
and columns correspond to p-vertices. Then we put {vi, vj}k = aijvivj , where vi = pi
for 1 ≤ i ≤ n and vi = qi−n for n + 1 ≤ i ≤ 2n.
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Consider a transformation of the (p, q)-space denoted by Tk and defined as follows 
(the new variables are marked by asterisk):

q∗i = 1
pi+r−r′

, p∗i = qi
(1 + pi−r′−1)(1 + pi+r+1)pi−r′pi+r

(1 + pi−r′)(1 + pi+r)
. (2.1)

Theorem 2.1. (i) The Poisson structure {·, ·}k is invariant under the map T k.
(ii) The function 

∏n
i=1 piqi is an integral of the map T k. Besides, it is Casimir, and 

hence the Poisson structure and the map descend to level hypersurfaces of 
∏n

i=1 piqi.

Proof. (i) Recall that given an arbitrary quiver Q, its mutation at vertex v is defined as 
follows:

1) for any pair of edges u′ → v, v → u′′ in Q, the edge u′ → u′′ is added;
2) all edges incident to v reverse their direction;
3) all cycles of length two are erased.

The obtained quiver is said to be mutationally equivalent to the initial one. Assume that 
an independent variable τv is assigned to each vertex of Q. According to Lemma 4.4 
of [13], the cluster transformation of τ -coordinates corresponding to the quiver mutation 
at vertex v (also known as cluster Y -dynamics) is defined as follows:

τ∗v = 1
τv

, τ∗u =

⎧⎪⎪⎨⎪⎪⎩
τu(1 + τv)#(u,v) if #(u, v) > 0,
τu

τ#(v,u)
v

(1+τv)#(v,u) if #(v, u) > 0,
τu otherwise,

(2.2)

where #(u′, u′′) is the number of edges from u′ to u′′ in Q. Note that at most one 
of the numbers #(u, v) and #(v, u) is nonzero for any vertex u. The cluster structure 
associated with the initial quiver Q and initial set of variables {τv}v∈Q consists of all 
quivers mutationally equivalent to Q and of the corresponding sets of variables obtained 
by repeated application of (2.2).

Consider the cluster structure associated with the quiver Qk,n. Choose variables p =
(p1, . . . , pn) and q = (q1, . . . , qn) as τ -coordinates, and consider cluster transformations 
corresponding to the quiver mutations at the p-vertices. These transformations commute, 
and we perform them simultaneously. By (2.2), this leads to the transformation

p∗i = 1
pi
, q∗i = qi

(1 + pi−r′−1)(1 + pi+r+1)pi−r′pi+r

(1 + pi−r′)(1 + pi+r)
. (2.3)

The resulting quiver is identical to Qk,n with the letters p and q interchanged. Indeed, 
the mutation at pi generates four new edges qi−r → qi+r′+1, qi+r′ → qi+r′+1, qi−r →
qi−r−1, and qi+r′ → qi−r−1. The first of them disappears after the mutation at pi+1, the 
second after the mutation at pi+k−1, the third after the mutation at pi−k+1, and the 
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fourth after the mutation at pi−1. Therefore, the result of mutations at all p-vertices is 
just the reversal of all edges of Qk,n. Thus we compose transformation (2.3) with the 
transformation given by p̄i = qi, q̄i = pi+r−r′ and arrive at the transformation T k defined 
by (2.1). The difference in the formulas for the odd and even k is due to the asymmetry 
between left and right in the enumeration of vertices in Fig. 2 for odd k, when r′ 
= r.

A Poisson structure {·, ·} is said to be compatible with a cluster structure if {xi, xj} =
cijxixj for any two variables from the same cluster, where the constants cij depend on 
the cluster (the cluster basis is related to the τ -basis described above via monomial 
transformations; we will not need the explicit description of these transformations here). 
By Theorem 4.5 in [13], the Poisson structure {·, ·}k is compatible with the above cluster 
structure. Consequently, {·, ·}k can be written in the basis (2.3) in the same way as 
above via the adjacency matrix of the resulting quiver. After the vertices are renamed, 
we arrive back at Qk,n, which means that {·, ·}k is invariant under T k.

(ii) Invariance of the function 
∏n

i=1 piqi means the equality 
∏n

i=1 p
∗
i q

∗
i =

∏n
i=1 piqi, 

which is checked directly by inspection of formulas (2.1). The statement that 
∏n

i=1 piqi
is Casimir (or, equivalently, commutes with any pi and qi) follows from the form of the 
quiver, since every vertex has an equal number (2, exactly) of incoming and outgoing 
edges. Hence, the level hypersurface 

∏n
i=1 piqi = const is a Poisson submanifold, and, 

moreover, T k preserves the hypersurface. �
Along with the p-dynamics T k, when the mutations are performed at the p-vertices 

of the quiver Qk,n, one may consider the respective q-dynamics T ◦
k, when the mutations 

are performed at q-vertices. Let us define an auxiliary map Dk given by

p̄i = 1
qi
, q̄i = 1

pi+r−r′
. (2.4)

Note that Dk is almost an involution: D2
k = Sr−r′ , where St is the shift by t in indices. 

The following proposition describes relations between transformations T , T−1, and T
◦.

Proposition 2.2. (i) Transformation T
◦
k coincides with T

−1
k and is given by

p∗i = 1
qi−r+r′

, q∗i = pi
(1 + qi−r)(1 + qi+r′)qi−r−1qi+r′+1

(1 + qi−r−1)(1 + qi+r′+1)
. (2.5)

(ii) Transformations T ◦
k and T k are almost conjugated by Dk:

Sr−r′ ◦ T
◦
k ◦Dk = Dk ◦ T k. (2.6)

(iii) Let Dk,n be given by p̄i = qi−�(n+r−r′)/2�, q̄i = pi. Then

T
◦
k = Dk,n ◦ Tn+2−k ◦Dk,n.
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Fig. 3. The quivers Qk,n for n = 2m and various values of k.

Proof. (i) Recall that T k is defined as the composition of the cluster transformation (2.3)
and the shift p̄i = qi, q̄i = pi+r−r′ Equivalently, we can write T k = Ck ◦Dk, where Ck

is given by expressions reciprocal to those in the right-hand side of (2.3). It is easy to 
check that Ck is an involution, and that D−1

k = Sr′−r ◦Dk is given by p̄i = 1/qi−r+r′ , 
q̄i = 1/pi. Consequently, T−1

k = D
−1
k ◦ Ck is given by (2.5).

To get the same relations for the transformation T
◦
k one has to use an analog of (2.3)

q∗i = 1
qi
, p∗i = pi

(1 + qi−r)(1 + qi+r′)qi−r−1qi+r′+1

(1 + qi−r−1)(1 + qi+r′+1)

and compose it with the map q̄i = pi, p̄i = qi−r+r′ , see Fig. 2.
(ii) Follows immediately from (i).
(iii) Follows from the fact that Qn+2−k,n locally at the vertex qi+�(n+r−r′)/2� has the 

same structure as Qk,n at the vertex pi. This is illustrated in Fig. 3.
For a formal proof note that the values r̂ and r̂′ corresponding to k̂ = n + 2 − k are 

given by

r̂ = �(n + r − r′)/2� − r − 1, r̂ + r̂′ = n− k. � (2.7)

By Theorem 2.1(ii), T k restricts to any hypersurface 
∏n

i=1 piqi = c. We denote this 
restriction by T

(c)
k . In what follows, we shall be concerned only with T

(1)
k . Note that T (1)

3
is the pentagram map on Pn/R∗ considered by Glick [16].

3. Weighted directed networks and the (x, y)-dynamics

3.1. Weighted directed networks on surfaces

We start with a very brief description of the theory of weighted directed networks 
on surfaces with a boundary, adapted for our purposes; see [34,13] for details. In this 
paper, we will only need to consider graphs on a cylinder (equivalently, annulus) C that 
we position horizontally with one boundary circle on the left and another on the right.

Let G be a directed graph with the vertex set V and the edge set E embedded in C. 
G has 2n boundary vertices, each of degree one: n sources on the left boundary circles 
and n sinks on the right boundary circle. All the internal vertices of G have degree 3
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and are of two types: either they have exactly one incoming edge (white vertices), or 
exactly one outgoing edge (black vertices). To each edge e ∈ E we assign the edge weight
we ∈ R \ 0. A perfect network N is obtained from G by adding an oriented curve ρ
without self-intersections (called a cut) that joins the left and the right boundary circles 
and does not contain vertices of G. The points of the space of edge weights EN can be 
considered as copies of N with edges weighted by nonzero real numbers.

Assign an independent variable λ to the cut ρ. The weight of a directed path P
between a source and a sink is defined as a signed product of the weights of all edges 
along the path times λd, where d is the intersection index of ρ and P (we assume that 
all intersection points are transversal, in which case the intersection index is the number 
of intersection points counted with signs). The sign is defined by the rotation number 
of the loop formed by the path, the cut, and parts of the boundary cycles (see [15] for 
details). In particular, the sign of a simple path going from one boundary circle to the 
other one and intersecting the cut d times in the same direction equals (−1)d. Besides, 
if a path P can be decomposed in a path P ′ and a simple cycle, then the signs of P
and P ′ are opposite. The boundary measurement between a given source and a given 
sink is then defined as the sum of path weights over all (not necessary simple) paths 
between them. A boundary measurement is rational in the weights of edges and λ, see 
Proposition 2.2 in [15]; in particular, if the network does not have oriented cycles then 
the boundary measurements are polynomials in edge weights, λ and λ−1.

Boundary measurements are organized in a boundary measurement matrix, thus giv-
ing rise to the boundary measurement map from EN to the space of n ×n rational matrix 
functions. The gauge group acts on EN as follows: for any internal vertex v of N and 
any Laurent monomial L in the weights we of N , the weights of all edges leaving v are 
multiplied by L, and the weights of all edges entering v are multiplied by L−1. Clearly, 
the weights of paths between boundary vertices, and hence boundary measurements, are 
preserved under this action. Therefore, the boundary measurement map can be factor-
ized through the space FN defined as the quotient of EN by the action of the gauge 
group.

It is explained in [15] that FN can be parametrized as follows. The graph G divides 
C into a finite number of connected components called faces. The boundary of each face 
consists of edges of G and, possibly, of several arcs of ∂C. A face is called bounded if 
its boundary contains only edges of G and unbounded otherwise. Given a face f , we 
define its face weight yf =

∏
e∈∂f w

γe
e , where γe = 1 if the direction of e is compatible 

with the counterclockwise orientation of the boundary ∂f and γe = −1 otherwise. Face 
weights are invariant under the gauge group action. Then FN is parametrized by the 
collection of all face weights (subject to condition 

∏
f yf = 1) and a weight of an arbitrary 

path in G (not necessary directed) joining two boundary circles; such a path is called a 
trail.

Below we will frequently use elementary transformations of weighted networks that 
do not change the boundary measurement matrix. They were introduced by Postnikov 
in [34] and are presented in Fig. 4.
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Fig. 4. Postnikov transformations.

Another important transformation is path reversal: for a given closed path one can 
reverse the directions of all its edges and replace each weight wi with 1/wi. Clearly, path 
reversal preserves face weights. The transformations of boundary measurements under 
path reversal are described in [34,12,15].

As was shown in [12,15], the space of edge weights can be made into a Poisson manifold 
by considering Poisson brackets that behave nicely with respect to a natural operation 
of concatenation of networks. Such Poisson brackets on EN form a 6-parameter family, 
which is pushed forward to a 2-parameter family of Poisson brackets on FN . Here we will 
need a specific member of the latter family. The corresponding Poisson structure, called 
standard, is described in terms of the directed dual network N ∗ defined as follows. Vertices 
of N ∗ are the faces of N . Edges of N ∗ correspond to the edges of N that connect either 
two internal vertices of different colors, or an internal vertex with a boundary vertex; 
note that there might be several edges between the same pair of vertices in N ∗. An edge 
e∗ in N ∗ corresponding to e in N is directed in such a way that the white endpoint of e
(if it exists) lies to the left of e∗ and the black endpoint of e (if it exists) lies to the right 
of e. The weight w∗(e∗) equals 1 if both endpoints of e are internal vertices, and 1/2
if one of the endpoints of e is a boundary vertex. Then the restriction of the standard 
Poisson bracket on FN to the space of face weights is given by

{yf , yf ′} =

⎛⎝ ∑
e∗:f→f ′

w∗(e∗) −
∑

e∗:f ′→f

w∗(e∗)

⎞⎠ yfyf ′ . (3.1)

The bracket of the trail weight z and a face weight yf is given by {z, yf} = cfzyf . The 
description of cf in the general case is rather lengthy. We will only need it in the case 
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when the trail is a directed path P in G. In this case

{z, yf} =
∑
P ′⊂P

±

⎛⎝ ∑
e∈P ′,e∗:f→f ′

w∗(e∗) −
∑

e∈P ′,e∗:f ′→f

w∗(e∗)

⎞⎠ zyf , (3.2)

where each P ′ is a maximal subpath of P that belongs to ∂f , and the sign before the 
internal sum is positive if f lies to the right of P ′ and negative otherwise.

Any network N of the kind described above gives rise to a network N̄ on a torus. 
To this end, one identifies boundary circles in such a way that the endpoints of the cut 
are glued together, and the ith source in the clockwise direction from the endpoint of 
the cut is glued to the ith sink in the clockwise direction from the opposite endpoint of 
the cut. The resulting two-valent vertices are then erased, so that every pair of glued 
edges becomes a new edge with the weight equal to the product of two edge-weights 
involved. Similarly, n pairs of unbounded faces are glued together into n new faces, whose 
face-weights are products of pairs of face-weights involved. We will view two networks 
on a torus as equivalent if their underlying graphs differ only by orientation of edges, 
but have the same vertex coloring and the same face weights. The parameter space we 
associate with N̄ consists of face weights and the weights zρ, z of two trails Pρ and P . 
The first of them is homological to the closed curve on the torus obtained by identifying 
endpoints of the cut, and the second is noncontractible and not homological to the first 
one. The standard Poisson bracket induces a Poisson bracket on face-weights of the new 
network, which is again given by (3.1) with the dual graph N ∗ replaced by N̄ ∗ defined by 
the same rules. The bracket between zρ or z and face-weights is given by (3.2), provided 
the corresponding trails are directed paths in G. Finally, under the same restriction on 
the trails,

{z, zρ} =
∑
P ′

cP ′zzρ, (3.3)

where each P ′ is a maximal common subpath of P and Pρ and cP ′ is defined in Fig. 5.

3.2. The (x, y)-dynamics

Let us define a network Nk,n on the cylinder. It has k sources, k sinks, and 4n internal 
vertices, of which 2n are black, and 2n are white. Nk,n is glued of n isomorphic pieces, 
as shown in Fig. 6.

The pieces are glued together in such a way that the lower right edge of the ith piece is 
identified with the upper left edge of the (i +1)th piece, provided i +1 ≤ n, and the upper 
right edge of the ith piece is identified with the lower left edge of the (i + k− 1)st piece, 
provided i +k−1 ≤ n. The network N̄k,n on the torus is obtained by dropping the latter 
restriction and considering cyclic labeling of pieces. The faces of N̄k,n are quadrilaterals 
and octagons. The cut hits only octagonal faces and intersects each white–white edge. 
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Fig. 5. To the definition of cP ′ .

Fig. 6. Local structure of the networks Nk,n and N̄k,n.

Fig. 7. The network N̄3,5 on the torus.

The network N̄3,5 is shown in Fig. 7. The figure depicts a torus, represented as a flattened 
two-sided cylinder (the dashed lines are on the “invisible” side); the edges marked by 
the same symbol are glued together accordingly. The cut is shown by the thin line. The 
meaning of the weights xi and yi will be explained later.

