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a b s t r a c t

In 1970s, a methodwas developed for integration of nonlinear equations bymeans of algebraic geometry.
Starting froma Lax representationwith spectral parameter, the algebro-geometricmethod allows to solve
the system explicitly in terms of theta functions of Riemann surfaces. However, the explicit formulas
obtained in this way fail to answer qualitative questions such as whether a given singular solution is
stable or not. In the present paper, the problem of stability for equilibrium points is considered, and it is
shown that this problem can also be approached by means of algebraic geometry.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

As is well-known, many finite-dimensional integrable systems
can be explicitly solved by means of algebraic geometry. The start-
ing point for the algebro-geometric integration method is Lax
representation. A dynamical system is said to admit a Lax repre-
sentation with spectral parameter λ if the following two conditions
are satisfied.

1. The phase space of the system can be identified with a certain
submanifold L of the space gl(n,C) ⊗ C(λ) of matrix-valued
functions of a complex variable λ.

2. Under this identification, equations of motion take the form

d
dt

Lλ = [Lλ, Aλ(Lλ)] (1)

where Lλ ∈ L is the phase variable, and Aλ is a mapping
Aλ:L → gl(n,C)⊗ C(λ).
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Starting from a Lax representation with spectral parameter, the
algebro-geometric integrationmethod allows towrite the solution
of the system with initial data Lλ = L0λ in terms of theta functions
associated with the algebraic curve

det(L0λ − µE) = 0, (2)
which is called the spectral curve. We refer the reader to [1–5]
and references therein for more details on the algebro-geometric
integration method.

Despite the possibility to explicitly solve Eq. (1) in terms of
theta functions, if we are interested in qualitative features of dy-
namics, theta-functional formulas seem to be of little use at least
for the following reasons. Firstly, theta-functional solutions corre-
spond to non-singular spectral curves, while most remarkable so-
lutions, such as fixed points or stable periodic solutions, are related
to degenerate curves. Secondly, theta-functional formulas provide
solutions of the complexified system, and it is in general a difficult
problem to describe real solutions. At the same time,many dynam-
ical phenomena, such as stability, are related to the presence of a
real structure.

In the present paper we study the Lyapunov stability problem
for systemswhich admit a Lax representationwith spectral param-
eter. We show that this problem can also be approached by means
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of classical algebraic geometry, and that this approach is very
natural and fruitful. Though we focus on stability of equilibrium
points, we expect that our results can be generalized to more
general solutions. We note that the relation between topology of
integrable systems and algebraic geometry has been extensively
studied by M. Audin and her collaborators [5,6], however it seems
that their approach cannot be directly used to study the stability
problem.

Beforewe formulate themain result of the paper, let us describe
the class of Lax matrices which we consider. Firstly, for the sake of
simplicity, we restrict ourselves to the case when Lλ is polynomial
in parameter λ, i.e. when L ⊂ gl(n,C) ⊗ C[λ]. Note that it is
more standard to consider Lax matrices which are polynomial in λ
and λ−1, i.e. which belong to the loop algebra gl(n,C)⊗C[λ, λ−1

].
However this situation can be reduced to the polynomial case by
multiplying Lλ by a suitable power of λ.

Our second assumption is the following: there exists an anti-
holomorphic involution τ :C → C and a complex number σ of
absolute value 1 such that for each Lλ ∈ L

Lτ(λ) = σ L∗

λ. (3)

The presence of such involution is a common feature of many
integrable systems. The most standard examples are provided in
Table 1. See [7–11] for more details on these systems and their Lax
representations.

Let us now formulate the main result. Let L0λ ∈ L, and consider
the associated spectral curve (2). The involution τ induces an anti-
holomorphic involutionτ : (λ, µ) → (τ (λ), σ µ̄)

on the spectral curve. We show that if L0λ is a fixed point of the Lax
equation (1), then, under some additional assumptions, a sufficient
condition for its stability is that all singular points of the associated
spectral curve are fixed points of τ . If we interpret τ as a real
structure, then this condition means that all singular points lie in
the real part of the curve. We consider several examples in which
this condition turns out to be necessary and sufficient.

Our first example is the Lagrange top. We use the algebro-
geometric approach to recover the classical result that the rotation
of a top is stable if the angular velocity is greater or equal than some
critical value.

The second example is the top on a compact Lie algebras defined
by a sectional operator. This system is related to the so-called
argument shift method, see Mishchenko and Fomenko [12].

The third, and the most interesting, example is the free mul-
tidimensional rigid body, or Euler–Manakov top. It is a standard
result that the rotation of a torque-free three-dimensional rigid
body about the short or the long axis of inertia is stable, whereas
the rotation about the middle axis is unstable. Using the algebro-
geometric approach, we obtain a multidimensional generalization
of this result. We note that this problem has previously been ap-
proached by different methods [13–18], however no complete so-
lution has been known.

2. Stability for integrable and Lax systems

Let ẋ = v(x) be a dynamical system on a manifold X , and
assume that f1, . . . , fN are its (in general, complex-valued) first
integrals. Themoment map is a map F : X → CN which maps x ∈ X
to (f1(x), . . . , fN(x)).

Proposition 2.1. Assume that x0 ∈ X is an isolated point in the
level set of the moment map. Then x0 is Lyapunov stable fixed point
of ẋ = v(x).
Table 1
Integrable systems which admit Lax representation with Lτ(λ) = σ L∗

λ .

Integrable system Lax matrix τ σ

Euler–Manakov top Lλ = A + Bλ, λ → −λ̄ −1
A∗

= −A, B∗
= B

Kowalewski top Lλ = A + Bλ+ Cλ2 , λ → −λ̄ 1
A∗

= A, B∗
= −B, C∗

= C
Geodesic flow on ellipsoid Lλ = A + Bλ+ Cλ2 , λ → −λ̄ 1

A∗
= A, B∗

= −B, C∗
= C

Lagrange top Lλ = A + Bλ+ Cλ2 , λ → λ̄ −1
A∗

= −A, B∗
= −B, C∗

= −C

Proof. Let x(t) be the solution with x(0) = x0. Then F(x(t)) =

F(x(0)), so x(t) ∈ F−1(F(x0)). Since x0 is isolated in F−1(F(x0)),
this implies that x(t) = x0, i.e. x0 is a fixed point. To prove stability,
note that

f (x) =

N
i=1

|fi(x)− fi(x0)|2

is a Lyapunov function. �

Remark 2.1. As was shown by Bolsinov and Borisov [19], a similar
statement is true for periodic trajectories: if a periodic trajectory
coincides with a connected component of the level set of the
moment map, then it is stable. Moreover, under some additional
assumptions, the converse is also true. In our case, the following is
true. Let X be Poisson manifold, and let ẋ = v(x) be a Hamiltonian
system. Assume that f1, . . . , fN is a complete family of analytic
first integrals in involution. Further, assume that the level sets of
F are compact, so that their connected components are invariant
tori, and that ẋ = v(x) is a non-resonant system, which means
that its trajectories are dense on almost all tori, see Bolsinov and
Fomenko [20]. Then the condition of Proposition 2.1 is necessary
and sufficient.

