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A Poisson pencil is called flat if all brackets of the pencil can be simultaneously locally
brought to a constant form. Given a Poisson pencil on a 3-manifold, we study under which
conditions it is flat. Since the works of Gelfand and Zakharevich, it is known that a pencil is
flat if and only if the associated Veronese web is trivial. We suggest a simpler obstruction
to flatness, which we call the curvature form of a Poisson pencil. This form can be defined
in two ways: either via the Blaschke curvature form of the associated web, or via the Ricci
tensor of a connection compatible with the pencil.
We show that the curvature form of a Poisson pencil can be given by a simple explicit
formula. This allows us to study flatness of linear pencils on three-dimensional Lie algebras,
in particular those related to the argument translation method. Many of them appear to be
non-flat.
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1. Introduction

Two Poisson brackets are called compatible, if any linear combination of them is a Poisson bracket again. The notion of
compatible Poisson brackets was introduced by F. Magri [1] and I. Gelfand and I. Dorfman [2] because of its relation to
integrability. Roughly speaking, if a dynamical systems is Hamiltonian with respect to two compatible Poisson structures
(i.e. it is bi-Hamiltonian), then it automatically possesses many conservation laws. This mechanism is responsible for the
integrability of many equations coming from physics and geometry (see [3,4] and references therein).

A pair of two compatible Poisson brackets is called a Poisson pair. Equivalently, one may speak about Poisson pencils.
A Poisson pencil is the set of all linear combinations of two compatible brackets.

Unlike individual Poisson brackets, which can be always locally brought to a constant form, Poisson pencils have non-
trivial geometry. Differential geometry of Poisson pencils was studied, among others, by I. Gelfand and I. Zakharevich [5–8],
F.-J. Turiel [9–12], and A. Panasyuk [13].

Speaking about Poisson pencils, one needs to distinguish between the even and the odd-dimensional cases. The reason
for this comes from linear algebra. A generic skew-symmetric form on an even-dimensional vector space is non-degenerate.
So, for two forms P and Q one may define the operator PQ−1. The eigenvalues of this operator are invariants of the pair
(P,Q). In odd dimension such invariants do not exist. Any two generic pairs of forms in this case are equivalent.

Consequently, in odd dimension any two generic Poisson pencils are equivalent at a point. However, this is no longer the
case in the neighbourhood of a point. This observation makes odd-dimensional bi-Poisson geometry similar to Riemannian
geometry.

A Poisson pencil is called flat if all brackets of the pencil can be simultaneously locally brought to a constant form (like
flat metrics). We are interested in the following problem. Given a generic Poisson pencil in odd dimension, how do we
verify its flatness?
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This problem was intensively studied by I. Gelfand and I. Zakharevich [5–8]. For each generic Poisson pencil in odd
dimension, Gelfand and Zakharevich construct a Veronese web1 naturally associated with the pencil and prove that the
pencil is flat if and only if the associated web is trivial. This, in principle, allows to verify flatness for any given pencil.
However, it is difficult in practice. Passing from a pencil to the associated web involves the calculation of Casimir functions.
To find Casimir functions of a Poisson bracket, one needs to solve partial differential equations. These equations are not
always soluble by quadratures. This means that the explicit description of the Veronese web associated with a Poisson
pencil is, in general, not possible.

So, it would be desirable to construct a curvature-like obstruction to flatness of a Poisson pencil. We do this in dimension
three. The obstruction turns out to be a 2-form. We call it the curvature form of a Poisson pencil. This form can be defined in
two ways: either via the Blaschke curvature form of the associated web, or via the Ricci tensor of a connection compatible
with the pencil.

We show that the curvature form of a Poisson pencil can be given by a simple explicit formula. This allows us to study
flatness of linear pencils on three-dimensional Lie algebras, in particular those related to the argument translation method.
Many of them appear to be non-flat.

2. Basics of bi-Hamiltonian geometry

Throughout the paper, all objects belong to the class C∞ .

Definition 1. Two Poisson brackets on a manifold M are called compatible, if any linear combination of them is a Poisson
bracket again. A pair of compatible brackets is called a Poisson pair.

For two Poisson brackets to be compatible, it is enough to require that their sum is also a Poisson bracket.