Proposition 3.1. The directed dual of N̄k,n is isomorphic to Qk,n.

Proof. It follows from the construction above that N̄k,n has 2n faces, n of them quadri-
laterals and other n octagons. The quadrilateral faces correspond to p-vertices of the 
directed dual, and octagonal, to its q-vertices. Consider the quadrilateral corresponding 
to pi. The four adjacent octagons are labeled as follows: the one to the left is qi−r−1, the 
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Fig. 8. The local structure of the directed dual of N̄k,n.

Fig. 9. Edge weights prior to the gauge group action.

one above is qi+r′ , the one to the right is qi+r′+1, and the one below is qi−r. Therefore, the 
octagonal face to the left of the quadrilateral pi+1 is qi−r, and the one above it is qi+r′+1, 
which justifies the first gluing rule above. Similarly, the octagonal face to the left of the 
quadrilateral pi+k−1 is qi+k−2−r = qi+r′ , and the one below it is qi+k−1−r = qi+r′+1, 
which justifies the second gluing rule above, see Fig. 8, where the directed dual is shown 
with dotted lines. Therefore, we have restored the adjacency structure of Qk,n. �
Corollary 3.2. The restriction of the standard Poisson bracket to the space of face weights 
of N̄k,n coincides with the bracket {·, ·}k.

Proof. Follows immediately from (3.1) and Proposition 3.1, see Fig. 8. �
Assume that the edge weights around the face pi are ai, bi, ci, and di, and all other 

weights are equal 1, see Fig. 9. Besides, assume that

n∏
i=1

bici = 1. (3.4)

In what follows we will only deal with weights satisfying the above two conditions.
Applying the gauge group action, we can set to 1 the weights of the upper and the right 

edges of each quadrilateral face, while keeping weights of all edges with both endpoints 
of the same color equal to 1. For the face pi, denote by xi the weight of the left edge 
and by yi, the weight of the lower edge after the gauge group action (see Fig. 7). Put 
x = (x1, . . . , xn), y = (y1, . . . , yn).
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Proposition 3.3. (i) The weights (x, y) are given by

xi = aibi−k+1

i−1∏
j=i−k+1

b−1
j c−1

j , yi = dibi−k+1

i∏
j=i−k+1

b−1
j c−1

j . (3.5)

(ii) The relation between (p, q) and (x, y) is as follows:

pi = yi
xi

, qi = xi+r+1

yi+r
; xi = x1

i−1∏
j=1

pjqj−r, yi = xipi. (3.6)

Proof. (i) Assume that the gauge group action is given by g1
i at the upper left vertex 

of the ith quadrilateral, by g2
i at the upper right vertex, by g3

i at the lower left vertex, 
and by g4

i at the lower right vertex. The conditions on the upper and right edges of 
the quadrilateral give big1

i /g
2
i = 1 and cig2

i /g
4
i = 1, while the conditions on the two 

external edges going right from the quadrilateral give g4
i = g1

i+1 and g2
i = g3

i+k−1. 
Denote ρi = g1

i /g
3
i . From the first three equations above we get g3

i+1 = g3
i biciρi/ρi+1. 

Iterating this relation i + k− 1 times and taking into account the fourth equation above 
we arrive at ρi+k−1 = b−1

i

∏i+k−2
j=i bjcj , or

ρi = b−1
i−k+1

i−1∏
j=i−k+1

bjcj .

Now the first relation in (3.5) is restored from xi = aig
3
i /g

1
i = ai/ρi. To find yi we 

write

yi = di
g3
i

g4
i

= di
g3
i

g1
i

g1
i

g2
i

g2
i

g4
i

= di
ρibici

,

which justifies the second relation in (3.5). Note that n-periodicity of ρi, and hence of 
xi and yi, is guaranteed by condition (3.4).

(ii) The expression for pi follows immediately from the definition of face weights. Next, 
the face weight for the octagonal face to the right of pi is qi+r′+1 = xi+k/yi+k−1, which 
yields qi = xi+k−r′−1/xi+k−r′−2 = xi+r+1/xi+r. The remaining two formulas in (3.6)
are direct consequences of the first two. �

Note that by (3.6), the projection πk : (x, y) �→ (p, q) has a one-dimensional fiber. 
Indeed, multiplying x and y by the same coefficient t does not change the corresponding 
p and q.

It follows immediately from (3.6) that 
∏n

i=1 piqi = 1, so the relevant map is T (1)
k . Let 

us show how it can be described via equivalent transformations of the network N̄k,n. 
The transformations include Postnikov’s moves of types 1, 2, and 3, and the gauge group 
action. We describe the sequence of these transformations below.



404 M. Gekhtman et al. / Advances in Mathematics 300 (2016) 390–450
Fig. 10. Type 3 Postnikov’s move for N̄k,n.

Fig. 11. Type 1 and 2 Postnikov’s moves for N̄k,n.

We start with the network N̄k,n with weights xi and yi on the left and lower edge 
of each quadrilateral face. First, we apply Postnikov’s type 3 move at each p-face (this 
corresponds to cluster τ -transformations at p-vertices of Qk,n given by (2.3)). To be able 
to use the type 3 move as shown in Fig. 4 we have first to conjugate it with the gauge 
action at the lower right vertex, so that w1 = xi, w2 = 1/yi, w3 = 1, w4 = y. Locally, 
the result is shown in Fig. 10 where σi = xi + yi.

Next, we apply type 1 and type 2 Postnikov’s moves at each white–white and black–
black edge, respectively. In particular, we move vertical arrows interchanging the right-
most and the left-most position on the network in Fig. 7 using the fact that it is drawn 
on the torus. These moves interchange the quadrilateral and octagonal faces of the graph 
thereby swapping the variables p and q, see Fig. 11.

It remains to use gauge transformations to achieve the weights as in Fig. 7. In our 
situation, weights ai, bi, ci, di are as follows, see Fig. 11:

ai = xi

σi
, bi = σi+k−1, ci = 1

σi+k
, di = yi+1

σi+1
. (3.7)

Note that condition (3.4) is satisfied. This yields the map Tk, the main character of this 
paper, described in the following proposition.

Proposition 3.4. (i) The map Tk is given by

x∗
i = xi−r′−1

xi+r + yi+r

xi−r′−1 + yi−r′−1
, y∗i = yi−r′

xi+r+1 + yi+r+1

xi−r′ + yi−r′
, (3.8)

(ii) The maps Tk and T
(1)
k are conjugated via πk: πk ◦ Tk = T

(1)
k ◦ πk.
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Proof. (i) Applying relations (3.5) to the weights (3.7) we get

x∗
i+r′+1 = xi

σi+k−1

σi
, y∗i+r′+1 = yi+1

σi+k

σi+1
,

which immediately implies (3.8).
(ii) Checked straightforwardly using (2.1), (3.6), and (3.8). �

Remark 3.5. Note that the map Tk commutes with the scaling action of the group R∗: 
(x, y) �→ (tx, ty), and that the orbits of this action are the fibers of the projection πk.

Maps T2 and T3 can be further described as follows. The map T2 is a periodic version 
of the discretization of the relativistic Toda lattice suggested in [43]. It belongs to a 
family of Darboux–Bäcklund transformations of integrable lattices of Toda type, that 
were put into a cluster algebras framework in [14].

Proposition 3.6. The map T3 coincides with the pentagram map.

Proof. Indeed, for k = 3, (3.8) gives

x∗
i = xi−2

xi + yi
xi−2 + yi−2

, y∗i = yi−1
xi+1 + yi+1

xi−1 + yi−1
. (3.9)

Change the variables as follows: xi �→ Yi, yi �→ −YiXi+1Yi+1. In the new variables, the 
map (3.9) is rewritten as

X∗
i = Xi−1

1 −Xi−2Yi−2

1 −XiYi
, Y ∗

i = Yi
1 −Xi+1Yi+1

1 −Xi−1Yi−1
,

which becomes formula (1.1) after the cyclic shift Xi �→ Xi+1, Yi �→ Yi+1. Note that the 
maps Tk, and in particular the pentagram map, commute with this shift. �

Similarly to what was done in the previous section, we may consider, along with the 
map Tk based on p-dynamics T k, another map, based on q-dynamics T ◦

k; it is natural 
to denote this map by T ◦

k . Its definition differs from that of Tk by the order in which 
the same steps are performed. First of all, type 1 and 2 Postnikov’s moves are applied, 
which leads to quadrilateral faces looking like those in Fig. 10. The weights of the left 
and the lower edge bounding the face labeled qi are thus equal to 1, the weight of the 
upper edge equals yi+r, and the weight of the right edge equals xi+r+1. Next, the type 3 
Postnikov’s move is applied, followed by the gauge group action.

An alternative way to describe T ◦
k is to notice that the network N̄k,n can be redrawn 

in a different way. Recall that the network on the torus was obtained from the network 
on the cylinder by identifying the two boundary circles so that the cut ρ becomes a 
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Fig. 12. An alternative representation of N̄3,5.

closed curve. Conversely, the network on the cylinder is obtained from the network on 
the torus by cutting the torus along a closed curve. This curve intersects exactly once 
k monochrome edges: the black monochrome edge that points to the face p1 and k − 1
white monochrome edges that point to the faces p1, . . . , pk−1. Alternatively, the torus 
can be cut along a different closed curve that intersects the same black monochrome edge 
and all the n − k + 1 remaining white monochrome edges. An alternative representation 
of N̄3,5 is shown in Fig. 12. The cut shown in Fig. 12 coincides with that in Fig. 7. We 
can further reverse the closed path shown with the dashed line and apply type 1 and 2 
Postnikov moves at all white–white and black–black edges. It is easy to see that the 
resulting network is isomorphic to N̄4,5. In general, starting with N̄k,n and applying the 
same transformations one gets a network isomorphic to N̄n−k+2,n, which hints that T ◦

k

and Tn−k+2 are related.
Introduce an auxiliary map Dk given by

x∗
i = 1

yi+r

i+r∏
j=i−r′

yj
xj

, y∗i = 1
yi+r+1

i+r+1∏
j=i−r′

yj
xj

. (3.10)

The following analog of Proposition 2.2 explains the relation between T , T−1 and T ◦.

Proposition 3.7. (i) The maps T−1
k and T ◦

k coincide and are given by

x∗
i = xi+r′+1

xi−r + yi−r−1
, y∗i = yi+r′

xi−r + yi−r−1
. (3.11)
xi+r′+1 + yi+r′ xi+r′+1 + yi+r′
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(ii) The maps Tk and T ◦
k are almost conjugated by Dk:

Sr−r′ ◦ T ◦
k ◦Dk = Dk ◦ Tk. (3.12)

(iii) Let Dk,n be given by x̄i = yi−r−1, ȳi = xi−r. Then

T ◦
k = Dk,n ◦ Tn−k+2 ◦Dn−k+2,n.

Proof. (i) The proof of (3.11) for T−1
k is similar to that of Proposition 2.2(i). It is easy 

to check that the maps Dk and Dk given by (3.10) and (2.4) are conjugated via πk: 
πk ◦Dk = Dk ◦ πk. Besides, define the map Ck by

x∗
i = xi−k+1 + yi−k+1

yi−k+1(xi + yi)

i−1∏
j=i−k+1

yj
xj

, y∗i = xi−k+1 + yi−k+1

yi−k+1(xi + yi)

i∏
j=i−k+1

yj
xj

.

Similarly, πk ◦ Ck = Ck ◦ πk. Moreover, Tk = Ck ◦Dk. Therefore, T−1
k = D−1

k ◦ C−1
k .

A direct computation shows that Ck is an involution, while D−1
k is given by

x∗
i = 1

yi+r′

i+r′∏
j=i−r

yj
xj

, y∗i = 1
yi+r′+1

i+r′+1∏
j=i−r

yj
xj

,

and (3.11) for T−1
k follows.

To prove (3.11) for T ◦
k one has to perform all the steps described above, similarly to 

what was done in the proofs of Propositions 3.3 and 3.4.
(ii) Follows immediately from (i) and the relation D2

k = Sr−r′ .
(iii) Checked straightforwardly taking into account (2.7). Note that transformations 

Dk,n and Dn−k+2,n are related to Dk,n via πn−k+2◦Dn−k+2,n = Dk,n◦πk and πk◦Dk,n =
Dk,n ◦ πn−k+2. �
4. Poisson structure and complete integrability

The main result of this paper is complete integrability of transformations Tk, i.e., 
the existence of a Tk-invariant Poisson bracket and of a maximal family of integrals 
in involution. The key ingredient of the proof is the result obtained in [15] on Poisson 
properties of the boundary measurement map defined in Section 3.1. First, we recall the 
definition of an R-matrix (Sklyanin) bracket, which plays a crucial role in the modern 
theory of integrable systems [30,8]. The bracket is defined on the space of n ×n rational 
matrix functions M(λ) = (mij(λ))ni,j=1 and is given by the formula

{
M(λ)⊗, M(μ)

}
= [R(λ, μ),M(λ) ⊗M(μ)] , (4.1)
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where the left-hand side is understood as 
{
M(λ)⊗, M(μ)

}jj′

ii′
= {mij(λ), mi′j′(μ)} and 

an R-matrix R(λ, μ) is an operator in (Rn)⊗2 depending on parameters λ, μ and solving 
the classical Yang–Baxter equation. We are interested in the bracket associated with the 
trigonometric R-matrix (for the explicit formula for it, which we will not need, see [30]).

4.1. Cuts, rims, and conjugate networks

Let N be a perfect network on the cylinder; recall that N̄ stands for the perfect 
network on the torus obtained from N via the gluing procedure described in Sec-
tion 3.1.

Theorem 4.1. For any perfect network N̂ on the torus, there exists a perfect network N
on the cylinder with sources and sinks belonging to different components of the boundary 
such that N̄ is equivalent to N̂ , the map EN → FN̂ is Poisson with respect to the 
standard Poisson structures, and spectral invariants of the image MN (λ) of the boundary 
measurement map depend only on FN̂ . In particular, spectral invariants of MN (λ) form 
an involutive family of functions on FN̂ with respect to the standard Poisson structure.

Proof. Consider a closed simple noncontractible oriented loop γ on the torus; we call it 
a rim if it does not pass through vertices of N̂ and its intersection index with the cut 
ρ equals ±1. To avoid unnecessary technicalities, we assume that γ and all edges of N̂
are smooth curves. Besides, we assume that each edge intersects γ in a finite number of 
points and that all the intersections are transversal. Each intersection point defines an 
orientation of the torus via taking the tangent vectors to the edge and to the rim at this 
point and demanding that they form a right basis of the tangent plane. We say that the 
rim is ideal if its intersection points with all edges define the same orientation of the 
torus.

Proposition 4.2. Let N̂ be a perfect network on the torus, then there exists a rim which 
becomes ideal after a finite number of path reversals in N̂ .

Proof. Consider the universal covering π of the torus by a plane. Take an arbitrary 
rim γ. The preimage π−1(γ) is a disjoint union of simple curves in the plane, each one 
isotopic to a line. Fix arbitrarily one such curve l0; it divides the plane into two regions 
L and R lying to the left and to the right of the curve, respectively. Let li, i ∈ N, be the 
connected components of π−1(γ) lying in R: l1 is the first one to the right of l0, l2 is the 
next one, etc.

Let N̂R be the part of the network covering N̂ that belongs to R. Each intersection 
point of an edge of N̂ with γ gives rise to a countable number of boundary vertices of 
N̂R lying on l0. Denote by m the number of intersection points of γ with the edges of N̂ . 
We will need the following auxiliary statement.
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Lemma 4.3. Let P be a possibly infinite oriented simple path in N̂R that ends at a 
boundary vertex and intersects lm+1. Then there exist i, j such that m + 1 ≥ i > j ≥ 0
and points ti ∈ li and tj ∈ lj on P such that ti precedes tj on P and π(ti) = π(tj).

