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Abstract
The circumcenter of mass of a simplicial polytope P is defined as follows: triangu-
late P , assign to each simplex its circumcenter taken with weight equal to the volume
of the simplex, and then find the center of mass of the resulting system of point masses.
The so obtained point is independent of the triangulation. The aim of the present note is
to give a definition of the circumcenter of mass that does not rely on a triangulation. To
do so we investigate how volumes of polytopes change underMöbius transformations.

Keywords Polytope · Circumcenter · Center of mass · Volume · Möbius
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1 Introduction

Recall that the center of mass of a polyhedral solid P can be found as follows: trian-
gulate P , assign to each simplex its centroid taken with weight equal to the volume of
the simplex, and then find the center of mass of the resulting system of point masses.
The so obtained point is independent of the triangulation.

Remarkably, when P is simplicial (i.e., all its facets are simplices), one can replace
centroids of simplices in this construction by their circumcenters. The resulting point
still does not depend on the triangulation and is known as the circumcenter of mass
of P . The author of [4] attributes this construction to 19th century algebraic geometer

Editor in Charge: Csaba D. Tóth

Anton Izosimov
izosimov@math.arizona.edu

1 Department of Mathematics, University of Arizona, Tucson, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-022-00481-x&domain=pdf


Discrete & Computational Geometry

Giusto Bellavitis. In modern literature, the circumcenter of mass is studied in [1, 3,
6–8], as well is in [5] for a special class of polyhedra whose edges touch a sphere.

Since the circumcenter of mass does not depend on the triangulation, one should
be able to define it without using one. The aim of the present note is to provide such a
definition. Specifically, we show that the circumcenter of mass of P is related to the
rate of change of volume of P under Möbius transformations.

Recall that a Möbius transformation of R
n is an isometry of the hyperbolic

upper half-space H
n+1 restricted to the boundary. Every such transformation is

a finite composition of inversions in spheres and reflections in hyperplanes. For
n ≥ 3 Möbius transformations are the same as conformal transformations, while
for n = 2 Möbius transformations are just complex fractional linear transformations
z �→ (az + b)/(cz + d).

Note that general Möbius transformations do not preserve coplanarity and hence
polyhedral shapes. However, the action of Möbius transformations on simplicial poly-
topes is still well-defined. By definition, aMöbius transformationφ : Rn → R

n takes a
simplex�with vertices v0, . . . , vn to a simplex φ(�)with vertices φ(v0), . . . , φ(vn).
This extends to simplicial polytopes: the image under φ of a polytope with faces
�1, . . . ,�k is the polytope with faces φ(�1), . . . , φ(�k).

Consider a simplicial polytope P . How does its volume change under infinitesi-
mal Möbius transformations? We show that this is determined by the location of one
single point of P , that we call the Möbius center of P and denote as m(P) (see Theo-
rem 2.1 (i)). Specifically, the relative rate of change of volume under an infinitesimal
Möbius transformation ξ is equal to the divergence of ξcomputed at the Möbius center:

∇ξ log vol(P) = div ξ(m(P)). (1)

Here ∇ξ stands for the derivative in the direction ξ :

∇ξ log vol(P) = d

dt

∣
∣
∣
∣
t=0

log vol(φt (P)),

where φt is a family of Möbius transformations integrating ξ .
Note that Möbius vector fields are quadratic (see formula (4)) and hence have

linear divergence. So, formula (1) implies that, just like the center and circumcenter
of mass, the Möbius center m(P) can be found by subdivision into simplices (see
Theorem 2.1 (iii)). Furthermore, we show that for a simplex � its Möbius center
m(�) coincideswith the circumcenter of itsmedial simplex�′, i.e., the simplexwhose
vertices are centroids of facets (codimension 1 faces) of � (see Theorem 2.1 (iv)). So,
the Möbius center can be defined by the same construction as the circumcenter of
mass, with circumcenters of simplices of the triangulation replaced by circumcenters
of their medial simplices. Furthermore, there is a simple relation between the two
circumcenters: for a n-dimensional simplex � one has

cc(�′) = n + 1

n
cm(�) − 1

n
cc(�), (2)
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where �′ is the medial simplex, cm stands for the center of mass, and cc for the
circumcenter. As a result, for a general simplicial n-dimensional polytope P one has

m(P) = n + 1

n
cm(P) − 1

n
ccm(P),

where ccm(P) is the circumcenter of mass of P . So, since both the center of mass
and the Möbius center can be defined without a triangulation, it follows that the
circumcenter of mass is well defined as well. Explicitly, one has

ccm(P) = (n + 1) cm(P) − n · m(P). (3)

Remark 1.1 One may similarly ask how the volume of a polytope changes under
infinitesimal projective transformations. In that case, one has the following version
of formula (1): ∇ξ log vol(P) = div ξ(cm(P)). Indeed, since projective transforma-
tions take faces to faces, the change of volume of P under an infinitesimal projective
transformation ξ can be computed as the flux of ξ through the boundary of P or,
equivalently, as the integral of the divergence of ξ over the interior of P (for simplic-
ity assume that P is convex):

∇ξ log vol(P) = 1

vol(P)

∫

interior of P
div ξ dx,

where dx is the Euclidean volume element. But since the divergence of a projective
vector field is a (inhomogeneous) linear function, the latter expression is precisely the
value of the divergence at the center of mass, as needed.