Definition 2. Let (P,Q) be a Poisson pair. The set

{αP + βQ | α,β ∈C}
is called the Poisson pencil generated by P,Q.

In other words, a Poisson pencil is a two-dimensional vector space of Poisson brackets. Choosing a basis in a Poisson
pencil, one obtains a Poisson pair.

Remark 1. Further we use the following notation. Poisson brackets are denoted by P , Q being treated as tensors, and {,}p ,
{,}q being treated as operations on functions.

Definition 3. The rank of a Poisson pencil Π = {αP + βQ} at a point x is the number

rank Π(x) = max
α,β

rank
(
αP(x) + βQ(x)

)
.

Definition 4. The spectrum of a Poisson pencil Π = {αP + βQ} at a point x is the set

Λ(x) = {
(α : β) ∈CP1

∣∣ rank
(
αP(x) + βQ(x)

)
< rank Π(x)

}
.

In dimension three, the spectrum is either empty or contains one element λ. In the latter case P and Q are proportional
at x: P(x) = −λQ(x).

Definition 5. A Poisson pencil Π is said to be Kronecker at x if its spectrum at x is empty.

In dimension three, this condition means that P and Q are not proportional at x.

Definition 6. A Poisson pencil is called locally flat if all brackets of the pencil can be simultaneously brought to a constant
form in the neighbourhood of a generic point.

Clearly, the rank and the spectrum of a flat pencil are locally constant. In dimension three, this is possible in three cases:

1. P and Q are identically zero;

1 Or a d + 1-web in R
d , which is almost the same, see [14].
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Fig. 1. 3-Web.

2. P = λQ, where λ is constant;
3. the pencil is Kronecker of rank two.

The first two cases are trivial. So, further we only consider Kronecker pencils of rank two. Further we call such pencils
generic.

3. Basics of web geometry

Definition 7. A 3-web on a plane is three family of smooth curves such that

1. For any point x there is a unique curve from each family passing through x.
2. Curves from different families intersect transversally.

Definition 8. A 3-web is called trivial if it is diffeomorphic to a web given by three families of parallel lines.

Trivial 3-webs are also called hexagonal 3-webs due to the following construction. Take a point O . Let γi be the curve
from the i’th family passing through O . Take a point A on γ1 close to O and consider the curve from the second family
passing through A. This curve intersects γ3 at a point B . Consider the curve from the first family passing through B . This
curve intersects γ2 at a point C . Continuing this procedure, we obtain a polygon ABC D E F G depicted in Fig. 1. In general,
this polygon is not closed. If it is closed for any choice of O and A, then the web is called hexagonal. Obviously, a trivial
web is hexagonal. The inverse is also true.

Theorem 1 (Blaschke). (See [15].) A web is trivial if and only if it is hexagonal.

Now let us introduce the notion of curvature of a web. Suppose that the web is given by level sets of three functions f1,
f2, f3. Let ε = f3(A) − f3(O ). Then it can be shown that

f3(G) − f3(A) = κε3 + · · · ,
so it makes sense to take κ as a measure of “curvature” of a web. Of course, κ depends on the choice of f3. However, the
differential form

θ = κ
∂ f3

∂ f1

∂ f3

∂ f2
d f1 ∧ d f2

depends only on the web itself. We will refer to θ as the Blaschke curvature form.

Theorem 2 (Blaschke). (See [15].) A web is trivial if and only if its curvature form is zero.

The following theorem allows to compute Blaschke curvature.

Theorem 3 (Blaschke). (See [15].) The curvature form of a web given by level sets of f1, f2, f3 is

θ = 2
∂

∂ f1

∂

∂ f2
log

∂ f3/∂ f2

∂ f3/∂ f1
d f1 ∧ d f2.
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4. Gelfand–Zakharevich reduction

Consider a generic pencil Π = {αP + βQ} on a 3-manifold M . Fix a small ball U ⊂ M . Let f , g,h be local Casimir
functions of P , Q, P +Q respectively such that d f , dg , dh do not vanish.

Proposition 1. d f ,dg,dh are pairwise linearly independent at every point.

Proof. Indeed, if two of them are dependant at some point, then the corresponding brackets have coinciding kernels. Two
skew-symmetric forms in R

3 with coinciding kernels are proportional. So, the pencil is not Kronecker. �
Proposition 2. d f , dg, dh are linearly dependent at every point.