Proof. Let us traverse P backwards starting from its endpoint, and let tm+1 be the first 
point on lm+1 that is encountered during this process. Further, let ti for 0 ≤ i ≤ m

be the first point on li that is encountered while traversing P forward from tm+1; in 
particular, t0 is the endpoint of P . The proof now follows from the pigeonhole principle 
applied to the nested intervals of P between the points tm+1 and ti. �

Assume that N̂R contains a path P as in Lemma 4.3. Consider the interval Pij of 
P between the points ti and tj described in the lemma. Clearly π(Pij) is a closed non-
contractible path on the torus. If π(Pij) is a simple path, its reversal increases by one 
the number of intersection points on γ that define a right basis. If π(Pij) is not simple 
and s is a point of selfintersection, it can be decomposed into a path from π(ti) to s, 
a loop through s, and a path from s to π(tj). Further, the loop can be erased, and the 
remaining two parts glued together, which results in a closed path on the torus with a 
smaller number of selfintersection points. After a finite number of such steps we arrive 
at a simple closed path on the torus that can be reversed.

Proceeding in this way, we get a network N̂ ′ on the torus equivalent to N̂ such that 
any path in N̂ ′

R that ends at a boundary vertex does not intersect lm+1. Note that a 
path like that may still be infinite. Each such path divides R into two regions: one of 
them contains lm+1, while the other one is disjoint from it. Let A be the intersection of 
the regions containing lm+1 over all paths P in N̂ ′

R, and let ∂A be its boundary. Clearly, 
∂A is invariant under the translations that commute with π and take each li into itself. 
Therefore, π(∂A) is a simple loop on the torus, and it is homologous to γ; it is not a rim 
yet since it contains edges and vertices of N̂ ′.

Each vertex v lying on π(∂A) has three incident edges. Two of them lie on π(∂A) as 
well. Since a preimage t of v belongs to ∂A, the preimages of these two edges incident 
to t belong to paths that end at l0. Therefore, if the third edge incident to v is pointed 
towards v, its preimage incident to t should belong to the complement of A, by the 
definition of A.

Now, to build a rim, we take a tubular ε-neighborhood of ∂A, and consider the bound-
ary ∂A+ε of this tubular neighborhood that lies inside A. For ε small enough, the above 
property of the vertices lying on π(∂A) guarantees that the rim π(∂A+ε) intersects only 
those edges that point from these vertices into A, and hence each intersection point 
defines a right basis. Therefore π(∂A+ε) is an ideal rim. �

Returning to the proof of the theorem, we apply Proposition 4.2 to find the corre-
sponding ideal rim on the torus. Let N be the network obtained from N̂ ′ after we cut 
the torus along this rim. Note that each edge of N̂ ′ that intersects the rim yields several 
(two or more) edges in N ; the weights of these edges are chosen arbitrarily subject to the 
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Fig. 13. Elementary networks.

condition that their product equals the weight of the initial edge. By Proposition 4.2, all 
sources of N̂ ′ belong to one of its boundary circles, while all sinks belong to the other 
boundary circle. Besides, N̄ = N̂ ′, and hence N̂ and N̄ are equivalent. Clearly, one can 
choose a new cut ρ′ on the torus isotopic to ρ such that it intersects the rim only once. 
Consequently, after the torus is cut into a cylinder, ρ′ becomes a cut on the cylinder.

The rest of the proof relies on two facts. One is Theorem 3.13 of [15]: for any network 
on a cylinder with the equal number of sources and sinks belonging to different components 
of the boundary, the standard Poisson structure on the space of edge weights induces the 
trigonometric R-matrix bracket on the space of boundary measurement matrices. The 
second is a well-known statement in the theory of integrable systems: spectral invariants 
of MN (λ) are in involution with respect to the Sklyanin bracket, see Theorem 12.24 
in [30]. �

We can now apply Theorem 4.1 to the network N̄k,n. Clearly, one can choose the 
rim γ in such a way that the resulting network on a cylinder will be Nk,n. Note that 
in this case no path reversals are needed. For example, for the network N̄3,5, γ can be 
represented by a closed curve slightly to the left of the edge marked x1 and transversal 
to all horizontal edges. The resulting network N3,5 can be seen in Fig. 7, provided we 
refrain from gluing together edges marked with the same symbols and regard that figure 
as representing a cylinder rather than a torus. Furthermore, this network on a cylinder 
is a concatenation of n elementary networks of the same form shown on Fig. 13 (for the 
cases k = 2 and k = 3).

Since elementary networks are acyclic, the corresponding boundary measurement ma-
trices are

Li(λ) =
(
−λxi xi + yi
−λ 1

)

for k = 2 and

Li(λ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . xi xi + yi
−λ 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.2)
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Fig. 14. The conjugate network N ′
3,5.

for k ≥ 3 (negative signs are implied by the sign conventions mentioned in Section 3.1). 
Consequently, the boundary measurement matrix that corresponds to Nk,n is

Mk,n(λ) = L1(λ) · · ·Ln(λ). (4.3)

In our construction above, the cut ρ and the rim γ are represented by non-contractible 
closed curves from two distinct homology classes; to get the network Nk,n on the cylinder 
we start from the network N̄k,n on the torus and cut it along γ so that ρ becomes a cut 
in Nk,n. One can interchange the roles of ρ and γ and to cut the torus along ρ, making 
γ a cut. This gives another perfect network N ′

k,n on the cylinder with n sources and n
sinks belonging to different components of the boundary. To this end, we first observe 
that ρ intersects all ◦ → ◦ edges and no other edges of N̄k,n (see Fig. 13). We label the 
resulting intersection points along ρ by numbers from 1 to n in such a way that the point 
seen on Fig. 13 is labeled by i (for k ≥ 3 this point belongs to the edge that connects 
the source 2 with the sink 1). Next, we cut the torus along ρ. Each of the newly labeled 
intersection points gives rise to one source and one sink in N ′

k,n. The rim γ becomes the 
cut ρ′ for N ′

k,n. It is convenient to view N ′
k,n as a network in an annulus with sources 

on the outer boundary circle and sinks on the inner boundary circle. The cut ρ′ starts 
at the segment between sinks n and 1 on the inner circle and ends on the corresponding 
segment on the outer circle. It is convenient to assume that in between it crosses k − 1
edges incident to the inner boundary, followed by a single • → • edge (see Fig. 14). The 
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variable associated with the cut in N ′
k,n will be denoted by z. We will say that N ′

k,n is 
conjugate to Nk,n.

Proposition 4.4. Let Dx = diag(x1, . . . , xn), Dy = diag(y1, . . . , yn), and Z = −zen1 +∑n−1
i=1 ei,i+1. The boundary measurement matrix Ak,n(z) = (aij(z))ni,j=1 for the network 

N ′
k,n is given by

Ak,n(z) = Z (Dx + DyZ)Zk−2 (1n − Z)−1
. (4.4)

Proof. For any source i and sink j there are exactly two simple (non-self-intersecting) 
directed paths in N ′

k,n directed from i to j: one contains the edge of weight xi+1, and 
the other, the edge of weight yi+1. Every such path has a subpath in common with the 
unique oriented cycle in N ′

k,n that contains all edges of weight 1 that are not incident 
to either of the boundary components. The weight of this cycle is z, which means that 
all boundary measurements aij(z) acquire a common factor 1 − z + z2 − . . . = 1

1+z (see 
the sign conventions in Section 3.1). The simple directed path from i to j containing 
the edge of weight xi+1 intersects the cut once if k − n − 1 ≤ j − i < k − 1, twice if 
j− i < k−n −1, and does not intersect the cut if j− i ≥ k−1. The simple directed path 
from i to j containing the edge of weight yi+1 intersects the cut once if k−n ≤ j− i < k, 
twice if j − i < k − n, and does not intersect the cut if j − i ≥ k. All intersections are 
positive. Thus, by the sign conventions,

(1 + z)aij(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xi+1 + yi+1 if j − i > k − 1,
xi+1 − zyi+1 if j − i = k − 1,
−z(xi+1 + yi+1) if k − n− 1 < j − i < k − 1,
−z(xi+1 − zyi+1) if j − i = k − n− 1,
z2(xi+1 + yi+1) if j − i < k − n− 1.

or, equivalently,

Ak,n(z) = 1
1 + z

× (diag(x2, . . . , xn, x1) + diag(y2, . . . , yn, y1)Z)
(
Zk−1 + . . . + Zn+k−2) .

Here we used the relation Zn = −z1n. The claim now follows from the identities

Z diag(d1, . . . , dn)Z−1 = diag(d2, . . . , dn, d1) (4.5)

and

(1n − Z)−1 = 1
1 + z

(
1n + . . . + Zn−1) . � (4.6)
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4.2. Poisson structure

Let Mk,n and Ak,n be images of the boundary measurement maps from ENk,n
and 

EN ′
k,n

respectively. Theorem 4.1 implies that spectral invariants of elements of Mk,n

and Ak,n viewed as functions on FN̄k,n
are in involution with respect to the standard 

Poisson structure. However, quantities xn, yn, and therefore the spectral invariants of 
Mk,n(λ) and Ak,n(z) are only defined as functions on a subset F1

N̄k,n
specified by the 

condition (3.4).

Proposition 4.5. (i) F1
N̄k,n

is a Poisson submanifold of FN̄k,n
with respect to the standard 

Poisson structure. For n ≥ 2k − 1, the restriction of the standard Poisson structure to 
F1

N̄k,n
is given by

{xi, xi+l} = −xixi+l, 1 ≤ l ≤ k − 2; {yi, yi+l} = −yiyi+l, 1 ≤ l ≤ k − 1;

{yi, xi+l} = −yixi+l, 1 ≤ l ≤ k − 1; {yi, xi−l} = yixi−l, 0 ≤ l ≤ k − 2, (4.7)

where indices are understood mod n and only non-zero brackets are listed.
(ii) The bracket (4.7) has rank 2(n − d), where d = gcd(k − 1, n). Functions

n
d −1∏
i=0

xs+i(k−1),

n
d −1∏
i=0

ys+i(k−1), s = 1, . . . , d, (4.8)

are Casimir functions for (4.7).
(iii) The bracket (4.7) is invariant under the map Tk.

Proof. (i) As was explained in Section 3.1, FN̄k,n
can be parameterized by face coordi-

nates pi, qi, i = 1, . . . , n, subject to 
∏n

i=1 piqi = 1 and weights z, zρ of two trails that 
we will choose as follows. The trail that corresponds to zρ is a directed cycle Pρ that 
traces the • → ◦ → • part of the boundary of each quadrilateral face pi and the im-
mediately following • → • edge of the corresponding octagonal face qi+r′+1, see Fig. 8. 
After applying the gauge action to ensure that weights of all monochrome edges are 
equal to 1, we see that the weight zρ is equal to 

∏n
i=1 bici, where we are using notations 

from Section 3.2. The weight z corresponds to the directed cycle P that consists of the 
◦ → ◦ edge separating octagonal faces qn−r and qn+1−r followed by the ◦ → • edge of 
the quadrilateral p1 followed by the subpath of Pρ that closes the cycle. (For example, 
for N̄3,5 depicted in Fig. 7, Pρ contains the ◦ → ∗ → ◦ edge followed by the ◦ → • edge 
labeled by x1.) Since F1

N̄k,n
is cut out from FN̄k,n

by condition (3.4) (or, equivalently, 
zρ = 1), to see that F1

N̄k,n
is a Poisson submanifold of FN̄k,n

, we need to check that 
Poisson brackets of zρ with z and all face weights with respect to the standard Poisson 
structure are zero. For the bracket {zρ, z} this claim follows from (3.3): there is only 
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one maximal common subpath of P and Pρ, and the relative position of the paths is as 
on Fig. 5a). For the bracket {zρ, yf} the claim follows from (3.2). If f is a quadrilateral 
face then there is only one path P ′ in the outer sum; it consists of two edges, and the 
corresponding edges of the directed dual are opposite, see Fig. 8. If f is an octagonal face 
then there are two paths P ′ in the outer sum. One of them consists of three edges, of 
which one is monochrome; the edges of the directed dual corresponding to the remaining 
two edges of P ′ are opposite, see Fig. 8. The second one consists of a unique monochrome 
edge.

Next, F1
N̄k,n

can be parameterized by either xi, yi, i = 1, . . . , n, or by pi, qi, i =
1, . . . , n, 

∏n
i=1 piqi = 1, and z. To finish the proof of statement (i), it suffices to show that 

brackets (4.7) generate the same Poisson relations among pi, qi, z as the standard Poisson 
structure on FN̄k,n

. Recall that by Corollary 3.2, the Poisson brackets between pi, qi in the 
standard Poisson structure coincide with those given by {·, ·}k. Furthermore, it follows 
from (3.2) that {z, qi} = 0 and {z, pj} = (δ1,j − δn−k+2,j) zpj . Note that due to (3.4)
and gauge-invariance of weights of directed cycles, z = x1 on F1

N̄k,n
. This, together with 

the periodicity of N̄k,n, leads to Poisson brackets {xi, pj} = (δi,j − δi−k+1,j)xipj .
For an n-tuple (u1, . . . , un), let ū be the column vector (log ui)ni=1. For two n-tuples 

(u1, . . . , un), (v1, . . . , vn) of functions on a Poisson manifold, we use a shorthand notation 
{ū, ̄vT } to denote a matrix of Poisson brackets ({log ui, log vj})ni,j=1. Note that {v̄, ūT } =
−{ū, ̄vT }T .

We can then describe the Poisson brackets {pi, qj}, {pi, pj}, {qi, qj}, {xi, pj} by

{p̄, q̄T } = C−r−1 + Cr′+1 − C−r − Cr′ ,

{p̄, p̄T } = {q̄, q̄T } = {x̄, q̄T } = 0, {x̄, p̄T } = 1 − C1−k, (4.9)

where C = e12 + · · · + en−1n + en1 = S + en1 is an n × n cyclic shift matrix and S is 
an upper triangular shift matrix. Similarly, formulas in (4.7) are equivalent, provided 
n ≥ 2k − 1, to

Ωx := {x̄, x̄T } =
k−2∑
i=1

(
C−i − Ci

)
= (1 − Ck−1)

k−2∑
i=1

C−i,

Ωy := {ȳ, ȳT } =
k−1∑
i=1

(
C−i − Ci

)
= (1 − Ck−1)

k−1∑
i=0

C−i,

Ωyx := {ȳ, x̄T } =
k−1∑
i=1

(
C1−i − Ci

)
= (1 − Ck−1)

k−2∑
i=0

C−i. (4.10)

We need to check that relations (4.10) imply (4.9). This follows via a straightforward 
calculation from relations p̄ = ȳ− x̄, q̄ = Cr (Cx̄ − ȳ) induced by (3.6) (one also needs 
to take into account equalities r + r′ = k − 2 and CT = C−1).
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(ii) The rank of the Poisson bracket (4.7) is equal to the rank of the matrix

Ω =
(

Ωx −ΩT
yx

Ωyx Ωy

)
.

The claim that functions (4.8) are Casimir functions follows from (4.10) and the fact 
that vectors 

∑n
d −1
i=0 es+i(k−1), s = 1, . . . , d, form a basis of the kernel of 1 − Ck−1. 