Now, let us reformulate Proposition 2.1 for systems which
admit a Lax representation with spectral parameter. Consider the
space

Pm,n = {Lλ = Bmλ
m

+ · · · + B0 ∈ gl(n,C)⊗ C[λ]}

of gl(n,C)-valued polynomials of degree m, and let L ⊂ Pm,n be
its submanifold. Let Aλ be a map Aλ:L → gl(n,C) ⊗ C(λ), and
assume that L is invariant with respect to the flow

d
dt

Lλ = [Lλ, Aλ(Lλ)]. (4)

To each Lλ ∈ L we can assign its spectral curve, i.e. an affine
algebraic curve C(Lλ) given by the equation P(λ, µ) = 0 where

P(λ, µ) = det(Lλ − µE)

is the characteristic polynomial of Lλ. The following is well-known.

Proposition 2.2. Let Lλ(t) be a solution of (4). Then the curve
C(Lλ(t)) does not depend on t.

Proof. Eq. (4) implies that

d
dt
(Lλ)k = [(Lλ)k, Aλ]

for any positive integer k. Therefore, the function Tr (Lλ)k is an inte-
gral of motion for any values of k and λ, and so are the coefficients
of the characteristic polynomial P(λ, µ). �

Proposition 2.3. Let L0λ ∈ L, and assume that L0λ is an isolated point
in the isospectral variety

S(L0λ) = {Lλ ∈ L | C(Lλ) = C(L0λ)}.

Then L0λ is a stable fixed point of (4).
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Proof. This follows from Propositions 2.1 and 2.2. �

In the next section, we present algebro-geometric conditions
which imply the hypothesis of Proposition 2.3.

3. A lemma on polynomial matrix pencils and the stability
theorem

Let B ∈ gl(n,C) be a fixed n × nmatrix, and let

Pm,n(B) = {Lλ = Bmλ
m

+ · · · + B0 ∈ gl(n,C)⊗ C[λ] | Bm = B}

be the set of gl(n,C)-valued polynomials of degreemwith leading
coefficient B. To each matrix polynomial Lλ ∈ Pm,n(B) we assign
its spectral curve, i.e. an affine algebraic curve C(Lλ) given by the
equation P(λ, µ) = 0 where

P(λ, µ) = det(Lλ − µE).

The space Pm,n(B) carries an action of the gauge group

G = {Q ∈ GL(n,C) | [Q , B] = 0}/{νE | ν ∈ C∗
}.

This action is given by Lλ → Q−1LλQ , and for each polynomial
Lλ ∈ Pm(B)we have

C(Lλ) = C(Q−1LλQ ),

i.e. the spectral curve is the same formatrix polynomials belonging
to the same gauge group orbit. However, the converse is not true:
twomatrix polynomialswhich have the same spectral curve do not
necessarily belong to the same gauge group orbit.

Remark 3.1. More precisely, let us consider the variety of matrix
polynomials isospectral with Lλ, i.e. the set

S(Lλ) = {Mλ ∈ Pm,n(B) | C(Mλ) = C(Lλ)}.

Then, if we assume that the spectral curve of Lλ is non-singular,
and that B has simple spectrum, the quotient S(Lλ)/G can be
identified with a Zariski open subset of the Jacobian of the spectral
curve, see van Moerbeke and Mumford [21]. In the case when the
spectral curve is singular, the description of the quotient is not that
transparent, however it is true that S(Lλ)/G contains a Zariski open
subset which can be identified with a Zariski open subset of the
generalized Jacobian of the spectral curve [21]. In particular, the
dimension of the isospectral variety is still much bigger than the
dimension of the G-orbit.

The situation changes drastically if we restrict our attention
to matrix-valued polynomials which admit an anti-holomorphic
involution. Let τ :C → C be an anti-holomorphic involution, and
let σ ∈ S1 = {z ∈ C | |z| = 1}. DefinePm,n(B, τ , σ ) = {Lλ = Bmλ

m
+ · · · + B0 ∈ gl(n,C)⊗ C[λ] |

Lτ(λ) = σ L∗

λ, Bm = B}.

In this case, the gauge group is

G = {Q ∈ U(n) | [Q , B] = 0}/{νE | ν ∈ S1}.

For each Lλ ∈ Pm,n(B, τ , σ ), there is an anti-holomorphic involu-
tion

τ : (λ, µ) → (τ (λ), σµ)
on its spectral curve. Denote by Fixτ the fixed points set of this
involution. If we interpretτ as a real structure, then Fixτ is the set
of real points on the curve.

Lemma 1. Let L0λ ∈ Pm,n(B, τ , σ ), and assume that the leading term
B has simple spectrum. Let C = C(L0λ) be the spectral curve associated
with L0λ. Assume that

1. all singular points of C lie in Fixτ ;
2. each irreducible component of C is smooth and has genus zero;
3. each intersection between two distinct irreducible components is

at worst of order 2.

Then the isospectral variety

S = {Lλ ∈ Pm,n(B) | C(Lλ) = C}

coincides with the gauge group orbit of L0λ, i.e. if Lλ ∈ Pm,n(B, τ , σ ),
and C(Lλ) = C, then there exists Q ∈ G such that

Lλ = Q−1L0λQ .

The proof is given in Section 8.

Remark 3.2. We note that since each irreducible component of C
is smooth, the singularities of C are exactly those points which be-
long to at least two components. At the same time, the smoothness
condition can actually be avoided, however if irreducible compo-
nents of C have self-intersections, they should also satisfy Condi-
tions 1 and 3 of the lemma. We require smoothness not to go deep
into singularity theory of algebraic curves. In all examples that we
consider, irreducible components of the spectral curve are indeed
smooth.