Proof. Since f is a Casimir function of P , we have { f , g}p = 0. Since g is a Casimir function of Q, we have { f , g}q = 0.
Therefore, { f , g}p+q = { f , g}p + { f , g}q = 0. Since h is a Casimir function of P + Q, we have { f ,h}p+q = {g,h}p+q = 0.
Consequently, f , g , h commute with respect to P + Q. But since P + Q �= 0, this is only possible if their differentials are
linearly dependent. �

Propositions 1, 2 imply that h is a function of f , g . Now consider the map

π : U →R
2 (1)

given by f , g . Symplectic leaves of P project under this map to level sets of f . Symplectic leaves of Q project to level sets
of g . Finally, symplectic leaves of P + Q project to level sets of h( f , g). Proposition 1 implies that these three families of
curves form a 3-web W (P,Q).

Definition 9. The 3-web W (P , Q ) is called the bi-Hamiltonian reduction of the Poisson pair (P , Q ).

Theorem 4 (Gelfand–Zakharevich). A generic pencil {αP + βQ} on a three-dimensional manifold is locally flat if and only if the web
W (P,Q) is trivial.

Remark 2. This theorem is true in any dimension, provided that generic means Kronecker of corank one. In the analytic
case it was proved by Gelfand and Zakharevich [5,6]. The proof in the C∞ case is due to Turiel [12]. Note that in the
three-dimensional situation this result can be easily proved by elementary means.

5. Curvature form

Definition 10. Let (P,Q) be a generic Poisson pair on a 3-manifold. The curvature of (P,Q) is

Θ(P,Q) = π∗(θ),

where π is the reduction map (1) and θ is the Blaschke curvature of the web W (P,Q).

Theorem 5. Let (P,Q) be a generic Poisson pair on a 3-manifold. Then Θ(P,Q), being written in local coordinates x, y, z, reads

Θ(P,Q) = 2
∑
�

({
z,

div(sgradq z)

�z

}
p

−
{

z,
div(sgradp z)

�z

}
q

)
dx ∧ dy (2)

where

1. � denotes the sum over cyclic permutations of x, y, z;
2. sgradp z and sgradq z are the Hamiltonian vector fields P dz, Qdz respectively;

3. div V is the standard divergence
∑

∂V i/∂xi ;
4. �z is

�z =
∣∣∣∣ {z, x}p {z, x}q

{z, y}p {z, y}q

∣∣∣∣ ;
5. if �x,�y or �z is zero, then the respective term is omitted from the sum.2

2 Note that �x,�y and �z cannot be zero simultaneously, since P and Q are not proportional to each other.
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The proof can be found in Section 10.

Remark 3. Note that Theorem 3 involves third derivatives of f1, f2, f3, while (2) involves only first and second derivatives
of the components of P and Q.

Proposition 3. If R and S are two non-proportional brackets from the pencil {αP + βQ}, then Θ(R,S) = Θ(P,Q).

Proof. We need to show that the curvature does not change when we apply a non-degenerate linear transformation
(P,Q) → (R,S). Formula (2) implies that

1. Θ(Q,P) = Θ(P,Q).
2. Θ(αP,Q) = Θ(P,Q).
3. Θ(P,P +Q) = Θ(P,Q).

Now it suffices to note that these three transformations generate GL(2). �
So, the curvature of a Poisson pencil Π is well-defined. We will denote it by Θ(Π). The following result obviously

follows from Theorems 2 and 4.

Proposition 4. A generic Poisson pencil Π on a 3-manifold is locally flat if and only if Θ(Π) = 0.

6. Torsion-free connection compatible with a Poisson pencil

Theorem 6. Let Π be a generic pencil on a 3-manifold. Then

1. Locally, there exists a (non-unique) torsion-free connection ∇ compatible with the pencil, which means that ∇P = 0 for any
P ∈ Π .

2. For any connection ∇ with this property we have

Θ(Π) = −4 Alt Ric∇,

where Ric∇ denotes the Ricci tensor and Alt means alternation.

So, the curvature of a Poisson pencil can be defined using a torsion-free connection compatible with this pencil. The
proof can be found in Section 11.