Let V be the complement to that kernel in Rn spanned by vectors (vi)ni=1 such that ∑n
d −1
i=0 vs+i(k−1) = 0 for s = 1, . . . , d. Then V is invariant under C, 1 −Ck−1 is invertible 

on V and the rank of Ω is equal to the rank of its restriction to V ⊕ V . On V ⊕ V , we 
define

A =
(
C(C − 1)−1 −(C − 1)−1

−1 1

)

and compute

AΩAT =
(

0 C1−k − 1
1 − Ck−1 0

)
.

Since AΩAT is invertible on V ⊕ V , we conclude that the rank of (4.7) is 2(n − d).
(iii) Invariance of (4.7) under the map Tk can be verified by a direct calculation. �

Remark 4.6. There are formulae similar to (4.7) for Tk-invariant Poisson bracket in the 
case n < 2k − 1 as well. Our focus on the “stable range” n ≥ 2k − 1 will be justified by 
the geometric interpretation of the maps Tk in Section 5.

4.3. Conserved quantities

The ring of spectral invariants of Mk,n(λ) is generated by coefficients of its character-
istic polynomial

det(In + zMk,n(λ)) =
n∑

i=1

k∑
j=1

Iij(x, y)λizj . (4.11)

(Some of the coefficients Iij are identically zero.)

Proposition 4.7. Functions Iij(x, y) are invariant under the map Tk.

Proof. Recall that in Section 3.2, Tk was described via a sequence of Postnikov’s moves 
and gauge transformations. Furthermore, Nk,n is obtained from N̄k,n by cutting the 
torus into a cylinder along an ideal rim γ. Note that type 3 Postnikov’s moves and 
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gauge transformations do not affect the boundary measurement matrix. In fact, the only 
transformations that do change the boundary measurements are type 1 and 2 moves 
interchanging vertical edges lying on different sides of γ. For a network on a cylinder, 
moving a vertical edge past γ from left to right is equivalent to cutting at the right 
end of the cylinder a thin cylindrical slice containing this edge and no other vertical 
edges and then reattaching this slice to the cylinder on the left. In terms of boundary 
measurement matrices, this operation amounts to a matrix transformation of the form 
M = AB �→ M̃ = BA under which non-zero eigenvalues of M and M̃ coincide. This 
proves the claim. �

Next, we will provide a combinatorial interpretation of conserved quantities Iij in 
terms of the network N̄k,n. This, in turn, will allow us to clarify the relation between 
boundary measurements Mk,n(λ) and Ak,n(z) in the context of the map Tk.

Let N be a perfect network on the torus with the cut ρ, and let γ be a rim. For an 
arbitrary simple directed cycle C in N we define its weight w(C) as the product of the 
weights of the edges in C times (−1)dλ+dzλdλzdz , where dλ and dz are the intersection 
indices of C with ρ and γ, respectively. The weight of a collection C of disjoint simple 
cycles is defined as w(C) = (−1)|C|

∏
C∈C w(C). Finally, define the function PN (λ, z) =∑

w(C), where the sum is taken over all collections of disjoint simple cycles.

Proposition 4.8. Let N be a perfect network on the torus with no contractible cycles, γ be 
an ideal rim, and M(λ) be the m ×m boundary measurement matrix for the network on 
the cylinder obtained by cutting the torus along γ. Then

det(Im + zM(λ)) = PN (λ, z)
PN (λ, 0) . (4.12)

Proof. First of all, note that

det(Im + zM(λ)) = 1 +
m∑
j=1

zj
∑
|J|=j

ΔJ (M(λ)), (4.13)

where ΔJ(M(λ)) is the principal j × j minor of M(λ) with the row and column sets J . 
To evaluate this minor we use the formula for determinants of weighted path matrices 
obtained in [45].

It is important to note that there are two distinctions between the definitions of the 
path weights here and in [45]. First, there is no cut in [45]. This can be overcome by mod-
ifying edge weights: if an edge of weight w intersects the cut, then its weight is changed 
to λw or λ−1w, depending on the orientation of the intersection; see Chapter 9.1.1 in [13]
for details. Second, the sign conventions in [45] are different from those described in Sec-
tion 3.1: the sign of any path is positive. However, in the absence of contractible cycles 
our conventions can emulate conventions of [45]. To achieve that, it suffices to apply the 
transformation λ �→ −λ. Indeed, after the torus is cut along γ, the only cycles in N
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that survive are those with dλ = ±1. By our sign conventions, such cycles contribute 
−1 to the sign of a path. The same result is achieved if the contribution to the sign of 
a path is 1, and the weight of the appropriate edge is multiplied (or divided) by −λ. 
Paths on the cylinder that intersect the cut ρ are treated in a similar way. Finally, the 
rim γ is ideal, and hence the sources and the sinks lie on different boundary circles of 
the cylinder. Therefore,

ΔJ(M(λ)) = ΔJ,m+J(W̄ (−λ)), (4.14)

where W̄ (−λ) is the path weight matrix built by the rules of [45] based on modified 
weights of the edges.

It follows from the main theorem of [45] that

ΔJ,m+J(W̄ ) =
∑

D sgn(D)w̄(D)∑
C(−1)|C|w̄(C)

(4.15)

where D runs over all collections of j disjoint paths connecting sources from J with 
the sinks from m + J , C runs over all collections of disjoint cycles in the network on the 
cylinder, and sgn(D) is the sign of the permutation πD of size j realized by the paths from 
the collection D. Equation (4.15) takes into account that there are no contractible cycles 
in N , and hence any cycle that survives on the cylinder intersects any path between a 
source and a sink. Consequently, the denominator in (4.15) equals PN (λ, 0).

To proceed with the numerator, assume that πD can be written as the prod-
uct of c cycles of lengths l1, . . . , lc subject to l1 + · · · + lc = j. Then sgn(πD) =
(−1)l1−1 · · · (−1)lc−1 = (−1)j−c. It is easy to see that on the torus, the paths from 
D form exactly c disjoint cycles, and that the intersection index of the ith cycle with γ
equals li. By (4.13)–(4.15), we can write

det(Im + zM(λ)) =
∑m

j=0 z
j
∑

|J|=j

∑
C(−1)j(−1)|C|

∏
C∈C w̄(C)

P(λ, 0) ,

where the inner sum is taken over all collections C that intersect γ at the prescribed set 
J of points. Clearly, the numerator of the above expression equals PN (λ, z), and (4.12)
follows. �
Corollary 4.9. One has

det(Ik + zMk,n(λ)) = (1 + z) det(In + λAk,n(z)) = PN̄k,n
(λ, z). (4.16)

Proof. It is easy to see that the network N̄k,n does not have contractible cycles. Besides, 
both γ and ρ are ideal rims with respect to each other. Therefore, by Proposition 4.8,

det(Ik + zMk,n(λ)) =
PN̄k,n

(λ, z)
P ¯ (λ, 0) , det(In + λAk,n(z)) =

PN̄k,n
(λ, z)

P ¯ (0, z) .
Nk,n Nk,n
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Next, the network Nk.n is acyclic, and so PN̄k,n
(λ, 0) = 1. Finally, the weight of the 

only simple cycle in the conjugate network N ′
k,n equals z, hence PN̄k,n

(0, z) = 1 + z

and (4.16) follows. �
4.4. Lax representations

Another way to see the invariance of Iij under Tk is based on a zero curvature Lax 
representation with a spectral parameter. A zero curvature representation for a non-
linear dynamical system is a compatibility condition for an over-determined system of 
linear equations; this is a powerful method of establishing algebraic–geometric complete 
integrability, see, e.g., [7]. Even more generally, the term “Lax representation” is often 
used for discrete systems that can be described via a re-factorization of matrix rational 
functions A(z) = A1(z)A2(z) �→ A∗(z) = A2(z)A1(z), see, e.g., [29].

Proposition 4.10. The map Tk has a k × k zero curvature representation

L∗
i (λ) = Pi(λ)Li+r−1(λ)P−1

i+1(λ)

and an n × n Lax representation

Ak,n(z) = A1(z)A2(z) �→ A∗
k,n(z) = A2(z)A1(z).

Here the Lax matrices Li(λ) and Ak,n(z) are defined by (4.2) and (4.4), respectively, and 
L∗
i (λ) and A∗

k,n(z) are their images under the transformation Tk. The auxiliary matrix 
Pi(λ) is given by

Pi(λ) =
(
−xi−1

σi−1
− 1

λσi

1
λ

− 1
σi

0

)

for k = 2 and

Pi(λ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − xi

λσi
− yi+1

λσi+1
0 . . . 0 0

0 0 xi+1
σi+1

yi+2
σi+2

. . . 0 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . xi+k−4
σi+k−4

yi+k−3
σi+k−3

0
− 1

σi+k−2
0 0 . . . 0 xi+k−3

σi+k−3
1

1
σi+k−2

1
λσi+k−1

0 . . . 0 0 0
0 − 1

λσi+k−1
0 . . . 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

for k ≥ 3, where, as before, σi = xi + yi. Finally, Aj(z) are given by
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A1(z) = ZDσ(1n − Z)−1Z−r′ ,

A2(z) = Zr′+2 (Dx + ZDy)D−1
σ Zk−2, (4.17)

where Dσ = Dx + Dy = diag(σ1, . . . , σn).

Proof. The claim can be verified by a direct calculation using equations (3.8). It is worth 
pointing out, however, that expressions for Pi(λ) and Aj(z) were derived by re-casting 
elementary network transformations that constitute Tk as matrix transformation. We 
will provide an explanation for the n ×n Lax representation and leave the details for the 
k × k Lax representation as an instructive exercise for an inquisitive reader.

First, we rewrite equation (3.8) for Tk in terms of Dx, Dy:

D∗
x =

(
Z−r′−1DxD

−1
σ Zr′+1

) (
ZrDσZ

−r
)

= Z−r′−1 (DxD
−1
σ

) (
Zk−1DσZ

1−k
)
Zr′+1,

D∗
y =

(
Z−r′DyD

−1
σ Zr′

) (
Zr+1DσZ

−r−1)
= Z−r′

(
DxD

−1
σ

) (
Zk−1DσZ

1−k
)
Zr′ ,

which allows one to express Zr′+1A∗
k,n(z)Z−r′−1 as

Z
(
DxD

−1
σ

(
Zk−1DσZ

1−k
)
Z−1 + ZDyD

−1
σ Z−1 (ZkDσZ

−k
))

Zk−1 (1n − Z)−1
.

Denote Zr′+1A∗
k,n(z)Z−r′−1 by A	

k,n(z). If we find A	
1(z), A

	
2(z) such that

Ak,n(z) = A	
1(z)A

	
2(z), A	

k,n(z) = A	
2(z)A

	
1(z),

then A1(z) = A	
1(z)Z−r′−1, A2(z) = A	

2(z)Zr′+1 will provide the desired Lax represen-
tation.

Consider the transformation of the network N ′
k,n induced by performing type 3 Post-

nikov’s move at all quadrilateral faces followed by performing type 1 Postnikov’s move 
at all white–white edges. The resulting network is shown in Fig. 15.

To obtain a factorization of Ak,n(z), we will view the latter network as a concatenation 
of two networks glued across a closed contour that intersects all white–white edges and 
no other edges (in Fig. 15 it is represented by the dashed circle). Intersection points 
are labeled 1 through n counterclockwise with the label i attached to the point in the 
white–white edge incident to the edge of weight σi+1. Furthermore, we adjusted the 
cut in such a way that it crosses the dashed circle through the segment between points 
labeled 1 and n.

Let A	
1(z) and A	

2(z) be boundary measurement matrices associated with the outer 
and the inner networks obtained this way. Clearly, Ak,n(z) = A	

1(z)A
	
2(z). To be able 

to perform the last sequence of transformation involved in Tk, namely to apply type 3 
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Fig. 15. The conjugate network N ′
3,5 after Postnikov’s moves.

Postnikov’s move to all black–black edges, we have to cut the torus in a different way: 
we first need to separate two networks along the dashed circle and then glue the outer 
boundary of the outer network to the inner boundary of the inner network matching the 
labels of boundary vertices. But this means that A	

k,n(z) = A	
2(z)A

	
1(z).

It remains to check that expressions for A	
1(z), A

	
2(z) are consistent with (4.17). Note 

that the cut crosses the dashed circle between the intersection points labeled n − r′ − 1
and n − r′. The network that corresponds to A	

1(z) contains a unique oriented cycle 
of weight z and, for any i, j, a unique simple directed path from source to sink j that 
contains the edge of weight σi+1. This path does not intersect the cut if i ≤ j, otherwise 
it intersects the cut once. Thus, the (i, j) entry of A	

1(z) is equal σi+1
1+z for i ≤ j and 

−σi+1z
1+z for i > j, which means that A	

1(z) = ZDσZ
−1(1n − Z)−1 as needed.

The network that corresponds to A	
2(z) contains no oriented cycles. The source i is 

connected by a directed path of weight xi/σi to the sinks i +k−1 and by a directed path 
of weight yi+1/σi+1 to the sink i + k. The former path intersects the cut if and only if 
n − k+ 2 ≤ i ≤ n, and the latter path intersects the cut if and only if n − k + 1 ≤ i ≤ n. 
We conclude that A	

2(z) = Z (Dx + ZDy)D−1
σ Zk−2, as needed. �

In view of Proposition 4.10, the preservation of spectral invariants of Mk,n(λ) (called, 
in this context, the monodromy matrix) and Ak,n(λ) is obvious. In particular,

M∗
k,n = P1Lr · · ·LnL1 · · ·Lr−1P

−1
1 .
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Remark 4.11. 1. Two representations we obtained for Tk give an example of what in 
integrable systems literature is called dual Lax representations. A general technique for 
constructing integrable systems possessing such representations based on dual moment 
maps was developed in [1].

2. For k = 3, we obtain a 3 × 3 zero-curvature representation for the pentagram map 
alternative to the one given in [42].

4.5. Complete integrability

Theorem 4.12. The map Tk is completely integrable for k ≥ 2.

Proof. Proposition 4.7 shows that spectral invariants of Mk,n(λ) (equivalently, by Corol-
lary 4.9, spectral invariants of Ak,n(z)) are conserved quantities for Tk, while Theorem 4.1
and Proposition 4.5 imply that conserved quantities Poisson-commute. To establish com-
plete integrability, we need to prove that this Poisson-commutative family is maximal.

By Proposition 4.5, the number of Casimir functions for our Poisson structure is 2d, 
where d = gcd(k − 1, n). Therefore, we need to show that among spectral invari-
ants of Ak,n(z) there are n + d independent functions of x = (xi)ni=1, y = (yi)ni=1. 
Furthermore, among Casimir functions described in (4.8) there are d independent func-
tions that depend only on y. Hence it suffices to prove that gradients of functions 
fs(x, y) = 1

s+1 TrAs+1
k,n (z), s = 0, . . . , n − 1, viewed as functions of x are linearly in-

dependent for almost all x, y or, equivalently, since fs(x, y) are polynomials, for at least 
one point x, y. Using the formula for variation of traces of powers of a square matrix

δTrAs+1 = Tr
s∑

i=0
AiδAAs−i = (s + 1) Tr(δAAs),

we deduce that the ith component of the gradient ∇xfs(x, y) with respect to x is equal 
to the ith diagonal element of the matrix

Zk−1(1n − Z)−1 ((Dx + DyZ)Zk−1(1n − Z)−1)s .
In particular,

(∇xfs(x,−x))i =
(
Zk−1(1n − Z)−1 (DxZ

k−1)s)
ii

= 1
1 + z

(
Zk−1(1n + . . . + Zn−1)

(
DxZ

k−1)s)
ii

= 1
1 + z

(
Zk−1+l

(
DxZ

k−1)s)
ii

= (−z)�
(s+1)(k−1)

n �

1 + z

s∏
β=1

xi−β(k−1).
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Fig. 16. Integrable and non-integrable dynamics.