Remark 1.2 Formula (3) may seem unsettling as the coefficients look pretty random.
There is a way to fix this by replacing Möbius vector fields by a different class
of quadratic fields ξ which in some sense interpolate between Möbius and projec-
tive fields (see Remark 2.1). Those vector fields have the property ∇ξ log vol(P) =
div ξ(ccm(P)) and thus provide a direct definition of the circumcenter of mass cir-
cumventing the notion of the Möbius center. However, the geometric meaning of such
fields ξ is somewhat unclear.

Remark 1.3 For a triangle, the circumcenter of the medial triangle (i.e., the Möbius
center) is also known as the nine-point center. So, analogously to the definition of
the circumcenter of mass, the Möbius center of a polygon can be thought of as the
“nine-point center of mass”. An analogous point of the tetrahedron is the center of the
so-called twelve-point sphere, however it does not seem to have any name. Relation
(2) is well known in those cases. In particular, for a triangle it says that the centroid
lies on the line joining the circumcenter and the nine-point center, 2/3 of the way
towards the latter (the line containing all the three points is known as the Euler line;
it also contains the orthocenter).
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2 Precise Definitions and theMain Result

There are many ways to formalize the notion of a (not necessarily convex) polytope.
For the purposes of the present paper, a simplicial polytope inRn is a piecewise linear
simplicial cycle of dimension n − 1 (a particular case of this general definition is
the boundary of a convex polytope all of whose facets are simplices). In particular,
polytopes inRn form an Abelian groupP(Rn) under addition. This group is generated
by boundaries of oriented n-dimensional simplices (in what follows, we refer to those
generators as just simplices). A representation of a polytope P as a sum of simplices
is called a triangulation.

The group of polytopes comes equipped with the (algebraic) volume homomor-
phism vol : P(Rn) → R. It is given on simplices � = (v0, . . . , vn) by vol(�) =
|v1−v0, . . . , vn −v0|/n!, where |w1, . . . , wn| stands for the determinant of the matrix
(w1, . . . , wn).

We define Möbius transformations of Rn as isometries of the hyperbolic upper
half-space Hn+1 restricted to the boundary. We refer the reader to [2] for a detailed
account of such transformations. Here we only need the corresponding Lie algebra
möbn of Möbius vector fields. In dimensions n ≥ 3, Möbius vector fields are the
same as conformal Killing vector fields. In dimension n = 2, they are the same as
holomorphic quadratic vector fields. In any dimension, the general form of a Möbius
vector field ξ is

ẋ = Ax + |x |2b − 2〈b, x〉x + c, (4)

where A is a matrix such that A − λ Id is skew-symmetric for some λ ∈ R, and
b, c ∈ R

n are vectors. We note that the divergence of such a vector field is

div ξ = tr A − 2n〈b, x〉. (5)

Theorem 2.1 (i) Let P ∈ P(Rn) be a polytope in R
n with vol(P) 
= 0. Then there

exists a unique point m(P) ∈ R
n (the Möbius center of P) such that

∇ξ log vol(P) = div ξ(m(P)). (6)

for any Möbius vector field ξ ∈ möbn.
(ii) For P as above and any similarity transformationφ : Rn → R

n (i.e., a composition
of a homothety and isometry) one has m(φ(P))) = φ(m(P)).

(iii) For P as above and any triangulation P = ∑
�i with vol(�i ) 
= 0 for all i one

has

m(P) = 1

vol(P)

∑

vol(�i )m(�i ).

(iv) For a simplex� ∈ P(Rn) such thatvol(�) 
= 0, the Möbius centerm(�) coincides
with the circumcenter of the medial simplex �′. It is related to the centroid and
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the circumcenter of � by the formula

cc(�′) = n + 1

n
cm(�) − 1

n
cc(�). (7)

(v) For any P ∈ P(Rn) with vol(P) 
= 0 its Möbius center is related to the center of
mass and the circumcenter of mass by the formula

m(P) = n + 1

n
cm(P) − 1

n
ccm(P),

Proof (i) Consider the subalgebra ison ⊂ möbn of infinitesimal isometries. It consists
of vector fields of the form (4) with b = 0 and A skew-symmetric. We have the
following sequence of linear maps:

0 → ison
i−→ möbn

div−→ ln → 0

where i : ison → möbn is the inclusion mapping, and ln is the (n + 1)-dimensional
vector space of (inhomogeneous) linear functions on the affine space Rn . Since every
divergence-free Möbius vector field is an isometry (preserving angles and volume
implies preserving the metric), and every linear function can be obtained as the diver-
gence of a Möbius vector field (which follows from transitivity of action of isometries
on linear functions and can also be seen from explicit expression (5)), this sequence is
exact. Therefore, any linear function on möbn which vanishes on ison is of the form
f (div ξ), where f ∈ l∗n (here l∗n is the dual space of ln). This in particular applies to the
function ξ �→ ∇ξ log vol(P) (which vanishes on isometries since isometries preserve
the volume). So, there is f ∈ l∗n such that

∇ξ log vol(P) = f (div ξ).

for all ξ ∈ möbn . Further observe that for ξ of the form ẋ = λx (i.e., a homothety) one
has ∇ξ log vol(P) = nλ and div ξ = nλ. Therefore, for any constant function c ∈ ln
one has f (c) = c. But any linear function f : ln → R which takes every constant
to itself is of the form f (l) = l(x) for some x ∈ R

n . Furthermore, such x is clearly
unique, since evaluation at different points gives different functions on ln Denoting
that x by m(P), we get the result.

(ii) This follows from the invariance of all involved objects under similarities.

(iii) This follows from additivity of the volume function and linearity of div ξ for a
Möbius vector field ξ ∈ möbn :

∇ξ log vol(�i ) = div ξ(m(�i )) 
⇒ ∇ξ vol(�i ) = vol(�i ) div ξ(m(�i ))


⇒ ∇ξ vol(P) =
∑

∇ξ vol(�i ) =
∑

vol(�i ) div ξ(m(�i ))


⇒ ∇ξ ln vol(P) =
∑ vol(�i )

vol(P)
div ξ(m(�i )) = div ξ

(
∑ vol(�i )

vol(P)
m(�i )

)

.
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(iv) Let � = (v0, . . . , vn) ∈ P(Rn) be a simplex such that vol(�) 
= 0, and let

p := −n · m(�) +
n

∑

i=0

vi . (8)

We will first show that p is the circumcenter of �. In view of part (i) of the theorem,
it suffices to consider the case v0 = 0. Let ξ ∈ möbn be of the form

ẋ = |x |2b − 2〈b, x〉x,

and let φt be a family of Möbius transformations integrating ξ . Note that since ξ

vanishes at the origin, we have φt (v0) = φt (0) = 0. Therefore,

∇ξ log vol(�) = d

dt

∣
∣
∣
∣
t=0
log |φt (v1), . . . , φt (vn)|

= 1

D

n
∑

i=1

∣
∣v1, . . . , |vi |2b − 2〈b, vi 〉i, . . . , vn

∣
∣

= �(b) − 2

〈

b,

n
∑

i=1

vi

〉

,

where

D := |v1, . . . , vn|, �(b) := 1

D

n
∑

i=1

|v1, . . . , b, . . . , vn| · |vi |2. (9)

On the other hand, we have ∇ξ log vol(�) = div ξ(m(�)) and div ξ = −2n〈b, x〉, so
by (6) we have

−2n〈b,m(�)〉 = �(b) − 2

〈

b,

n
∑

i=1

vi

〉

for any b ∈ R
n , which, by (8), is equivalent to 〈b, p〉 = �(b)/2. In particular, by

definition (9) of the function � we get

〈p, vi 〉 = �(vi )

2
= 〈vi , vi 〉

2
.

Therefore,

|p − vi |2 = 〈p, p〉 − 2〈p, vi 〉 + 〈vi , vi 〉 = 〈p, p〉 = |p − v0|2 (10)

for all i . So indeed p is the circumcenter of �, as claimed.
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Now, let us show that m(�) is the circumcenter of the medial simplex of �. In
view of (8) and an already established fact that p is the circumcenter of �, this also
proves (7). Let

v′
i := 1

n

⎛

⎝−vi +
n

∑

j=0

v j

⎞

⎠

be centroids of facets of � (equivalently, vertices of the medial simplex �′). Then

|v′
i − m(�)|2 = 1

n2

∣
∣
∣
∣
∣
∣

−vi +
n

∑

j=0

v j − n · m(�)

∣
∣
∣
∣
∣
∣

2

= |p − vi |2
n2 .

By (10), the latter quantity is independent of i , so m(�) is equidistant from the points
v′
0, . . . , v

′
n , as desired.

(v) This directly follows from the two previous statements. ��
Remark 2.1 Along the same lines one shows that for quadratic vector fields ξ of the
form

ẋ = Ax + |x |2b + c (11)

one has ∇ξ log vol(P) = div ξ(ccm(P)). This gives a direct definition of the circum-
center of mass bypassing the notion of the Möbius center. We chose not to pursue this
approach since geometric interpretation of vector fields (11) is unclear. In a certain
sense such vector fields interpolate between Möbius fields (4) and projective fields
ẋ = Ax + 〈b, x〉x + c, just like the circumcenter of mass “interpolates” between the
center of mass and the Möbius center.
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