Condition 3 can also apparently be weakened. However, in all
our examples, irreducible components of the spectral curve are ei-
ther lines or quadrics, so this condition is automatically satisfied.

The two remaining conditions, namely Condition 1 and con-
dition on the genus, are crucial. In Section 7 we consider sev-
eral counterexamples which show that Lemma 1 does not in
general hold if one of these two conditions is not satisfied. How-
ever, Lemma1 admits the following generalization onhigher genus
curves: if all conditions of Lemma 1 are satisfied except, possibly,
the condition on the genus, then the quotient of the isospectral va-
riety by the action of the gauge group can be identified with a sub-
set of the Jacobian of C . Note that, in the genus zero case, this is
exactly Lemma 1, since the Jacobian is a single point. Also note that
if Condition 1 of Lemma 1 is violated, then the Jacobian should be
replaced by the generalized Jacobian.

Now we are in a position to state the main result of the paper.

Theorem 1. Consider a system which admits a Lax representation
with spectral parameter such that its phase space L lies in Pm,n(B,
τ , σ ). Assume that

1. L0λ ∈ L satisfies conditions of Lemma 1;
2. the intersection of the gauge group orbit of L0λ with L is a discrete

set.

Then L0λ is a Lyapunov stable fixed point.

Proof. Lemma 1 implies that the isospectral variety

S(L0λ) = {Lλ ∈ Pm,n(B, τ , σ ) | C(Lλ) = C(L0λ)}

coincides with G-orbit of L0λ, so

{Lλ ∈ L | C(Lλ) = C(L0λ)} = S(L0λ) ∩ L

is a discrete subset of L. Now apply Proposition 2.3. �
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(a)m2
− 4(a + b) > 0. (b)m2

− 4(a + b) = 0. (c)m2
− 4(a + b) < 0.

Fig. 1. Spectral curves for the sleeping top.
Remark 3.3. Note that the Lax flow (4) can be, as a rule, included
into an hierarchy of commuting Lax flows

d
dt

Lλ = [Lλ, Ai
λ(Lλ)], i = 1, . . . , k. (5)

Theorem 1 is applicable for all these flows. In particular, if L0λ ∈ L
satisfies the assumptions of the theorem, then it is a common
equilibrium point for all flows (5). Note that if L0λ ∈ L is an
equilibrium point of (4), but is not a common equilibrium point,
then L0λ is automatically not isolated in the moment map level
set, and under some additional assumptions, it is unstable (see
Remark 2.1).

In Sections 4–6 we consider three examples illustrating Theo-
rem 1. In Section 7 we consider several counterexamples showing
that assumptions of Lemma 1 or Theorem 1 in general cannot be
avoided (except those mentioned in Remark 3.2).

4. Example I: Lagrange top

The equations of the Lagrange top read
Ṁ = [M,Ω] + [Γ , χ],

Γ̇ = [Γ ,Ω],

where M,Γ ∈ so(3,R) are dynamical variables, Ω ∈ so(3,R) is
defined by the relationM = ΩJ + JΩ ,

χ =

0 0 0
0 0 1
0 −1 0


, J = diag(a, b, b)

where a, b ∈ R are the inertiamoments of the top. These equations
can be rewritten as a single Lax equation with parameter:

d
dt
(λ2(a + b)χ + λM + Γ ) = [λ2(a + b)χ + λM + Γ , λχ +Ω].

See [10,22,23] for a detailed discussion of this system and under-
lying algebraic geometry.

Note that the Lax matrix Lλ = λ2(a + b)χ + λM + Γ satisfies
Lτ(λ) = −L∗

λ with τ given by λ → λ̄, which allows the application
of Theorem 1. Consider the fixed point (M0,Γ0) where Γ0 = χ
and M0 = mχ . From the point of view of mechanics, this point
corresponds to a rotation about the vertical axis, or the so-called
sleeping top. It is a classical result that the sleeping top with
m2

≥ 4(a + b) is stable. Let us recover this result by means of the
spectral curve. The equation of the spectral curve associated with
L0λ = λ2(a + b)χ + λM0 + Γ0 is

P(λ, µ) = −µ(µ+ i((a + b)λ2 + mλ+ 1)2)
× (µ− i((a + b)λ2 + mλ+ 1)2) = 0.

This curve consists of three irreducible components C1, C2, C3 of
genus 0. Since the involution τ̂ is (λ, µ) → (λ̄,−µ̄), we sketch the
spectral curve in the axes λ,µi. Three sketches in Fig. 1 correspond
to the casesD = m2

−4(a+b) > 0,D = 0, andD < 0.We conclude
that the conditions of Lemma 1 hold if and only if D ≥ 0, i.e. if the
rotation is sufficiently fast.

Now, to prove that the sleeping top with D ≥ 0 is stable, it
suffices to find the intersection of the gauge group orbit with the
phase space. Let Q ∈ G, and let

Lλ = λ2(a + b)χ + λM + Γ = Q (λ2(a + b)χ + λM0 + Γ0)Q−1.

We have QχQ−1
= χ , so M = QM0Q−1

= mQχQ−1
= mχ =

M0. Analogously, Γ = Γ0, so the G-orbit of L0λ is one point, and the
equilibrium (M0,Γ0) is stable.

The condition D ≥ 0 is actually necessary and sufficient for
stability, see e.g. Arnold [24]. The case when D = 0 is more com-
plicated compared to D > 0. It corresponds to the so-called super-
critical Hamiltonian Hopf bifurcation, see Cushman and Meer [25].

5. Example II: Mishchenko–Fomenko tops on compact Lie
algebras

Let g be a compact simple Lie algebra. The equations of the
Mishchenko–Fomenko top [12] are

Ẋ = [X, φ(X)] (6)

where X ∈ g, and φ: g → g is a linear operator satisfying

[φ(X), A] = [X, B] (7)

for some regular A ∈ g, and B ∈ C(a) where C(a) = {X ∈

g | [X, A] = 0} is the centralizer of A. Operators satisfying (7)
are called sectional operators. These operators were introduced in
Fomenko and Trofimov [26], see also Bolsinov and Konyaev [27]
and references therein.

The Lax representation with parameter for the system (6) reads

d
dt
(X + λA) = [X + λA, φ(X)− λB].

Note that the Lax matrix Lλ = X + λA is a g-valued polynomial.
To obtain a matrix-valued polynomial, we pass to any unitary
representation ρ: g → u(n). The Lax matrix so obtained satisfies
Lτ(λ) = −L∗

λ with τ given by λ → λ̄.