Remark 4. For any torsion-free connection, the first Bianchi identity implies that

Alt Ric = 1

2
Tr R

where R is the Riemann curvature tensor. So,

Θ(Π)(X, Y ) = −2 Tr R(X, Y ).

Remark 5. The skew-symmetric part of the Ricci tensor measures the deformation of infinitesimal volume by holonomy
operators. So, if a connection is compatible with a non-degenerate bilinear form, such as a Riemannian metric, then its
Ricci tensor must be symmetric. By this reason, the Ricci tensor of a Riemannian connection is always symmetric. However,
the Ricci tensor of a connection compatible with a degenerate form, such as a Poisson structure on a 3-manifold, is not
necessarily symmetric.

Remark 6. By using a partition of unity, a global torsion-free connection compatible with a generic Poisson pencil can be
constructed.

7. Curvature of linear pencils and the argument translation method

Definition 11. Let g be a Lie algebra and A be a skew-symmetric bilinear form on it. Then A can be considered as a Poisson
tensor on the dual space g∗ . Assume that this tensor is compatible with the Lie–Poisson tensor. In this case, the Poisson
pencil Π(g,A) generated by these two tensors is called the linear pencil associated with the pair (g,A).

The following is well known.
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Proposition 5. A form A on g is compatible with the Lie–Poisson bracket if and only if this form is a Lie algebra 2-cocycle, i.e.

A
([x, y], z

) +A
([y, z], x

) +A
([z, x], y

) = 0

for any x, y, z ∈ g.

Example 1. Let g be a Lie algebra and ξ ∈ g∗ . Then Aξ (x, y) = 〈ξ, [x, y]〉 is a 2-cocycle. The Poisson bracket defined by Aξ

on g∗ is usually refereed to as a “frozen argument” bracket. This bracket is related to the so-called argument translation
method [16,17] which appears in the theory of integrable systems.

For a linear pencil Π(g,A), it is possible to rewrite (2) in the following form.

Θ(Π) = 2
∑
�

A(z,�z) tr(ad z)

�2
z

dx ∧ dy (3)

where

1. x, y, z is any basis in g (treated as a coordinate system in g∗);
2. � denotes the sum over cyclic permutations of x, y, z;
3. �z is

�z =
∣∣∣∣ [z, x] A(z, x)

[z, y] A(z, y)

∣∣∣∣ ;
4. ad z means the adjoint operator ad z = [z,∗].

Remark 7. Note that �z is now a linear function on g∗ , i.e. an element of g, so the expression A(z,�z) is well-defined.

Example 2. If g is semisimple, then tr ad w = 0 for any w ∈ g. So, Π(g,A) is flat for any A.

Example 3. Let g be a real Lie algebra given by

[z, x] = x, [z, y] = ay,

[x, y] = 0

and ξ ∈ g∗ . Consider the pencil Π(g,Aξ ). This pencil is generic if a �= 0 and at least one of the numbers 〈ξ, x〉, 〈ξ, y〉 is not
zero. The curvature is given by

Θ = 2(1 − a2)〈ξ, x〉〈ξ, y〉
a(〈ξ, y〉x − 〈ξ, x〉y)2

dx ∧ dy. (4)

So, for a = ±1 the pencil is flat for any ξ . For a �= ±1 the pencil is not flat for generic ξ . However, it is flat if 〈ξ, x〉 = 0 or
〈ξ, y〉 = 0.

Note that the points in which the denominator of (4) is zero are exactly those in which the pencil is not generic. This is
always so for linear pencils. For non-linear pencils, this is not necessarily the case, see Example 6.

Remark 8. To author’s knowledge, the only known example of a non-flat linear pencil was provided by A. Konyaev [18]. The
dimension of the corresponding Lie algebra is five.

Example 4. Let g be a three-dimensional Lie algebra given by

[x, y] = y,

[z, x] = [z, y] = 0.

A form A on this algebra is a cocycle if A(y, z) = 0. The pencil Π(g,A) is generic if A(x, z) �= 0. The curvature is given by

Θ = 2A(x, y)

A(x, z)y2
dy ∧ dz.
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8. Curvature of Lie pencils

Definition 12. Two Lie algebra structures on a vector space V are called compatible, if any linear combination of them is a
Lie algebra structure again. The set of all linear combinations of two compatible Lie structures is called a Lie pencil.