Here the second line follows from (4.6), in the third line l + (s + 1)(k − 1) = 0 mod n, 
since only one of the powers of Z present in the second line contributes to the diagonal, 
and it is the one with the exponent divisible by n, the fourth line is obtained by repeated 
application of (4.5), and the index i −β(k−1) is understood mod n. Prefactors depending 
on z play no role in analyzing linear independence of ∇xfs(x, −x), so we ignore them 

and form an n × n matrix F =
(∏s

β=1 xi−β(k−1)

)n

s,i=1
. We need to show that detF is 

generically nonzero. We further specialize by setting xd+1 = · · · = xn = 1, then columns 
of F become

Fi+α(k−1) = col( 1, . . . , 1︸ ︷︷ ︸
α

, xi, . . . , xi︸ ︷︷ ︸
n/d

, x2
i , . . . , x

2
i︸ ︷︷ ︸

n/d

, . . .)

for i = 1, . . . , d, α = 1, . . . , n/d. Now the standard argument (akin to the one used 
in computing Vandermonde determinants) shows that up to a sign detF is equal to ∏d

i=1(xi − 1)n/d−1 ∏
1≤i<j≤d(xi − xj)n/d. The proof is complete. �

Corollary 4.13. Any rational function of Iij that is homogeneous of degree zero in vari-
ables x, y, depends only on p, q and is preserved by the map T k. On the level set 
{Πpiqi = 1}, such functions generate a complete involutive family of integrals for the 
map T k.

Remark 4.14. In general, these functions define a continuous integrable system on level 
sets of the form {Πpi = c1, Πqi = c2}, and the map T

(c)
k intertwines the flows of this 

system on different level sets lying on the same hypersurface c1c2 = c. Numerical evidence 

suggests that T (c)
k is not integrable whenever c 
= 1. Indeed, the left part of Fig. 16

demonstrates the typical integrable behavior while the right part clearly shows at least 
three accumulation points which contradicts integrability.
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4.6. Spectral curve

We could have deduced independence of the integrals of Tk from the properties of the 
spectral curve

PN̄k,n
(λ, z) = det(Ik + zMk,n)(λ)) = (1 + z) det(In + λAk,n(z))

=
∑
i,j

Iijλ
izj = 0 (4.18)

in the spirit of [30, Section 9]. We will briefly discuss this spectral curve here to point out 
parallels between our approach and that of [19]. There, the starting point for constructing 
an integrable system is a centrally symmetric polygon Δ with vertices in Z2 which gives 
rise to a dimer configuration on a torus whose partition function serves as a generating 
function for Casimirs and integrals in involution and defines an algebraic curve with a 
Newton polygon Δ.

Proposition 4.15. The Newton polygon Δ of the spectral curve (4.18) is a parallelogram 
with vertices (0, 0), (0, 1), (n, k), (n, k − 1).

Proof. Obviously, (0, 0), (0, 1) ∈ Δ. Since

detAk,n(z) = (−z)k−1

1 + z

(∏
i

xi − (−1)nz
∏
i

yi

)

by (4.4), (n, k), (n, k − 1) are in Δ.
Let (i, j) ∈ Δ; by the construction of PN̄k,n

(λ, z), it corresponds to a family C of 
disjoint simple cycles in N̄k,n that has in total i intersection points with ρ and j inter-
section points with γ. Consider a simple directed cycle Ct ∈ C that intersects the cut 
ρ at points numbered α1, . . . , αit+1 = α1 (we list them in the order they appear along 
Ct starting with the smallest number and denote this list A(Ct)). It is convenient to 
visualize Ct using the network N ′

k,n. Then one can see that αs+1 can be expressed as 
αs+1 = αs + βs mod n, where s = 1, . . . , it and βs ∈ [k − 1, n + k − 2], see Fig. 14. We 
thus have it(k−1) ≤ β1 + · · ·+βit = jtn for some jt, which means that Ct intersects the 
rim γ exactly jt times. Consequently, it and jt are subject to the inequality k−1

n it ≤ jt. 
Summing up over all cycles in C and taking into account that 

∑
it = i, 

∑
jt = j, we get 

k−1
n i ≤ j.
On the other hand, each shift βs as above prohibits at least βs − k indices from 

entering the set A(C) for any cycle C ∈ C; more exactly, if βs > k then the prohibited 
indices are αs+k, . . . , αs+βs−1, otherwise there are no such indices. So, totally at least 
jtn − itk indices are prohibited. Clearly, the sets of prohibited indices for distinct cycles 
are disjoint. Therefore, altogether at least jn − ik indices are prohibited and i indices 
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are used, hence jn − i(k − 1) ≤ n. Thus, if (i, j) ∈ Δ, then k−1
n i ≤ j ≤ k−1

n i + 1, which, 
together with an obvious inequality 0 ≤ i ≤ n, proves the claim. �

There are 2(d + 1) integer points on the boundary of Δ:(
l
n

d
, l
k − 1
d

)
,

(
l
n

d
, l
k − 1
d

+ 1
)
, l = 0, . . . , d.

The number of interior integer points (equal to the genus of the spectral curve) is n −d. 
The coefficient of PN̄k,n

(λ, z) that corresponds to a point of the first type is a sum 
where each term is the product of weights of l disjoint cycles, each of them characterized 
uniquely by i = n/d, α1 ∈ [1, d], and β1 = . . . = βn/d = k − 1 (see Fig. 14). The weight 
of such cycle is the Casimir function 

∏n/d−1
s=0 xα1+s(k−1), cp. with the first expression 

in (4.8).
On the other hand, any term contributing to the coefficient corresponding to a point 

of the second type is the weight of a collection of disjoint cycles that is represented in 
N ′

k,n by a unique collection of non-intersecting paths joining ln/d sources α1, α2, . . . , αl,

α1 + (k − 1), α2 + (k − 1), . . . , αl + (k − 1), . . . to sinks α2 + (k − 1), α3 + (k − 1), . . . ,
αl + (k− 1), α1 + 2(k− 1), . . . , respectively, where 1 ≤ α1 < . . . < αl ≤ d. The weight in 
question is the product of Casimir functions 

∏n/d−1
s=0 yαt+s(k−1) for t = 1, . . . , l, cp. with 

the second expression in (4.8).
Thus, just like in [19], interior points of Δ correspond to independent integrals while 

integer points on the boundary of Δ correspond to Casimir functions.

5. Geometric interpretation

In this section we give a geometric interpretations of the maps Tk. The cases k ≥ 3
and k = 2 are different and are treated separately.

5.1. The case k ≥ 3

5.1.1. Corrugated polygons and generalized higher pentagram maps
As we already mentioned, a twisted n-gon in a projective space is a sequence of points 

V = (Vi) such that Vi+n = M(Vi) for all i ∈ Z and some fixed projective transformation 
M called the monodromy. The projective group naturally acts on the space of twisted 
n-gons. Let Pk,n be the space of projective equivalence classes of generic twisted n-gons in 
RPk−1, where “generic” means that every k consecutive vertices do not lie in a projective 
subspace. Clearly, the space Pk,n has dimension n(k − 1).

We say that a twisted polygon V is corrugated if, for every i, the vertices Vi, Vi+1, 
Vi+k−1 and Vi+k span a projective plane. The projective group preserves the space of 
corrugated polygons. Projective equivalence classes of corrugated polygons constitute an 
algebraic subvariety of the moduli space of polygons in the projective space. Note that 
a polygon in RP2 is automatically corrugated.
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Denote by P0
k,n ⊂ Pk,n the space of projective equivalence classes of corrugated poly-

gons satisfying the additional genericity assumption that, for every i, every three out of 
the four vertices Vi, Vi+1, Vi+k−1 and Vi+k are not collinear.

Lemma 5.1. One has: dim P0
k,n = 2n.

Proof. As it was already mentioned, dim Pk,n = n(k− 1). For each i = 1, . . . , n, one has 
a constraint: the vertex Vi+k lies in the projective plane spanned by Vi, Vi+1, Vi+k−1. 
The codimension of a plane in RPk−1 is k − 3, which yields k − 3 equations. Thus

dim P0
k,n = n(k − 1) − n(k − 3) = 2n,

as claimed. �
The consecutive (k− 1)-diagonals (the diagonals connecting Vi and Vi+k−1) of a cor-

rugated polygon intersect, and the intersection points form the vertices of a new twisted 
polygon: the ith vertex of this new polygon is the intersection of diagonals (Vi, Vi+k−1)
and (Vi+1, Vi+k). This (k − 1)-diagonal map commutes with projective transformations, 
and hence one obtains a rational map Fk : P0

k,n → Pk,n. (Note that this rational map is 
well defined only on an open subset of P0

k,n because the image polygon may be degen-
erate.) F3 is the pentagram map; the maps Fk for k > 3 are called generalized higher 
pentagram maps.

Remark 5.2. Corrugated polygons for k > 2 were independently defined by M. Glick 
(private communication).

Given a corrugated polygon V , one can also construct a new polygon whose ith 
vertex is the intersection of the lines (Vi, Vi+1) and (Vi+k−1, Vi+k). This defines a map 
Gk : P0

k,n → Pk,n.
Similarly to above, one can define spaces of twisted and corrugated polygons in the 

dual projective space (RPk−1)∗, as well as dual analogs of the maps Fk and Gk; in what 
follows, the objects in the dual space will be marked by an asterisk. Besides, we will need 
the notion of the projectively dual polygon. Let V be a generic polygon in RPk−1. Each 
consecutive (k − 1)-tuple of vertices spans a projective hyperplane, that is, a point of 
(RPk−1)∗. This ordered collection of points represents the vertices of the dual polygon 
W = V ∗; more exactly, the projective hyperplane spanned by Vi, . . . , Vi+k−2 represents 
the vertex Wi. We denote the projective duality map that takes V to W by Δk.

Proposition 5.3. (i) The image of a corrugated polygon under Fk and under Gk is a 
corrugated polygon.

(ii) Up to a shift of indices by k, the maps Fk and Gk are inverse to each other.
(iii) The polygon projectively dual to a corrugated polygon is corrugated.
(iv) Projective duality Δk conjugates the maps Fk and G∗

k.
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Fig. 17. The maps Fk and Gk.

Proof. (i) Let V ′
i denote the ith vertex of Fk(V ). We claim that the vertices V ′

i , V ′
i+1, 

V ′
i+k−1, V ′

i+k lie in a projective plane. Indeed, V ′
i and V ′

i+1 belong to the line (Vi+1, Vi+k), 
and V ′

i+k−1 and V ′
i+k to the line (Vi+2k−1, Vi+k). These lines intersect at the point Vi+k, 

hence the points V ′
i , V ′

i+1, V ′
i+k−1, V ′

i+k are coplanar, see Fig. 17.
The argument for the map Gk is analogous.
(ii) Follows immediately from the definition of Fk and Gk, see Fig. 17.
(iii) Lift points in RPk−1 to vectors in Rk; the lift is not unique and is defined up 

to a multiplicative factor. We use tilde to indicate a lift of a point. A lift of a twisted 
polygon is also twisted: Ṽi+n = M̃(Ṽi) for all i, where M̃ ∈ GL(k, R) is a lift of the 
monodromy.

Fix a volume form in Rk. Then (k − 1)-vectors are identified with covectors. In par-
ticular, if Vi, . . . , Vi+k−2 are points in RPk−1 spanning a hyperplane then the respective 
point Wi of the dual space (RPk−1)∗ lifts to W̃i = Ṽi ∧ · · · ∧ Ṽi+k−2.

Let V be a generic corrugated polygon. We need to prove that the (k−1)-vectors W̃i, 
W̃i+1, W̃i+k−1 and W̃i+k are linearly dependent for all i.

Since the polygon V is corrugated, Ṽi+2k−2 ∈ span(Ṽi+2k−3, Ṽi+k−2, Ṽi+k−1), and 
hence

W̃i+k = Ṽi+k ∧ · · · ∧ Ṽi+2k−2 ∈ span(Ṽi+k−2 ∧ Ṽi+k ∧ · · · ∧ Ṽi+2k−3, W̃i+k−1).

In its turn,

Ṽi+k−2 ∧ Ṽi+k ∧ · · · ∧ Ṽi+2k−3 = Ṽi+k−3 ∧ Ṽi+k−2 ∧ Ṽi+k ∧ · · · ∧ Ṽi+2k−4 = · · ·
= Ṽi+1 ∧ · · · ∧ Ṽi+k−2 ∧ Ṽi+k

∈ span(Ṽi ∧ · · · ∧ Ṽi+k−2, Ṽi+1 ∧ · · · ∧ Ṽi+k−1).

The latter two (k − 1)-vectors are W̃i and W̃i+1, as needed.
(iv) We need to prove that G∗

k ◦ Δk = Δk ◦ Fk.
As before, we argue about lifted vectors. Let Ṽ be a lifted polygon, and let W be the 

polygon dual to V . The vertices of a lift of the polygon W ′′ = G∗
k(W ) are represented 
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by vectors in span(W̃i, ̃Wi+1) ∩ span(W̃i+k−1, ̃Wi+k). Let W̃ ′′
i be a vector spanning this 

line. Then

W̃ ′′
i = αW̃i + βW̃i+1 = λW̃i+k−1 + μW̃i+k

for some coefficients α, β, λ, μ. Using the definition of the points Wi, we have:

W̃ ′′
i = (αṼi ± βṼi+k−1) ∧ Ṽi+1 ∧ . . . ∧ Ṽi+k−2

= (λṼi+k−1 ± μṼi+2k−2) ∧ Ṽi+k ∧ . . . ∧ Ṽi+2k−3. (5.1)

On the other hand, the vertex V ′
i of Fk(V ) is the intersection point of the lines 

(Vi, Vi+k−1) and (Vi+1, Vi+k). Let Ṽ ′
i be a lift of this point; then Ṽ ′

i = sṼi+1 + tṼi+k

where s and t are coefficients. We want to show that Δk(V ′
i ) = W ′′

i , that is, using the 
identification of (k−1)-vectors with covectors, that Ṽ ′

i ∧W̃ ′′
i = 0. Indeed, in view of (5.1),

Ṽ ′
i ∧ W̃ ′′

i = sṼi+1 ∧ (αṼi ± βṼi+k−1) ∧ Ṽi+1 ∧ . . . ∧ Ṽi+k−2

+ tṼi+k ∧ (λṼi+k−1 ± μṼi+2k−2) ∧ Ṽi+k ∧ . . . ∧ Ṽi+2k−3 = 0,

as claimed. �
Remark 5.4. Let us briefly mention a natural continuous analog of corrugated polygons 
and the generalized higher pentagram maps. A twisted curve in RPk−1 is a map γ :
R → RPk−1 such that γ(x + 1) = M(γ(x)) for all x where M is a fixed projective 
transformation. The projective group naturally acts on twisted curves, and one considers 
the projective equivalence classes.

A curve is called c-corrugated if the tangent lines at points γ(x) and γ(x + c) are 
coplanar (not skew) for all x ∈ R. We claim that the line connecting points γ(x) and 
γ(x + c) envelops a new curve, γ̄(x). Indeed, the coplanarity condition implies that 
γ(x + c) − γ(x) = u(x)γ′(x) + v(x)γ′(x + c) for some functions u and v. Then the enve-
lope γ̄ is given by the equation

γ̄(x) = u(x)
u(x) + v(x)γ(x) + v(x)

u(x) + v(x)γ(x + c),

as can be easily verified by differentiation.
Thus we obtain a map Fc : γ �→ γ̄. It is even easier to describe a map Gc defined by a 

c-corrugated curve γ: it is traced by the intersection points of the tangent lines at points 
γ(x) and γ(x + c). These maps commute with projective transformations. Of course, the 
notion of corrugated curve is interesting only when k − 1 ≥ 3.