Proposition 5.1. Let X0 ∈ C(A). Then X0 is a fixed point of (6).

Proof. Let X0 ∈ C(A). Since A is regular, C(A) is Abelian, and since
B ∈ C(A), we have [X0, B] = 0. Using (7), we conclude that
φ(X0) ∈ C(A), so [X0, φ(X0)] = 0, q.e.d. �

Let us use Theorem1 to prove that all these equilibria are stable.
Note that though A is regular, the spectrum of its image under
the representation ρ may be not simple. For example, a matrix
A ∈ so(2n,R) with two zero eigenvalues is a regular element.
However, it is easy to see that if g is of type An, Bn, Cn, or G2, and
ρ is the representation of minimal dimension, then regularity of A
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does imply simplicity of the spectrumof ρ(A). See Konyaev [28] for
details.

So, let A and X0 be represented by n × n matrices. Since X0 ∈

C(A), the matrices X0 and A are simultaneously diagonalizable. The
equation of the spectral curve is

P(λ, µ) =

n
i=1

(xi + λai − µ) = 0

where {ai} ⊂ iR and {xi} ⊂ iR are eigenvalues of A and X0 respec-
tively. So, the spectral curve is the union of distinct straight lines
µ = aiλ+ xi. It is clear that all conditions of Lemma 1 are satisfied,
and the gauge group orbit of L0λ = X0 + λA consists of one point.
Therefore, X0 is stable.

Note that it is possible to generalize Lemma 1 in such away that
Dn, E6, E7, E8, and F4 can also be included. The stability conclusion
remains true for these Lie algebras as well. This can also be proved
using the technique of [17].

Remark 5.1. We note that the Eq. (6) is completely integrable can
be included into an hierarchy of commuting flows. Equilibrium
points described in Proposition 5.1 are exactly those which are
common for all these flows, see Brailov [29] and Bolsinov and
Oshemkov [30]. The Eq. (6) may have other equilibria, however
their stability cannot be studied by themethodof the present paper
(see Remark 3.3). Nevertheless, if we are able to prove that (6) is a
non-resonant system, then we can assert that these equilibria are
unstable (see Remark 3.3). Non-resonance of (6) for generic B can
be deduced from the results of Rybnikov [31].

6. Example III: Multidimensional rigid body

The equations ofmotion of a torque-freemultidimensional rigid
body, also known as the Euler–Manakov top, are

Ṁ = [M,Ω], (8)

M ∈ so(n,R) is a dynamical variable, and Ω is found from the
equationM = JΩ +ΩJ where J is a fixed symmetric matrix.

This example is the most interesting from the point of view
of stability. A complete solution of the stability problem is only
known for the three-dimensional body. In three dimensions, the
equilibria of (8) are rotations about principal axes, and it is well
known that the rotation about the short and the long axis is stable,
while the rotation about the middle axis is unstable. For a detailed
discussion of the stability problem for the multidimensional rigid
body, see [18]. In this section we show that the solution of this
problem by means of the spectral curve is almost straightforward,
at least for the so-called regular equilibria which are defined below
(see also Remark 6.3).

Let M0 be an equilibrium point of (8). Then M0 is called
regular [32] if it is possible to bring J andM0 to the canonical form
simultaneously, i.e. if there exists a basis where J is diagonal and
M0 takes the form

M0 =



0 m1
−m1 0

. . .

0 ml
−ml 0

0
. . .


.

Regular equilibria are a naturalmultidimensional generalization of
rotations about principal axes. A complete solution of the stability
problem for regular equilibria under the condition that J is generic
is given below.
A Lax representation with parameter for the system (8) was
found by Manakov [7]. It reads:

d
dt
(M + λJ2) = [M + λJ2,Ω + λJ]. (9)

The involution τ is λ → −λ̄.
Let M0 be a regular equilibrium point, and let J2 = diag(a1,

. . . , an) where the numbers a1, . . . , an are all distinct. Then the
spectral curve is given by

P(λ, µ) =

l
i=1


m2

i + (a2i−1λ− µ)(a2iλ− µ)
 n
i=2l+1

(aiλ− µ)

= 0,

thus it is a union of hyperbolas and straight lines. To investigate
when the conditions of Lemma 1 are satisfied, we make a change
of variables
x =

µ

λ
,

y = −
1
λ2

and obtain the curves

y =
(x − a2i−1)(x − a2i)

m2
i

, i = 1, . . . , l.

x = ai, i = 2l + 1, . . . , n.

The union of these curves is called the parabolic diagram asso-
ciated with M0. It is obvious that the only condition of Lemma 1
which needs to be checked is that all singular points of the spec-
tral curve belong to the set Fix τ̂ where τ̂ is given by (λ, µ) →

(−λ̄,−µ̄). In terms of the parabolic diagram, this conditionmeans
that all intersections are real and belong to the set {x ∈ R, y >
0} ∪ {y = ∞}. To show that this condition implies stability, we
need to describe the gauge group orbit of L0λ = M0+λJ2. The gauge
group consists of diagonal unitary matrices, so the G-orbit ofM0 in
this case is not discrete. However, its intersection with the phase
space, i.e. with the set of real skew-symmetric matrices, is finite
and consists of matrices

0 ±m1
∓m1 0

. . .

0 ±ml
∓ml 0

0
. . .


.

We conclude that if all intersections on the parabolic diagram are
either real and belong to the upper half-plane, or infinite, then the
equilibrium is stable. On the other hand, it is shown in [18] that this
condition is also a necessary condition for stability, which implies
the following:

Theorem 2. A regular equilibrium of the torque-free multidimen-
sional rigid body is stable if and only if all singular points on the
associated parabolic diagram are either real and belong to the upper
half-plane, or infinite.

A weaker version of this result was proved in [18] by means
of the bi-Hamiltonian approach. It included an additional require-
ment that there are no tangency points on the parabolic diagram
(i.e. all intersections are of order 1).

Parabolic diagrams for the three-dimensional body are depicted
in Fig. 2. Classical results on stability are immediately recovered.
Much more examples of parabolic diagrams can be found in [18].
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Fig. 2. Parabolic diagrams for the three-dimensional body.
Fig. 3. Stability loss under Hamiltonian Hopf bifurcation for the four-dimensional rigid body.
Remark 6.1. Parabolic diagrams were introduced in [17] to de-
scribe the spectrum of the bi-Hamiltonian structure related to the
Eq. (8). In the context of spectral curves, the parabolic diagram is
the quotient of the spectral curve by the holomorphic involution
(λ, µ) → (−λ,−µ). The relation between the bi-Hamiltonian
structure and the quotient of the spectral curve remains unclear.

Remark 6.2. The stability problem for the four-dimensional rigid
body was solved almost completely in [13,16]. However, there is
one case in which the instability conclusions of these papers seem
to be incorrect. This is case IIIb of (3.13) in Fehér andMarshall [13],
and case V in Theorem 5.3 of Birtea et al. [16]. It is the case with
a tangency point in the upper half-plane depicted in the second
diagram in Fig. 3. Theorem 2 implies that this equilibrium is stable.
This point lies on the boundary of the set of stable equilibria and
corresponds to the Hamiltonian Hopf bifurcation (see Section 4).
As the ratiom2

1 : m2
2 grows, a stable regime (first diagram in Fig. 3)

is being replaced by an unstable regime (third diagram in Fig. 3).
Note that this bifurcation is only possible if [a1, a2] ⊃ [a3, a4], or
[a1, a2] ⊂ [a3, a4]. If [a1, a2]∩[a3, a4] is empty, then the rotation is
stable. And if it is a proper subset of both [a1, a2] and [a3, a4], then
the rotation is unstable.

Remark 6.3. There also exist equilibria of the Eq. (8) which do not
satisfy the regularity condition—the so-called exotic equilibria [32].
The difference between regular and exotic equilibria is the
following. The Eq. (8) is completely integrable can be included
into an hierarchy of commuting flows. Regular equilibria are
those which are common for all these flows [30], while exotic
equilibria are fixed points of the particular system (8). Therefore,
the technique of the present paper cannot be applied to exotic
equilibria (see Remark 3.3). However, if we are able to prove that
(8) is non-resonant, then we can assert that all exotic equilibria
are unstable (Remark 3.3). Non-resonance was proved in [33],
however some technical details in the proof are still missing. A
revised proof will be published elsewhere.

7. Several counterexamples

Counterexample 7.1. Let us show that Condition 1 of Lemma 1
cannot be avoided. Let τ be the involution λ → −λ̄, and let
σ = −1. Let J2 = diag(a1, a2, a3) where a1 < a2 < a3 are real,
positive, and distinct. Then the space P1,3(J2, τ , σ ) consists of Lax
matrices of the form M + λJ2 where M ∈ u(3) is skew-Hermitian.
Let

M0 =

 0 0 1
0 0 0

−1 0 0


.

Then the spectral curve corresponding toM0 + λJ2 is given by

P(λ, µ) = (1 + (a1λ− µ)(a3λ− µ)) (a2λ− µ) = 0.

This curve has a singular point λ0 = ((a3−a2)(a2−a1))−1/2, µ0 =

a2λ0 which does not belong to Fixτ , while all other assumptions of
Lemma 1 are satisfied. Let us show that the statement of Lemma 1
does not hold. The gauge group orbit ofM0 + λJ2 is 0 0 y

0 0 0
−ȳ 0 0


+ λJ2

 |y| = 1


.

The isospectral variety is
 0 z y

−z̄ 0 x
−ȳ −x̄ 0


+ λJ2

 a1|x|
2
+ a2|y|2 + a3|z|2 = a2,

|x|2 + |y|2 + |z|2 = 1,
xȳz ∈ R

 .
It is clear that these two sets are distinct. In particular, the real part
of the isospectral variety is the intersection of an ellipsoid with
a concentric sphere radius equal to the middle semi-axis of the
ellipsoid, i.e. two circles intersecting at two points, while the real
part of the gauge group orbit is two points (0,±1, 0).

The statement of Theorem 1 does not hold as well. Let us take

L = {M + λJ2 | M ∈ so(3,R)}

and consider the Lax equation (9), which is the Euler equation
of the free three-dimensional rigid body. Then M0 is the rotation
about middle axis of inertia, which is known to be unstable.

Counterexample 7.2. Let us show that the condition on the
genus is also important. Consider P1,3(J2, τ , σ ) from the previous
example, and let

M0 =

 0 z0 y0
−z0 0 x0
−y0 −x0 0


where x0, y0, z0 are non-zero real numbers. All conditions of
Lemma 1 are satisfied except the condition on the genus: the
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spectral curve is non-singular and has genus 1. As in the previous
example, take

L = {M + λJ2 | M ∈ so(3,R)}

and consider the Lax equation (9). Then, though the second
condition of Theorem 1 is satisfied, the conclusion of the theorem
does not hold: M0 is not a fixed point at all. Consequently, the
statement of Lemma 1 does not hold as well. It is actually easy to
see that the quotient of the isospectral variety of M0 by the action
of the gauge group is a circle.

Counterexample 7.3. Finally, let us show that Condition 2 of
Theorem 2 cannot be avoided as well. Consider P1,3(J2, τ , σ ) from
previous examples, and let A = diag(ai, bi, ci) be a diagonal skew-
Hermitian matrix. Consider the equation

d
dt
(M + λJ2) = [M + λJ2, A] (10)

which defines a flow on L = P1,3(J2, τ , σ ). Take

M0 =

 0 1 0
−1 0 0
0 0 0


.

Then Lemma 1 holds true for M0 + λJ2. However, Condition 2 of
Theorem 1 is not satisfied, and the statement of the theorem is not
true:M0+λJ2 is not a fixed point of (10). Note that the flowdefined
by (10) is just the action of a 1-parametric subgroup of the gauge
group.

8. Proof of Lemma 1

We need to prove that it is possible to recover Lλ uniquely
from its spectral curve up to the action of the gauge group. Let
Γ be the normalized compactification of the spectral curve C .
Since C is reducible, the Riemann surface Γ is not connected, but
has k connected components Γ1, . . . ,Γk. The functions λ,µ are
meromorphic on Γ and satisfy the equation det(Lλ − µE) = 0.
Let also π :Γ → CP1

× CP1 be the mapping γ → (λ(γ ), µ(γ )).
The image of π is the closure of the curve C .

Proposition 8.1. The meromorphic function λ has exactly n poles
∞1, . . . ,∞n in Γ .