An analog of Proposition 5.3 holds; in particular, Fc(γ) is again a c-corrugated curve. 
The dynamics of the projective equivalence classes of corrugated curves under the trans-
formations Fc and Gc is an interesting subject; we do not dwell on it here.



428 M. Gekhtman et al. / Advances in Mathematics 300 (2016) 390–450
Remark 5.5. Paper [25] concerns a multi-dimensional version of the pentagram map, 
called the dented pentagram map. This map, denoted by T d

m, acts on the projective 
equivalence classes of polygons in RPd. The new vertices are determined as the in-
tersection points of consecutive d hyperplanes; these hyperplanes are spanned by the 
consecutive vertices of the polygon, from the kth to the (k+d)th, skipping the (k+m)th 
vertex, where the index k takes d consecutive values. The standard pentagram map 
corresponds to the case when d = 2 and m = 1.

It is proved in [25] that the maps T d
m, m = 1, . . . , d − 1, are integrable in the sense 

that they admit a Lax representation with a spectral parameter. It is also observed that 
the restriction of these maps, for each m in the above range, to the space of corrugated 
polygons coincides with the map studied in the present paper. Furthermore, a broader 
class of polygons, called partially corrugated, is described, and complete integrability 
result is extended to this class. Paper [25] also contains a description of a continuous 
limit of the dented pentagram maps.

5.1.2. Coordinates in the space of corrugated polygons
Now we introduce coordinates in P0

k,n.

Proposition 5.6. One can lift the vertices of a generic corrugated polygon V so that, for 
all i, one has:

Ṽi+k = yi−1Ṽi + xiṼi+1 + Ṽi+k−1, (5.2)

where xi and yi are n-periodic sequences. Conversely, n-periodic sequences xi and yi
uniquely determine the projective equivalence class of a twisted corrugated n-gon in 
RPk−1.

Proof. Consider a lifted twisted polygon V̂ . Since V is corrugated, one has

V̂i+k = ai+k−1V̂i+k−1 + bi+1V̂i+1 + ciV̂i (5.3)

for all i. The sequences ai, bi and ci are n-periodic and, due to the genericity assumption, 
none of these coefficients vanish.

We wish to choose the lift in such a way that the coefficient a identically equals 1. 
Rescale: V̂i = λiṼi, where λi 
= 0. Then for (5.3) to become (5.2), the following recurrence 
should hold for the scaling factors: λi+1 = aiλi. Set λ0 = 1 and determine λi, i ∈ Z, by 
the recurrence.

After this rescaling, the coefficients change as follows:

ci �→
ci

, bi+1 �→ bi+1
.

aiai+1 · · · ai+k−1 ai+1 · · · ai+k−1
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Hence

xi = bi+1

ai+1 · · · ai+k−1
, yi = ci+1

ai+1 · · · ai+k
. (5.4)

Thus we obtain recurrence (5.2) with n-periodic coefficients uniquely determined by the 
projective equivalence class of the twisted corrugated polygon.

Conversely, given n-periodic sequences xi and yi, choose a frame Ṽ0, . . . , Ṽk−1 in Rk

and use recurrence (5.2) to construct a bi-infinite sequence of vectors Ṽi. The periodicity 
of the sequences xi and yi implies that the polygon Ṽ is twisted, and relation (5.2)
implies that it is corrugated. A different choice of a frame results in a linearly equivalent 
polygon and, after projection to RPk−1, in a projectively equivalent polygon V . �

The next theorem interprets the map Tk as the generalized higher pentagram map Fk.

Theorem 5.7. (i) In the (x, y)-coordinates, the maps Fk and Gk coincide with Tk and 
T−1
k up to a shift of indices. More exactly, if St : P0

k,n → P0
k,n is the shift by t in the 

positive direction, then Fk = Tk ◦ Sr′+1 and Gk = T−1
k ◦ Sr+1.

(ii) In the (x, y)-coordinates, the projective duality Δk coincides with Dk up to a sign 
and a shift of indices. More exactly, Δk = (−1)kDk ◦ Sr′ .

Proof. (i) Let Ṽ be a polygon in Rk satisfying (5.2). Then

Ṽj+k−1 + yj−1Ṽj = Ṽj+k − xj Ṽj+1

for j = i, i + 1, i + k− 1, i + k. It follows that, as lifts of points V ′
i , V ′

i+1, V ′
i+k−1, V ′

i+k in 
Fig. 17, one may set:

Ṽ ′
i = Ṽi+k − xiṼi+1, Ṽ ′

i+1 = Ṽi+k + yiṼi+1,

Ṽ ′
i+k−1 = Ṽi+2k−1 − xi+k−1Ṽi+k, Ṽ ′

i+k = Ṽi+2k−1 + yi+k−1Ṽi+k. (5.5)

One has a linear relation

Ṽ ′
i+k = aṼ ′

i+k−1 + bṼ ′
i+1 + cṼ ′

i .

Substitute from (5.5) to obtain

Ṽi+2k−1 + yi+k−1Ṽi+k = a(Ṽi+2k−1 − xi+k−1Ṽi+k) + b(Ṽi+k + yiṼi+1) + c(Ṽi+k − xiṼi+1)

and use linear independence of the vectors Ṽi+1, Ṽi+k, Ṽi+2k−1 to conclude that

a = 1, b = xi
xi+k−1 + yi+k−1

, c = yi
xi+k−1 + yi+k−1

.

xi + yi xi + yi
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Thus the vectors Ṽ ′
i , Ṽ ′

i+1, Ṽ ′
i+k−1, Ṽ ′

i+k satisfy recurrence (5.2) with the coefficients

x′
i = xi

xi+k−1 + yi+k−1

xi + yi
, y′i = yi+1

xi+k + yi+k

xi+1 + yi+1
.

This differs from (3.8) only by shifting indices by r′ + 1.
The statement about Gk follows immediately from Fk = Tk ◦ Sr′+1 and Proposi-

tion 5.3(ii).
(ii) We use the same notation as in Proposition 5.3. Let Ṽ be a polygon in Rk

satisfying (5.2), and W̃ be a lift of the dual polygon.
Going by the proof of Proposition 5.3(iii), line by line, we obtain the equalities:

W̃i+k = (−1)kyi+k−3Ṽi+k−2 ∧ Ṽi+k ∧ · · · ∧ Ṽi+2k−3 + (−1)kxi+k−2W̃i+k−1,

and

Ṽi+k−2 ∧ Ṽi+k ∧ · · · ∧ Ṽi+2k−3 = (−1)kyi−1 · · · yi+k−4W̃i + yi · · · yi+k−4W̃i+1.

Hence

W̃i+k = (−1)kxi+k−2W̃i+k−1 + (−1)kyi · · · yi+k−3W̃i+1 + yi+1 · · · yi+k−3W̃i.

Using formulas (5.4), we find

x∗
i = (−1)k yi · · · yi+k−3

xi · · ·xi+k−2
, y∗i = (−1)k yi · · · yi+k−2

xi · · ·xi+k−1
,

which differs from (3.10) only by the sign and the shift of indices by r′. �
Remark 5.8. 1. In view of Theorem 5.7 and Proposition 3.7(i), (ii), we may identify the 
maps T ◦

k and G∗
k.

2. It would be interesting to provide a geometric interpretation for Proposition 3.7(iii), 
which connects the maps G∗

k and Fn−k+2.

Statement (i) of Theorem 5.7, along with Theorem 4.12, implies that the generalized 
higher pentagram map Fk is completely integrable.

Integrals of the pentagram map (1.1) were constructed by R. Schwartz in [38]. He 
observed that the map commutes with the scaling

Xi �→ λXi, Yi �→ λ−1Yi,

and that the conjugacy class of the monodromy of a twisted polygon is invariant un-
der the map. Decomposing the characteristic polynomial of the monodromy into the 
homogeneous components with respect to the scaling, yields the integrals.

The next proposition shows that the integrals of the generalized higher pentagram 
map can be constructed in a similar way.
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Proposition 5.9. The integrals of Fk can be obtained from the monodromy M as the 
homogeneous components of its characteristic polynomial.

Proof. By Theorem 5.7 and (4.11), it suffices to check that the matrix Mk,n(λ) given 
by (4.3) is conjugate-transpose to the scaled monodromy M(λ) of the respective twisted 
corrugated polygon.

Let us start with the monodromy. We use vectors Ṽ1, . . . , Ṽk as a basis in the vector 
space Rk, and express the next vectors using (5.2). When we come to Ṽn+1, . . . , Ṽn+k, 
we get the monodromy matrix as a function of the coordinates x, y. This process is 
represented by the product of matrices Qi(λ) that encode one step (Ṽi, . . . , Ṽi+k−1) �→
(Ṽi+1, . . . , Ṽi+k). By (5.2)

Qi(λ) =

⎛⎜⎜⎜⎝
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1

λyi−1 λxi 0 . . . 0 1

⎞⎟⎟⎟⎠ ,

where λ is the scaling factor, and M(λ) = Qn(λ)Qn−1(λ) · · ·Q1(λ).
Now consider Mk,n(λ)T : by (4.3), it is the product of Li(λ)T , i = 1, . . . , n, in the 

reverse order, with Li(λ) given by (4.2). Let Ai(λ) be an auxiliary matrix

Ai(λ) =

⎛⎜⎜⎜⎝
λ−1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
xi 0 0 . . . 0 1

⎞⎟⎟⎟⎠ ,

then Li(−λ)T = Ai+1(λ)−1Qi+1(λ)Ai(λ), and hence

Mk,n(−λ)T = An+1(λ)−1Qn+1(λ)qn(λ) · · ·Q2(λ)A1(λ).

Taking into account that sequences Qi(λ) and Ai(λ) are n-periodic by Proposition 5.6, 
we get

Mk,n(−λ)T = A1(λ)−1Q1(λ)M(λ)Q1(λ)−1A1(λ),

and the claim follows. �
We complete the discussion of coordinates in the space of corrugated polygons by 

showing that the coordinates (pi, qi) introduced in Section 2 can be interpreted as cross-
ratios of quadruples of collinear points. We use the following definition of cross-ratio (out 
of six possibilities):

[a, b, c, d] = (a− b)(c− d)
. (5.6)
(a− d)(b− c)
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Fig. 18. Cross-ratios qi.

To a twisted corrugated n-gon V we assign two n-periodic sequences of cross-ratios. 
Consider Fig. 17 and Fig. 18 (depicting the map Gk) and observe quadruples of collinear 
points. Their cross-ratios are related to the coordinates (pi, qi) as follows.

Proposition 5.10. One has:

pi = [Vi+1, V
′
i , Vi+k, V

′
i+1], qi−r−1 = [Pi, Vi+1, Qi, Vi]

subject to 
∏n

i=1 piqi = 1.

Proof. Consider the lifted polygons. We saw in the proof of Theorem 5.7 that

Ṽ ′
i = Ṽi+k − xiṼi+1, Ṽ ′

i+1 = Ṽi+k + yiṼi+1.

Choose the basis in the 2-plane so that Ṽi+1 = (1, 0), Ṽi+k = (0, 1). Then Ṽ ′
i = (−xi, 1), 

Ṽ ′
i+1 = (yi, 1), and

[Vi+1, V
′
i , V

′
i+1, Vi+k] = [∞,−xi, 0, yi] = yi

xi
= pi,

the last equality due to Proposition 3.3(ii).
Likewise, one has

Pi = Ṽi+1 − Ṽi, Qi = xiṼi+1 + yi−1Ṽi

in Fig. 18, and this yields

[Pi, Vi+1, Qi, Vi] = xi

yi−1
= qi−r−1,

the last equality again due to Proposition 3.3(ii).
The condition on the product of all coordinates follows immediately. �
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5.1.3. Higher pentagram maps on plane polygons
One also has the skip (k − 2)-diagonal map on twisted polygons in the projective 

plane. Assume that the polygons are generic in the following sense: for every i, no three 
out of the four vertices Vi, Vi+1, Vi+k−1 and Vi+k are collinear. The skip (k− 2)-diagonal 
map assigns to a twisted n-gon V the twisted n-gon whose consecutive vertices are the 
intersection points of the lines (Vi, Vi+k−1) and (Vi+1, Vi+k). We call these maps higher 
pentagram maps and denote them by F̄k. Assume that the ground field is C.

Arguing as in the proof of Proposition 5.6, we lift the points Vi to vectors Ṽi ∈ C3

so that (5.2) holds. This provides a rational map ψ from the moduli space of twisted 
polygons in CP2 to the (x,y)-space, that is, to the moduli space of corrugated twisted 
polygons in CPk−1. On the latter space, the generalized higher pentagram map Fk acts. 
The relation between these maps is as follows.

Proposition 5.11. (i) The map ψ is 
(
k
3
)
-to-one.

(ii) The map ψ conjugates F̄k and Fk, that is, ψ ◦ F̄k = Fk ◦ ψ.

Proof. Given periodic sequences xi, yi, we wish to reconstruct a twisted n-gon in C3, up 
to a linear equivalence. To this end, let the first three vectors Ṽ1, Ṽ2, Ṽ3 form a basis, and 
choose Ṽ4, . . . , Ṽk arbitrarily, so far. Then Ṽk+1, and all the next vectors, are determined 
by the recurrence (5.2). The monodromy M̃ is determined by the condition that

M̃(Ṽ1) = Ṽn+1, M̃(Ṽ2) = Ṽn+2, M̃(Ṽ3) = Ṽn+3. (5.7)

The twist condition is that

M̃(Ṽj) = Ṽn+j , j = 4, . . . , k. (5.8)

If this holds, then M̃(Ṽi) = Ṽn+i for all i. Note that (5.8) gives 3(k − 3) equations on 
that many variables (the unknown vectors being Ṽ4, . . . , Ṽk). We shall see that these are 
quadratic equations and proceed to solving them.

The recurrence (5.2) implies that Ṽq =
∑k

i=1 F
i
q Ṽi where F i

q is a function of x, y. One 

has: Ṽj = v1
j Ṽ1 + v2

j Ṽ2 + v3
j Ṽ3 where v1

j , v2
j , v3

j are the components of the vector Ṽj in 

the basis Ṽ1, Ṽ2, Ṽ3. Rewrite (5.8), using (5.7), as

v1
j

(
k∑

i=1
F i
n+1Ṽi

)
+ v2

j

(
k∑

i=1
F i
n+2Ṽi

)
+ v3

j

(
k∑

i=1
F i
n+3Ṽi

)
=

k∑
i=1

F i
n+j Ṽi,

or

A(Ṽj) +
k∑

(F i · Ṽj)Ṽi = Cj +
k∑

gij Ṽi, j = 4, . . . , k,

i=4 i=4
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where A = (F β
n+α), α, β = 1, 2, 3, is a 3 × 3 matrix, F i = (F i

n+1, F
i
n+2, F

i
n+3), Cj =

(F 1
n+j , F

2
n+j , F

3
n+j), and gij = F i

n+j . Rewrite, once again, as

A(Ṽj) − Cj =
k∑

i=4
[gij − (F i · Ṽj)] Ṽi. (5.9)

Let B be the k × k matrix that has A in the upper left corner, the vectors −C4, −C5,

. . . , −Ck to the right of A, the vectors −(F4)t, . . . , −(Fk)t below A, and the (k−3) ×(k−3)
matrix G = gij in the bottom right corner. The entries of B are functions of x, y. Let ξj , 
j = 4, . . . , k, be the k-dimensional vector (V 1

j , V
2
j , V

3
j , 0, . . . , 0, 1, 0, . . . , 0) with 1 at jth

position. Let V be the span of ξj , j = 4, . . . , k.