Proof. This follows easily from the simplicity of the spectrum of
Bm. �

Let Γ0 = {γ ∈ Γ | λ(γ ) < ∞, dimKer (Lλ(γ ) − µ(γ )E) = 1}.
Consider themappingψ:Γ0 → CPn−1 whichmaps γ to the eigen-
vector of Lλ(γ ) − µ(γ )E. This mapping defines a holomorphic line
bundle overΓ0 which is called the eigenvector bundle. However, we
will consider ψ as a mapping, not as a line bundle. The following
statement is well-known (see e.g. Audin [5]).

Proposition 8.2. The mapping ψ can be uniquely extended to a
holomorphic mapping ψ:Γ → CPn−1.

Proof. The complement Γ \ Γ0 consists of the finite number of
points γ1, . . . , γk. Prove that ψ can be extended to γi. Let z be a
local coordinate in the neighborhood of γi such that z(γi) = 0.
Without loss of generality, the first row of the comatrix of Lλ(z) −

µ(z)E is non-zero and finite in the punctured neighborhood of γi.
Denote this vector by a(z) = (a1(z), . . . , an(z)). Clearly,

ψ(z) = (a1(z) : . . . : an(z))

for z ≠ 0. At the same time, there exists a positive or negative
integer m such that a(z) = zmb(z) where b(z) = (b1(z), . . . ,
bn(z)) ≠ 0 at z = 0. So, ψ can be extended to γi by the
formula

ψ(z) = (b1(z) : . . . : bn(z)).

Uniqueness is obvious. �

Proposition 8.3. The vectorsψ(∞1), . . . , ψ(∞n) are the eigenvec-
tors of Bm.

Proof. Apply the continuity argument. �

Let us normalize ψ to obtain a meromorphic vector-function
h:Γ → Cn such that h(γ ) ≠ 0 for each γ ∈ Γ :

hi
= ψ i


n

i=1

αiψ
i

−1

.

The numbers α1, . . . , αn should be chosen in such a way that the
poles of h are away from the ramification points of λ, as well from
the points which project to singular points of the curve C .

Count the number of poles of h. For generic λ0 ∈ CP1, the
set λ−1(λ0) = {γ ∈ Γ | λ(γ ) = λ} contains exactly n points
γ1, . . . , γn. Following Dubrovin et al. [1], consider the function

r(λ0) = (det(h(γ1), . . . , h(γn)))2 .

This expression does not depend on the numeration of points in
λ−1(λ0), so it is a rational function of λ0. Clearly,

(r)∞ = 2λ ((h)∞) (11)

where (f )∞ denotes the divisor of poles of f . Therefore, we can
count poles of h by counting poles of r . To count poles of r , we
count its zeros. Obviously, r(λ0) can only be zero if the spectrum
of Lλ0 is not simple. This may happen in two cases: either if λ0 is a
branch point of the function λ, or if the preimage λ−1(λ0) contains
singular points of C , i.e. those points which belong to at least two
irreducible components. Below we count the number of zeros of
r corresponding to branch points and show that Condition 1 of
Lemma 1 guarantees that singular points do not contribute to zeros
of r .

Proposition 8.4. Let γ ∈ Γ \ {∞1, . . . ,∞n}, and let z be a local
parameter near γ . Then either λ′

z ≠ 0, or µ′
z ≠ 0.

Proof. The set Γ \ {∞1, . . . ,∞n} is just the disjoint union of
irreducible components of C , so the statement follows from the
smoothness of irreducible components. �

Proposition 8.5. Let γ ∈ Γ \ {∞1, . . . ,∞n}, and let z be a local
parameter near γ . Assume that λ′

z(γ ) = 0. Then the matrix Lλ(γ )
has a non-trivial Jordan block with eigenvalue µ(γ ) and generalized
eigenvector h′

z(γ ).

Proof. Without loss of generality, assume that z(γ ) = 0. Differen-
tiating

(Lλ(z) − µ(z)E)h(z) = 0

with respect to z at z = 0, obtain

(Lλ(0) − µ(0)E)h′(0) = µ′(0)h(0).

By Proposition 8.4, the numberµ′(0) is non-zero, which proves the
proposition. �

Proposition 8.6. Assume that γ1, . . . , γp ∈ Γ are distinct, and
that π(γi) = π(γj) for any i, j ∈ {1, . . . , p}. Then the vectors
h(γ1), . . . , h(γp) are linearly independent.
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Proof. Let λ(γi) = λ0, and µ(γi) = µ0. Then (λ0, µ0) ∈ C
is a singular point. Condition 1 of Lemma 1 implies that Lλ0 is
a normal operator (recall that an operator in Hermitian space is
called normal if it commutes with its adjoint), therefore it has
no non-trivial Jordan blocks. Using Propositions 8.4 and 8.5, we
conclude that λ can be taken as a local parameter near γ1, . . . , γp.

Letµ = µi(λ) and h = hi(λ) in the neighborhood of γi. Assume
that

p
i=1

cihi(λ0) = 0 (12)

and prove that ci = 0 for each i. Differentiating the equation

(Lλ − µi(λ)E)hi(λ) = 0

with respect to λ at λ = λ0, we have

Qi =

L′

λ(λ0)− µ′

i(λ0)

hi(λ0)+ (Lλ0 − µ0E)h′

i(λ0) = 0. (13)

Using (12), we obtain

0 =

p
i=1

ciQi = −

p
i=1

ciµ′

i(λ0)hi(λ0)

+ (Lλ0 − µ0E)


p

i=1

cih′

i(λ0)


,

so

(Lλ0 − µ0E)


p

i=1

cihi(λ0)


=

p
i=1

ciµ′

i(λ0)hi(λ0). (14)

Since Lλ0 has no non-trivial Jordan blocks, (14) implies that
p

i=1

ciµ′

i(λ0)hi(λ0) = 0.

Continuing in the same fashion, we obtain

p
i=1

ci(µ′

i(λ0))
khi(λ0) = 0 ∀ k ∈ N ∪ {0}. (15)

Let I = {1, . . . , p}. Define an equivalence relation on I by i ≡ j ⇔

µ′

i(λ0) = µ′

j(λ0). Denote equivalence classes by I1, . . . , Iq. Then
(15) implies that
i∈Is

cihi(λ0) = 0, ∀ s = 1, . . . , q. (16)

If all pairwise intersections of irreducible components of C are of
order 1, then each class Is consists of one element, andwe are done.
Otherwise, differentiate

(Lλ − µi(λ)E)hi(λ) = 0

two times with respect to λ at λ = λ0:

Si = (L′′

λ0
− µ′′

i (λ0)E)hi(λ0)+ 2(L′

λ0
− µ′

i(λ0)E)h
′

i(λ0)

+ (Lλ0 − µ0E)h′′

i (λ0) = 0.

Fixing s ∈ {1, . . . , q} and using (16), we get

0 =


i∈Is

ciSi = −


i∈Is

ciµ′′

i (λ0)hi(λ0)

+ 2(L′

λ0
− µ′(λ0)E)


i∈Is

cih′

i(λ0)

+ (Lλ0 − µ0E)

i∈Is

cih′′

i (λ0) (17)

where µ′(λ0) = µ′

i(λ0) for i ∈ Is.
Let L = Lλ0 −µ0E, and let L′
= L′

λ0
−µ′(λ0)E. Then it is easy to

see that

L∗
= αL, and (L′)∗ = βL′ (18)

where α = σ−1, and β ∈ C is some constant. Let ⟨ , ⟩ be the
standard Hermitian scalar product ⟨x, y⟩ = x∗y. Using (17), we
have

i∈Is

ciµ′′

i (λ0)hi(λ0), hj(λ0)


= Xsj + Ysj (19)

where

Xsj = 2


L′


i∈Is

cih′

i(λ0)


, hj(λ0)


,

Ysj =


L


i∈Is

cih′′

i (λ0)


, hj(λ0)


.

Using (18), we show that Ysj vanishes:

Ysj = α


i∈Is

cih′′

i (λ0), Lhj(λ0)


= 0.

Using (18) together with (13) and (16), we show that Xsj is also
zero:

Xsj = 2β


i∈Is

cih′

i(λ0), L
′hj(λ0)


= −2β


i∈Is

cih′

i(λ0), Lh
′

j(λ0)



= −2βᾱ


L


i∈Is

cih′

i(λ0)


, h′

j(λ0)



= 2βᾱ


L′


i∈Is

cihi(λ0)


, h′

j(λ0)


= 0.

Using (19) we conclude that
i∈Is

ciµ′′

i (λ0)hi(λ0), hj(λ0)


= 0

for any s and j, hence
i∈Is

ciµ′′

i (λ0)hi(λ0) = 0 ∀ s = 1, . . . , q.

Continuing in the same fashion, we obtain
i∈Is

ci(µ′′

i (λ0))
khi(λ0) = 0 ∀ s = 1, . . . , q, k ∈ N ∪ {0}. (20)

Since all pairwise intersections of irreducible components of C are
of order at most two, we have µ′′

i (λ0) ≠ µ′′

j (λ0) for any distinct
i, j ∈ Is. Consequently, (20) implies that ci = 0 for each i, �

Proposition 8.7. The divisor of zeros of r is given by (r)0 = λ((λ)R)

where (λ)R is the ramification divisor of λ.

Proof. This statement is well-known in the case when the spectral
curve is non-singular [1], and as follows from Proposition 8.6,
singular points do not contribute to (r)0. If the set λ−1(λ0) contains
n distinct points, then Proposition 8.6 implies that r(λ0) ≠ 0. So,
r(λ0) = 0 if and only if λ0 is a branch point. For simplicity, assume
that the set λ−1(λ0) contains exactly one simple ramification point
of λ. Let z be a local coordinate on Γ such that λ − λ0 = z2.
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Then

r(λ) =

det(. . . , h(0)+ h′(0)z + O(z2), h(0)

− h′(0)z + O(z2), . . .)
2

=

det(. . . , 2h′(0)z + O(z2), h(0)+ O(z), . . .)

2
= (λ− λ0)


det(. . . , 2h′(0)+ O(z), h(0)+ O(z), . . .)

2
.

By Proposition 8.5, the vector h′(0) is a generalized eigenvector
for Lλ0 , so the latter determinant is non-zero, which proves that
r(λ) has a simple zero at λ = λ0. The proof in the general case is
analogous. �

Since r is a meromorphic function, deg (r)0 = deg (r)∞. Using
(11) and Proposition 8.7, we have

deg (h)∞ =
1
2
deg (λ)R,

or, by Riemann–Hurwitz formula,

deg (h)∞ = n − k +

k
i=1

gi

where gi is the genus of Γi. If gi = 0 for each i, then

deg (h)∞ = n − k. (21)

Let ξ1, . . . , ξn be the eigenvectors of B ordered in such a way that
h(∞i) = ξi, and

∞1, . . . ,∞n1 ∈ Γ1, ∞n1+1, . . . ,∞n1+n2 ∈ Γ2, . . . .

Denote by h1, . . . , hn the components of h in the basis ξ1, . . . , ξn:
h =


hiξi. Then h1(∞2) = · · · = h1(∞n1) = 0, but h1(∞1) ≠ 0.

Consequently,

deg (h |Γ1
)∞ ≥ deg (h1

|Γ1
)∞ = deg (h1

|Γ1
)0 ≥ n1 − 1.

Analogously,

deg (h |Γi
)∞ ≥ ni − 1 for i = 1, . . . , k.

Comparing with (21), we conclude that

deg (h |Γi
)∞ = ni − 1. (22)

Identify each Γi with the standard Riemann sphere, and renormal-
ize h in such a way that all coordinates of h |Γi

are polynomials
of degree ni − 1. Each of these coordinates vanishes at exactly
ni − 1 points which are fixed, so all coordinates of h are defined
uniquely modulo a constant factor. This means that Lλ can be re-
covered uniquely up to conjugation by a matrix which commutes
with the leading term B. Let us show that this matrix can be chosen
to be unitary.

Let Lλ = Q−1L0λQ . Then L∗

λ = Q ∗(L0λ)
∗(Q−1)∗ which can be

rewritten as

Lτ(λ) = Q ∗L0τ(λ)(Q
−1)∗. (23)

On the other hand,

Lτ(λ) = Q−1L0τ(λ)Q . (24)

Comparing (23) and (24), we conclude that L0λ commutes with QQ ∗

for any λ. Let S =
√
QQ ∗. Then the polar decomposition of Q is

Q = SU where U is unitary. Since QQ ∗ commutes with L0λ, so does
S, therefore

Lλ = U−1L0λU .

Obviously, U commutes with the leading term B, so it belongs to
the gauge group G. �
Acknowledgment

This research was supported by the Dynasty Foundation Schol-
arship.

References

[1] B.A. Dubrovin, I.M. Krichever, S.P. Novikov, Integrable systems. I. Dynamical
systems IV, Encyclopaedia Math. Sci. 4 (2001) 177–332.