Claim. The system (5.9) is equivalent to the condition that V is a B-invariant subspace, 
that is, a fixed point of the action of B on the Grassmannian Gr(k − 3, k).

Indeed, one has:

B(ξj) = (A(Ṽj) − Cj , g
4
j − (F 4 · Ṽj), . . . , gkj − (F k · Ṽj)). (5.10)

If (5.9) holds then

B(ξj) =
(

k∑
i=4

[gij − (F i · Ṽj)] Ṽi, g
4
j − (F 4 · Ṽj), . . . , gkj − (F k · Ṽj)

)

=
k∑

i=4
[gij − (F i · Ṽj)] ξi,

so V is B-invariant.
Conversely, if V is B-invariant then B(ξj) =

∑k
i=4 αiξi with some coefficients αi. It 

follows from (5.10) that αi = gij − (F i · Ṽj), and that

A(Ṽj) − Cj =
k∑

i=4
[gij − (F i · Ṽj)]Ṽi,

which is equation (5.9). This proves the claim.
A generic linear transformation B has a simple spectrum and k one-dimensional 

eigenspaces. One has 
(
k
3
)

invariant (k − 3)-dimensional subspaces that can be param-
eterized as span(ξ4, . . . , ξk). Thus one has 

(
k
3
)

choices of vectors Ṽ4, . . . , Ṽk for given 
coordinates xi, yi. In other words, the mapping ψ from the moduli space of twisted n-gons 
Pn to the x, y-space is 

(
k
3
)
-to-one. That this map conjugates the skip (k − 2)-diagonal 

map F̄k with the map Fk is obvious, and we are done. �
It follows that if I is an integral of the map Fk then I ◦ψ is an integral of the map F̄k. 

Thus the integrals (4.11) provide integrals of the higher pentagram map.
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5.2. The case k = 2: leapfrog map and circle pattern

As we saw, for k ≥ 3, one can define the pentagram map on individual polygons (and 
not only on the projective equivalence classes). The dynamics of this “lifted” map is not 
completely integrable; for example, if k = 3, the polygon exponentially fast shrinks to a 
point. Likewise, in the case k = 2, one can lift the map T2 to individual polygons in the 
projective line. In this subsection we describe the geometry of this transformation; we 
do this in three ways, via projective, hyperbolic, and Möbius geometry.

5.2.1. Space of pairs of twisted n-gons in RP1

Let Sn be the space whose points are pairs of twisted n-gons (S−, S) in RP1 with the 
same monodromy. Here S is a sequence of points Si ∈ RP1, and likewise for S−. One 
has: dim Sn = 2n + 3. The group PGL(2, R) acts on Sn. Let ϕ be the map from Sn to 
the (x,y)-space given by the formulas:

xi =
(Si+1 − S−

i+2)(S
−
i − S−

i+1)
(S−

i − Si+1)(S−
i+1 − S−

i+2)
,

yi =
(S−

i+1 − Si+1)(S−
i+2 − Si+2)(S−

i − S−
i+1)

(S−
i+1 − Si+2)(S−

i − Si+1)(S−
i+1 − S−

i+2)
. (5.11)

Recall that we use the cross-ratio defined by formula (5.6).

Proposition 5.12. (i) The composition of ϕ with the projection π is given by the formulas

pi = [S−
i+1, Si+1, S

−
i+2, Si+2], qi =

[S−
i , Si+1, Si+2, S

−
i+3][S

−
i+1, S

−
i+2, Si+2, S

−
i+3]

[S−
i , S−

i+1, S
−
i+2, S

−
i+3][S

−
i+1, Si+1, Si+2, S

−
i+3]

.

(ii) The image of the map π ◦ ϕ belongs to the hypersurface 
∏n

i=1 piqi = 1.
(iii) The fibers of this maps are the PGL(2, R)-orbits, and hence the (x,y)-space is 

identified with the moduli space Sn/PGL(2, R).

Proof. (i) From Proposition 3.3, we have:

pi = yi
xi

, qi = xi+1

yi
. (5.12)

Then a direct computation using formulas (5.11) for x and y yields the result.
(ii) The sequences xi and yi are n-periodic. Multiplying pi and qi from (5.12), i =

1, . . . , n, the numerators and denominators cancel out, and the result follows.
(iii) Put the sequences of points S−, S in the interlacing order:

. . . , S−
i , Si, S

−
i+1, Si+1, S

−
i+2, . . .



436 M. Gekhtman et al. / Advances in Mathematics 300 (2016) 390–450
Fig. 19. Evolution of points in the projective line.

and consider the cross-ratios of the consecutive quadruples:

pi−1 = [S−
i , Si, S

−
i+1, Si+1], ri = [Si, S

−
i+1, Si+1, S

−
i+2];

the first equality was proved in (i), and the second is the definition of r. The sequences 
pi and ri are n-periodic and they determine the projective equivalence class of the pair 
(S−, S). Thus we have a coordinate system (p, r) on Sn/PGL(2, R).

We wish to show that (x,y) is another coordinate system. Indeed, one can express 
(x,y) in terms of (p, r) and vice versa:

xi = ri(1 + pi−1)
1 + ri

, yi = ripi(1 + pi−1)
1 + ri

; pi = yi
xi

, ri = xi−1xi

xi−1(1 − xi) + yi−1

(we omit this straightforward computation). �
5.2.2. Leapfrog transformation

Define a transformation Φ of the space Sn, acting as Φ(S−, S) = (S, S+), where S+ is 
given by the following local “leapfrog” rule: given a quadruple of points Si−1, S

−
i , Si, Si+1, 

the point S+
i is the result of applying to S−

i the unique projective involution that fixes Si

and interchanges Si−1 and Si+1. Clearly, Φ commutes with projective transformations.
The transformation Φ can be defined this way over any ground field, however in RP1

we can interpret the point S+
i as the reflection of S−

i in Si in the projective metric on the 
segment [Si−1, Si+1], whence the name; see Fig. 19. Recall that the projective metric on 
a segment is the Riemannian metric whose isometries are the projective transformations 
preserving the segment, see [5, Chap. 4]. That is, the projective distance between points 
P and Q on a segment AB is as given by the formula

d(P,Q) = 1
2 ln (Q−A)(B − P )

(P −A)(B −Q)

(this formula defines distance in the Cayley–Klein, or projective, model of hyperbolic 
geometry; the factor 1/2 is needed for the curvature to be −1).

Theorem 5.13. (i) The map Φ is given by the following equivalent equations:

1
+ + 1

− = 1 + 1
, (5.13)
Si − Si Si − Si Si+1 − Si Si−1 − Si
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(S+
i − Si+1)(Si − S−

i )(Si − Si−1)
(S+

i − Si)(Si+1 − Si)(S−
i − Si−1)

= −1, (5.14)

(S+
i − Si−1)(Si − S−

i )(Si+1 − Si)
(S+

i − Si)(Si − Si−1)(S−
i − Si+1)

= −1. (5.15)

(ii) The map induced by Φ on the moduli space Sn/PGL(2, R) is the map T2 given 
in (3.8).

Proof. (i) A fractional–linear involution x �→ y with a fixed point a is given by the 
formula

1
x− a

+ 1
y − a

= b

where b is some constant. Since the leapfrog involution has Si as a fixed point and swaps 
S−
i with S+

i and Si−1 with Si+1, one has

1
S−
i − Si

+ 1
S+
i − Si

= b = 1
Si−1 − Si

+ 1
Si+1 − Si

,

which implies (5.13). That equalities (5.14) and (5.15) are equivalent to (5.13) is verified 
by a straightforward computation.

(ii) We need to check that

x∗
i = xi−1

xi + yi
xi−1 + yi−1

, y∗i = yi
xi+1 + yi+1

xi + yi
, (5.16)

where (x∗
i , y

∗
i ) are given by formulas (5.11) with S− replaced by S and S by S+.

The computation is simplified by the observation that

xi + yi =
(S−

i+1 − S−
i )(Si+2 − Si+1)

(S−
i+1 − Si+2)(S−

i − Si+1)
.

After substituting to (5.16), a direct computation reveals that the first of the equal-
ities (5.16) is equivalent to the quotient of (5.14) and (5.15), whereas the second is 
equivalent to their product. �

The leapfrog transformation can be interpreted in terms of hyperbolic geometry. Let us 
identify RP1 with the circle at infinity of the hyperbolic plane H2. Then the restrictions 
of hyperbolic isometries on the circle at infinity are the projective transformations of 
RP1. Accordingly, S− and S are ideal polygons in H2.

The projective transformation that interchanges the vertices Si−1 and Si+1 and fixes 
Si is the reflection of the hyperbolic plane in the line Li through Si, perpendicular to the 
line Si−1Si+1 (that is, the altitude of the ideal triangle Si−1SiSi+1); see Fig. 20 where 
we use the projective (Cayley–Klein) model of the hyperbolic plane.
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Fig. 20. Leapfrog transformation in the hyperbolic plane.

The ideal polygon obtained by reflecting each vertex S−
i in the respective line Li

is S+. Thus the leapfrog transformation Φ is presented as the composition of two invo-
lutions:

(S−, S) �→ (S+, S) �→ (S, S+).

We note a certain similarity of the map Φ with the polygon recutting studied by Adler 
[2,3], which is also a completely integrable transformation of polygons (in the Euclidean 
plane or, more generally, Euclidean space). In Adler’s case, one reflects the vertex Vi

in the perpendicular bisector of the diagonal Vi−1Vi+1, after which one proceeds to the 
next vertex by increasing the index i by 1.

5.2.3. Lagrangian formulation of leapfrog transformation
The map Φ can be described as a discrete Lagrangian system. Let us recall relevant 

definitions, see, e.g., [46].
Given a manifold M , a Lagrangian system is a map F : M ×M → M ×M defined as 

follows:

F (x, y) = (y, z) if and only if ∂

∂y
(L(x, y) + L(y, z)) = 0,

where L : M ×M → R is a function (called the Lagrangian).
Many familiar discrete time dynamical systems can be described this way (for example, 

the billiard ball map, for which L(x, y) = |x −y| where x and y are points on the boundary 
of the billiard table).

Note that the map F does not change if the Lagrangian is changed as follows:

L(x, y) �→ L(x, y) + g(x) − g(y) (5.17)

where g is an arbitrary function.
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A Lagrangian system has an invariant pre-symplectic (that is, closed) differential 
2-form

ω =
∑
i,j

∂2L(x, y)
∂xi∂yj

dxi ∧ dyj .

The form ω does not change under the transformation (5.17).
In the next proposition, assume that the n-gons in RP1 under consideration are closed 

(that is, the monodromy is the identity). As before, we choose an affine coordinate on the 
projective line and treat the vertices Si and S−

i as numbers. The index i is understood 
cyclically, so that i = n + 1 is the same as i = 1.

Proposition 5.14. (i) The leapfrog map Φ is a discrete Lagrangian system with the La-
grangian

L(S−, S) =
∑
i

ln |Si − Si+1| −
∑
i

ln |Si − S−
i |. (5.18)

(ii) The Lagrangian L changes under fractional–linear transformation

x �→ ax + b

cx + d

as follows: L(S−, S) �→ L(S−, S) + g(S−) − g(S), where g(S) =
∑

i ln |cSi + d|.

Proof. (i) Differentiating L(S−, S) + L(S, S+) with respect to Si yields (5.13).
(ii) If S̄ = (aS + b)/(cS + d) then

S̄i − S̄i+1 = D(Si − Si+1)
(cSi + d)(cSi+1 + d) , S̄i − S̄−

i = D(Si − S−
i )

(cSi + d)(cS−
i + d)

with D = ad − bc. It follows that∑
i

(ln |S̄i − S̄i+1| − ln |S̄i − S̄−
i |)

=
∑
i

(ln |Si − Si+1| − ln |Si − S−
i )| +

∑
i

(ln |cS−
i + d| − ln |cSi + d)|,

as claimed. �
Corollary 5.15. The 2-form

ω =
n∑

i=1

dS−
i ∧ dSi

(S−
i − Si)2

.

is a closed PGL(2, R)-invariant differential form invariant under the map Φ.
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Fig. 21. Non-integrable behavior of the map Φ for n = 6.

We note that the form ω is not basic, that is, it does not descend on the quotient 
space Sn/PGL(2, R).

Remark 5.16. Numerical simulations show that Φ does not have integrable behavior. 
Fig. 21 shows chaotic behavior of two quantities: the horizontal axis is S2 − S1, the 
vertical axis is S3 − S1. Note that a chaotic-looking behavior of Φ does not contradict 
the integrability of T2, since Φ is obtained from T2 via a lifting that does not necessary 
preserve integrability.

5.2.4. Circle pattern
If the ground field is C then the mapping Φ can be interpreted as a certain circle 

pattern.
Consider Fig. 22. This figure depicts a local rule of constructing point S+

i from points 
Si−1, Si, Si+1 and S−

i . Namely, draw the circle through points Si−1, S−
i , Si, and then 

draw the circle through points Si, Si+1, tangent to the previous circle. Now repeat the 
construction: draw the circle through points Si+1, S−

i , Si, and then draw the circle 
through points Si, Si−1, tangent to the previous circle. Finally, define S+

i to be the 
intersection point of the two “new” circles.

Proposition 5.17. The tangency of two pairs of circles meeting at point Si in Fig. 22 is 
equivalent to equations (5.13)–(5.15).

Proof. A Möbius transformation sends a circle or a line to a circle or a line. Send point 
Si to infinity; then the circles through this points become straight lines. Two circles 
are tangent if they make zero angle. Since Möbius transformations are conformal, the 
respective lines are parallel.
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Fig. 22. Pairwise tangent circles.

Thus the configuration of circles in Fig. 22 becomes a parallelogram with vertices 
Si−1, S−

i , Si+1 and S+
i . The quadrilateral is a parallelogram if and only if

Si−1 + Si+1 = S−
i + S+

i . (5.19)

On the other hand, if Si = ∞ then equation (5.14) becomes

S+
i − Si+1

S−
i − Si−1

= −1,

which is equivalent to (5.19). �
This circle pattern generalizes the one studied by O. Schramm in [35] in the frame-

work of discretization of the theory of analytic functions (there the pairs of non-tangent 
neighboring circles were orthogonal). See also [4] concerning more general circle patterns 
with constant intersection angles and their relation with discrete integrable systems of 
Toda type.
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Appendix A. Leapfrog map and Toda lattice (by Anton Izosimov1)

The goal of this appendix is to explain the relation between the leapfrog map Φ and 
periodic Toda lattice. We show that the Toda flow may be obtained from the leapfrog 
map by first taking the continuous limit of the latter, and then reducing the resulting 
flow with respect to the natural PGL(2, R) action. This approach also gives a natural 
interpretation for three well-known compatible Poisson brackets associated with the Toda 
lattice.

A.1. Continuous limit of the leapfrog map and the Toda lattice

Denote by Rn(M) the space of twisted polygons in RP1 with monodromy M , 
where M ∈ PGL(2, R) is fixed. Let also Rn be the space of all twisted polygons: 
Rn = �M Rn(M); clearly, Rn and P2,n defined in Section 5 are related via P2,n =
Rn/PGL(2, R). As in Section 5.2, let Sn denote the space of ordered pairs of twisted 
n-gons that have the same monodromy, i.e. Sn = �M Rn(M) ×Rn(M).

Recall that the leapfrog map Φ: Sn → Sn is defined as follows (see Section 5.2.2). Let 
(S−, S) ∈ Sn. For each i ∈ Z, consider a projective involution σi : RP1 → RP1 which 
fixes Si and swaps Si−1 with Si+1. Such an involution exists, and it is unique provided 
that the points Si−1, Si, Si+1 are pairwise distinct. Define a twisted n-gon S+ by the 
rule S+

i = σi(S−
i ), and set Φ(S−, S) = (S, S+).