[2] B.A. Dubrovin, V.B. Matveev, S.P. Novikov, Non-linear equations of Ko-
rteweg–de Vries type, finite-zone linear operators, and Abelian varieties, Rus-
sian Math. Surveys 31 (1) (1976) 59.

[3] B.A. Dubrovin, Theta functions and non-linear equations, Russian Math.
Surveys 36 (2) (1981) 11.

[4] O. Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable Systems,
Cambridge University Press, 2003.

[5] M. Audin, Spinning Tops: a Course on Integrable Systems, in: Cambridge
Studies in Advanced Mathematics, Cambridge University Press, 1999.

[6] M. Audin, Hamiltonianmonodromy via Picard–Lefschetz theory, Comm.Math.
Phys. 229 (3) (2002) 459–489.

[7] S.V. Manakov, Note on the integration of Euler’s equations of the dynamics of
an n-dimensional rigid body, Funct. Anal. Appl. 10 (1976) 328–329.

[8] A.I. Bobenko, A.G. Reyman, M.A. Semenov-Tian-Shansky, The Kowalewski top
99 years later: a Lax pair, generalizations and explicit solutions, Comm. Math.
Phys. 122 (2) (1989) 321–354.

[9] B. Jovanovich, The Jacobi–Rosochatius problem on an ellipsoid: the Lax
representations and billiards, Arch. Ration. Mech. Anal. 210 (1) (2013)
101–131.

[10] M. Adler, P. van Moerbeke, Linearization of Hamiltonian systems, Jacobi
varieties and representation theory, Adv. Math. 38 (3) (1980) 318–379.

[11] M. Adler, P. Van Moerbeke, Completely integrable systems, Euclidean Lie
algebras, and curves, Adv. Math. 38 (3) (1980) 267–317.

[12] A.S. Mishchenko, A.T. Fomenko, Euler equations on finite-dimensional Lie
groups, Math. USSR-Izv. 12 (2) (1978) 371–389.

[13] L. Fehér, I. Marshall, Stability analysis of some integrable Euler equations for
SO(n), J. Nonlinear Math. Phys. 10 (3) (2003) 304–317.

[14] A. Spiegler, Stability of generic equilibria of the 2N dimensional free rigid body
using the energy-Casimir method (Ph.D. thesis), University of Arizona, 2006.

[15] I. Caşu, On the stability problem for the so(5) free rigid body, Int. J. Geom.
Methods Mod. Phys. 8 (2011) 1205–1223.

[16] P. Birtea, I. Caşu, T. Ratiu, M. Turhan, Stability of equilibria for the so(4) free
rigid body, J. Nonlinear Sci. 22 (2012) 187–212.

[17] A. Izosimov, Stability in bi Hamiltonian systems and multidimensional rigid
body, J. Geom. Phys. 62 (12) (2012) 2414–2423.

[18] A. Izosimov, Stability of relative equilibria of multidimensional rigid body,
Nonlinearity 27 (6) (2014) 1419.

[19] A.V. Bolsinov, A.V. Borisov, I.S. Mamaev, Topology and stability of integrable
systems, Russian Math. Surveys 65 (2) (2010) 259–318.

[20] A.V. Bolsinov, A.T. Fomenko, Integrable Hamiltonian Systems. Geometry,
Topology and Classification, CRC Press, 2004.

[21] P. Van Moerbeke, D. Mumford, The spectrum of difference operators and
algebraic curves, Acta Math. 143 (1) (1979) 93–154.

[22] T. Ratiu, P. Van Moerbeke, The Lagrange rigid body motion, in: Annales de
l’Institut Fourier, Vol. 32, Institut Fourier, 1982, pp. 211–234.

[23] L. Gavrilov, A. Zhivkov, The complex geometry of Lagrange top, Enseign. Math.
44 (1998) 133–170.

[24] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag,
1978.

[25] R. Cushman, J.C. Meer, The Hamiltonian Hopf bifurcation in the Lagrange top,
in: C. Albert (Ed.), Géométrie Symplectique et Mécanique, in: Lecture Notes in
Mathematics, vol. 1416, Springer, Berlin, Heidelberg, 1990, pp. 26–38.

[26] V.V. Trofimov, A.T. Fomenko, Non-invariant symplectic group structures and
Hamiltonian flows on symmetric spaces, Sel. Math. Sov. 7 (4) (1988) 356–414.

[27] A.V. Bolsinov, A.Yu. Konyaev, Algebraic and geometric properties of quadratic
Hamiltonians determined by sectional operators, Math. Notes 90 (5–6) (2011)
666–677.

[28] A.Yu. Konyaev, Bifurcation diagram and the discriminant of a spectral curve of
integrable systems on Lie algebras, Sb. Math. 201 (9) (2010) 1273.

[29] Yu.A. Brailov, Geometry of translations of invariants on semisimple Lie
algebras, Sb. Math. 194 (11) (2003) 1585.

[30] A.V. Bolsinov, A.A. Oshemkov, Bi-Hamiltonian structures and singularities of
integrable systems, Regul. Chaotic Dyn. 14 (2009) 431–454.

[31] L.G. Rybnikov, Centralizers of certain quadratic elements in Poisson–Lie
algebras and the method of translation of invariants, Russian Math. Surveys
60 (2) (2005) 367.

[32] A. Izosimov, A note on relative equilibria of a freemultidimensional rigid body,
J. Phys. A 45 (32) (2012) 325203.

[33] A. Izosimov, Singularities of biHamiltonian systems and the multidimensional
rigid body (Ph.D. Thesis), Loughborough University, 2012.

http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref1
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref2
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref3
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref4
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref5
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref6
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref7
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref8
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref9
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref10
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref11
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref12
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref13
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref14
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref15
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref16
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref17
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref18
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref19
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref20
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref21
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref22
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref23
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref24
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref25
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref26
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref27
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref28
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref29
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref30
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref31
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref32
http://refhub.elsevier.com/S0167-2789(14)00204-8/sbref33

	Algebraic geometry and stability for integrable systems
	Introduction
	Stability for integrable and Lax systems
	A lemma on polynomial matrix pencils and the stability theorem
	Example I: Lagrange top
	Example II: Mishchenko--Fomenko tops on compact Lie algebras
	Example III: Multidimensional rigid body
	Several counterexamples
	Proof of Lemma 1
	Acknowledgment
	References