It is natural to interpret the leapfrog map as a second order difference equation. 
Namely, assume that a twisted polygon S ∈ Rn depends on an additional variable 
t ∈ hZ, where h ∈ R is a constant, and consider the equation

(S(t), S(t + h)) = Φ(S(t− h), S(t)),

which is equivalent to

1
Si(t + h) − Si(t)

+ 1
Si(t− h) − Si(t)

= 1
Si+1(t) − Si(t)

+ 1
Si−1(t) − Si(t)

, (A.1)

cf. formula (5.13). Assuming that S(t) is actually defined for all t ∈ R and taking the 
limit h → 0 in equation (A.1), we obtain the following second order differential equation:

S̈i

Ṡ2
i

= 1
Si − Si+1

+ 1
Si − Si−1

, (A.2)

1 Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada. E-mail address:
izosimov@math.utoronto.ca.

mailto:izosimov@math.utoronto.ca


M. Gekhtman et al. / Advances in Mathematics 300 (2016) 390–450 443
which we call the leapfrog flow (this equation, along with its discrete counterpart (A.1), 
appeared in [43,44]). The phase space of the leapfrog flow is

T̂Rn =�
M

TRn(M) ⊂ TRn,

where TRn stands for the tangent bundle of Rn. This space T̂Rn has dimension 2n + 3
and should be regarded as a continuous analog of the space Sn. Moreover, the space 
T̂Rn carries a natural PGL(2, R) action given by

Si �→
aSi + b

cSi + d
, Ṡi �→

ad− bc

(cSi + d)2 Ṡi.

Equation (A.2) is invariant with respect to this action, so it descends to the quotient 
space T̂n = (T̂Rn) / PGL(2, R). Let us take the functions

pi = ṠiṠi+1

(Si+1 − Si)2
, qi = Ṡi(Si+1 − Si−1)

(Si+1 − Si)(Si − Si−1)
(A.3)

as coordinates on the quotient.

Theorem A.1. The image of the leapfrog flow (A.2) under the projection T̂Rn → T̂n is 
the periodic Toda lattice {

ṗi = (qi − qi+1)pi,
q̇i = pi−1 − pi,

(A.4)

where all indices are considered modulo n.

Proof. The proof is a straightforward computation (one needs to express equations (A.2)
in terms of variables pi, qi). To identify (A.4) with the Toda lattice, introduce new 
variables (ai, bi) such that

pi = a2
i , qi = bi. (A.5)

In these coordinates, equations (A.4) become{
ȧi = 1

2 (bi − bi+1)ai,
ḃi = a2

i−1 − a2
i ,

(A.6)

which is exactly the Toda system in Flaschka variables multiplied by the factor −1
2 . �

Thus, we have obtained the Toda lattice from the leapfrog map by passing to the 
continuous limit, and then performing reduction. However, it is possible to go the other 
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way around and make the reduction first. Similarly to Section 5.2.2, we introduce the 
following functions on the space Sn = {S−, S}:

xi = −[S−
i , S−

i+1, S
−
i+2, Si+1], yi = xi[S−

i+1, Si+1, S
−
i+2, Si+2]. (A.7)

The functions x1, . . . , xn, y1, . . . , yn are invariant with respect to the PGL(2, R) action 
on Sn. Moreover, they form a coordinate system on the quotient space Sn / PGL(2, R). 
By descending the leapfrog map Φ to the quotient, we obtain the map T2 given by (5.16). 
Again, assuming that Si = Si(t) and S−

i = Si(t − h), we get

xi = 1 − hqi+1 + . . . , yi = h2pi+1 + . . . (A.8)

where p, q variables are given by (A.3), and dots denote terms of higher order in h. 
Substituting expansions (A.8) into formula (5.16) for the map T2 and taking the limit 
as h → 0, we obtain the Toda lattice equations (A.4).

We summarize this discussion in the following commutative diagram:

Leapfrog map Φ
PGL(2,R)

reduction
Continuous

limit
h → 0

Map T2

Continuous
limit
h → 0

Leapfrog flow (A.2)
PGL(2,R)

reduction
Periodic Toda lattice.

(A.9)

In the next two sections we show that the horizontal arrows in this diagram are Poisson 
maps, provided that we confine ourselves to closed polygons (see the diagram at the end 
of the last section below).

Remark A.2. The relation between discrete-time system (A.1) and its continuous-time 
counterpart (A.2) to the Toda lattice was described in [43,44] as a Bäcklund-type trans-
formation. Here we put this relation in the context of Hamiltonian reduction.

A.2. Hamiltonian structure of the leapfrog flow and the cubic Toda bracket

In this section, we show that the leapfrog flow restricted to closed polygons is Hamil-
tonian, and that the corresponding Poisson structure gives rise to the cubic bracket for 
the Toda lattice.

First, we note that the tangent bundle of any one-dimensional manifold carries a 
natural quadratic Poisson structure. Indeed, let M be a one-dimensional manifold, and 
let 〈 , 〉 be any Riemannian metric on M . Then the formula
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v → 〈v, w〉
〈v, v〉

defines a diffeomorphism TM \ M → T∗M \ M , which does not depend on the choice 
of the metric. Therefore, there is a canonical Poisson structure on TM . It is explicitly 
given by

{ẋ, x} = ẋ2.

Now consider the space Rn(Id) of closed n-gons. We have Rn(Id) =
(
RP1)n, so 

TRn(Id) =
(
TRP1)n, and the tangent bundle to Rn(Id) carries a Poisson structure 

given by

{Ṡi, Si} = Ṡ2
i . (A.10)

This Poisson structure is canonical in the following sense: it is invariant with respect to 
any “componentwise” transformations of the form Si �→ fi(Si); Ṡi �→ f ′

i(Si)Ṡi.

Proposition A.3. The leapfrog flow (A.2) restricted to closed polygons is Hamiltonian 
with respect to the canonical Poisson structure (A.10).

Proof. The Hamiltonian function is given by H =
∑n

i=1
(
ln(Si − Si−1) − ln Ṡi

)
, where 

S0 = Sn. �
The image of TRn(Id) under the projection π : T̂Rn → T̂n is a submanifold of 

codimension 3. The action of PGL(2, R) on TRn(Id) preserves the canonical bracket, 
therefore this bracket descends to π(TRn(Id)).

Theorem A.4. 1. The image of the canonical bracket (A.10) on the space of closed polygons 
under the projection TRn(Id) → Tn(Id) = (TRn(Id)) / PGL(2, R) is given by

{pi, pi+1} = 2pipi+1qi+1, {qi, qi+1} = pi(qi + qi+1), {pi, qi−1} = −pipi−1,

{pi, qi} = −p2
i − piq

2
i , {pi, qi+1} = p2

i + piq
2
i+1, {pi, qi+2} = pipi+1. (A.11)

2. Formulas (A.11) define a Poisson bracket on the whole space T̂n.

Proof. The first statement is proved by a straightforward computation, so let us prove 
the second statement. It suffices to show that (A.11) satisfies Jacobi identities. Note that 
these identities are of the following “local” form:

F (pi−k, . . . , pi+k, qi−k, . . . , qi+k) = 0,

where k is some constant. Also note that since this bracket is obtained from bracket 
(A.10) by Poisson reduction, it automatically satisfies the Jacobi identity on the codi-
mension 3 submanifold Tn(Id) ⊂ T̂n. Therefore, the polynomial F should vanish on 
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closed polygons. However, the condition of being closed is not local, so F must vanish 
identically. �

In Flaschka variables (ai, bi) given by (A.5), bracket (A.11) reads

{ai, ai+1} = 1
2aiai+1bi+1, {bi, bi+1} = a2

i (bi + bi+1), {ai, bi−1} = −1
2aia

2
i−1,

{ai, bi} = −1
2(a3

i + aib
2
i ), {ai, bi+1} = 1

2(a3
i + aib

2
i+1),

{ai, bi+2} = 1
2aia

2
i+1. (A.12)

The latter bracket coincides with the cubic Poisson structure for the Toda lattice. Ac-
cordingly, we can interpret the upper horizontal arrow in diagram (A.9) as Hamiltonian 
reduction, provided that we confine ourselves to closed polygons. In the next section, we 
show that a similar interpretation exists for the lower horizontal arrow.

Remark A.5. Cubic Poisson bracket (A.12) for the Toda lattice was found in [26]. The 
derivation of the cubic Toda bracket from a trigonometric analog of the system (A.2)
can be found in [43]. The group-theoretic meaning of that derivation is unknown.

Remark A.6. Note that the action of the group PGL(2, R) on TRn(Id) is Hamiltonian. 
The corresponding moment map TRn(Id) → sl(2, R)∗ is given by the functions

e =
n∑

i=1

1
Ṡi

, h = 2
n∑

i=1

Si

Ṡi

, f = −
n∑

i=1

Si

Ṡi

satisfying canonical sl(2) relations {e, f} = h, {h, e} = 2e, and {h, f} = −2f . This in 
particular implies that the only Casimir of the cubic Toda bracket (A.11) on Tn(Id) is 
obtained by descending the sl(2) Casimir

C = 1
4h

2 + ef =
∑
i<j

(Si − Sj)2

ṠiṠj

,

and thus the Poisson manifold Tn(Id) is foliated into symplectic leaves that are generically 
of codimension 1. We do not know whether the function C extends to a Casimir of the 
cubic Toda bracket on the ambient Poisson manifold T̂n. It is also an interesting question 
whether there exists a PGL(2, R) invariant Poisson bracket on the whole space T̂Rn that 
descends to the cubic Toda bracket.

A.3. Tri-Hamiltonian structure of the map T2

As it was shown in Section 5.2.3, the leapfrog map Φ restricted to closed polygons 
preserves the closed 2-form
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Ω =
n∑

i=1

dSi ∧ dS−
i

(Si − S−
i )2

.

Therefore, it preserves the Poisson structure Ω−1 given by

{Si, S
−
i } = (Si − S−

i )2. (A.13)

This is a discrete version of the bracket (A.10). Bracket (A.13) is not canonical, however 
it is still invariant with respect to the PGL(2, R) action.

Theorem A.7. 1. The image of the bracket (A.13) under the projection Rn(Id) ×Rn(Id) →
(Rn(Id) ×Rn(Id)) /PGL(2, R) is the bracket { , }3 given by

{xi, xi+1}3 = yi(1 − xixi+1), {yi, yi+1}3 = yiyi+1(2 − 2xi+1 − yi − yi+1),

{xi, yi−2}3 = xiyi−1yi−2, {xi, yi+1}3 = −xiyiyi+1,

{xi, yi−1}3 = xiy
2
i−1 + yi−1(xi − 1)2, {xi, yi}3 = −xiy

2
i − yi(xi − 1)2, (A.14)

where (x, y) are coordinates on Sn / PGL(2, R) defined by (A.7).
2. Formulas (A.14) define a Poisson bracket on the whole space Sn / PGL(2, R). This 

bracket is preserved by the map T2.

Proof. The proof is analogous to the proof of Theorem A.4. �
Recall that Poisson brackets are called compatible if their arbitrary linear combination 

is itself a Poisson bracket.

Corollary A.8. (Cf. [43].) The map T2 is tri-Hamiltonian: it preserves three compatible 
Poisson brackets given by

{xi, xi+1}1 = yi, {xi, yi−1}1 = yi−1, {xi, yi}1 = −yi,

{yi, yi+1}2 = yiyi+1, {xi, yi−1}2 = −xiyi−1, {xi, yi}2 = xiyi,

{xi, xi+1}3′ = −yixixi+1, {yi, yi+1}3′ = −yiyi+1(2xi+1 + yi + yi+1),

{xi, yi−2}3′ = xiyi−1yi−2, {xi, yi−1}3′ = xiy
2
i−1 + yi−1x

2
i ,

{xi, yi}3′ = −xiy
2
i − yix

2
i , {xi, yi+1}3′ = −xiyiyi+1.

Proof. First, let us prove that { , }1, { , }2, { , }3′ are compatible Poisson brackets. Let 
Π denote the Poisson tensor corresponding to the bracket (A.14). Represent Π as 
Π = Π3 + Π2 + Π1 where Π3, Π2, Π1 are homogeneous cubic, quadratic, and linear 
tensors respectively. Note that the bracket corresponding to Π1 is { , }1, the bracket cor-
responding to Π2 is 2{ , }2, and the bracket corresponding to Π3 is { , }3′ . Therefore, to 
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prove that { , }1, { , }2, { , }3′ are compatible Poisson brackets, it suffices to show that 
Π1, Π2, Π3 are compatible Poisson tensors.

Since Π is Poisson, we have [Π, Π] = 0 where [ , ] is the Schouten–Nijenhuis bracket. 
This yields

[Π3,Π3] = 0, [Π2,Π3] = 0, [Π2,Π2] + [Π1,Π3] = 0,

[Π1,Π2] = 0, [Π1,Π1] = 0. (A.15)

Further, we have [Π2, Π2] = 0. Indeed, the bracket corresponding to Π2 is

{yi, yi+1} = 2yiyi+1 {xi, yi−1} = −2xiyi−1, {xi, yi} = 2xiyi.

This bracket is obviously Poisson: it becomes constant in coordinates (ln xi, ln yi) (also 
note that up to a factor −2 this bracket coincides with (4.7)). So, [Π2, Π2] = 0. Together 
with identities (A.15), the latter implies that the tensors Π1, Π2, and Π3 are compatible 
Poisson tensors.

To prove that the brackets { , }1, { , }2, { , }3′ are preserved by the map T2, note that 
this map is homogeneous of degree one. Therefore, since T2 preserves the bracket (A.14), 
it also preserves its homogeneous components Π3, Π2, Π1. �
Remark A.9. Note that we cannot use the same trick to recover linear and quadratic Pois-
son brackets for the Toda lattice from the cubic one. Indeed, the proof of Corollary A.8
relies on the existence of coordinates xi, yi in which the map T2 is homogeneous, while 
the bracket (A.14) is not. To apply the same argument for the Toda lattice, we should 
pass to Flaschka variables (ai, bi) where equations of motion take the homogeneous form 
(A.8). However, the cubic bracket in this coordinates is also homogeneous (A.12). For 
this reason, it is not possible to extract the linear and quadratic bracket from the cubic 
one; linear and quadratic Poisson structures manifest themselves in a cubic structure at 
the discrete level only.

Nevertheless, it is possible to construct compatible Poisson brackets for the Toda 
lattice by taking continuous limit of the brackets described in Corollary A.8. Using 
formulas (A.8), we have

lim
h→0

1
h
{ , }3 = { , }T3 , lim

h→0
({ , }2 + { , }1) = { , }T2 , lim

h→0
h { , }1 = { , }T1 ,

where { , }T1 , { , }T2 , { , }T3 are, respectively, linear, quadratic, and cubic Toda brackets. 
Note that homogeneous brackets { , }3′ and { , }2 do not have well-defined continuous 
limits.

Remark A.10. Homogeneous Poisson brackets { , }1, { , }2, and { , }3′ appeared in [6] as 
compatible Poisson structures for relativistic Toda lattice.
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We summarize our discussion in the following “Poisson” version of diagram (A.9):

Leapfrog bracket (A.13)
on pairs of closed polygons

PGL(2,R)

reduction

Continuous
limit

Inhomogeneous cubic bracket (A.14)
for the relativistic Toda lattice

Continuous
limit

Canonical bracket (A.10)
on the tangent bundle

to closed polygons

PGL(2,R)

reduction
Homogenous cubic bracket (A.11)

for the Toda lattice
.
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