Analogously, we may say that two Lie structures on V are compatible if they define compatible Poisson brackets on V ∗ .
Obviously, for two Lie brackets to be compatible, it is enough to require that their sum is also a Lie bracket.

Let P,Q be two compatible Lie structures on V . We will denote the corresponding Poisson pencil on V ∗ by Π(V ,P,Q).

Remark 9. Poisson pencils related to Lie pencils also appear in integrable systems. In particular, the Manakov top [19] and
the Clebsch top are bi-Hamiltonian with respect to a certain Lie pencil [20].

For a pencil Π(V ,P,Q), Formula (2) can be rewritten as

Θ(Π) = 2
∑
�

({
z,

tr(adq z)

�z

}
p

−
{

z,
tr(adp z)

�z

}
q

)
dx ∧ dy (5)

where

1. x, y, z is any basis in V (treated as a coordinate system in V ∗);
2. � denotes the sum over cyclic permutations of x, y, z;
3. adp z and adq z denote the adjoint operators of the Lie structures P and Q respectively.

Example 5. Suppose that P is a semisimple Lie structure. Then Π(V ,P,Q) is flat. Indeed, if P is semisimple, then P + εQ
is also semisimple for small ε. Take P and P + εQ as generators of Π . Since tr adp z = tr adp+εq w = 0 for any w ∈ V , the
curvature of Π vanishes.

Example 6. A Lie Pencil is given by

[z, x]p = x, [z, x]q = 0,

[z, y]p = −y, [z, y]q = x + y,

[x, y]p = 0, [x, y]q = 0.

Then

Θ = −4 dx ∧ dy

(x + y)2
,

so the pencil is not flat. This can be proved without computing the curvature, see Example 7. Note that the pencil is not
generic for x = 0, however the curvature form can be continuously extended to the set {x = 0, y �= 0}.

9. Curvature and singularities

It is not typical that a pencil is generic everywhere. As a rule, this condition is satisfied on an open and everywhere
dense set. The complement to this set is the singular set of the pencil, which we denote by Σ .

Let Π be a pencil on a 3-manifold M . First suppose that x ∈ Σ and rank Π(x) = 2. Then there exists a unique up to
proportionality P ∈ Π such that P(x) = 0. The linear part of the Poisson tensor P defines a linear Poisson bracket on TxM .
Now take Q ∈ Π such that Q(x) �= 0. Its restriction to TxM defines a constant Poisson bracket on Tx M . This bracket is
compatible with the bracket given by the linear part of P . Thus we obtain a linear pencil on TxM . This pencil is called the
linearization of Π at x.

Decomposing P and Q in Taylor series and applying (2) we obtain the following.

Proposition 6. If the linearization of a flat pencil is generic, then it is flat.

Example 7. The linearization of the pencil from Example 6 at the point (1,−1,0) is generic but not flat. So, the pencil is
not flat.

The inverse statement to Proposition 6 is not true.

Example 8. The linearization of the pencil from Example 6 at the point (0,1,0) is flat.
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Remark 10. The linearization defined above is a particular case of the so-called λ-linearization defined in [21,22] for studying
local behaviour of bi-Hamiltonian systems. We suggest that a statement analogous to Proposition 6 is true for λ-linearization
of a multidimensional pencil.

Now let x ∈ Σ and rank Π(x) = 0. Then all brackets of the pencil vanish at x. Taking linear parts of any two brackets, we
obtain a Lie pencil. If this Lie pencil is generic and the initial pencil is flat, then the Lie pencil is also flat.

10. Proof of Theorem 5

Let f , g,h be local Casimir functions of P,Q,P +Q respectively such that d f ,dg,dh do not vanish. By Theorem 3, the
Blaschke curvature form of W (P,Q) is given by

θ =
(

2
∂

∂ f

∂

∂ g
log

∂h/∂ g

∂h/∂ f

)
d f ∧ dg.

We need to compute π∗(θ), where π is given by f , g . Let us compute the dx ∧ dy term. Two other terms are computed
analogously. Represent π as the composition of two maps

(x, y, z)
π1−→ ( f , g, z)

π2−→ ( f , g).

We have

Θ(P,Q) = π∗(θ) = π∗
1

(
π∗

2 (θ)
)
.

Denote

� f g = det dπ1 = det

(
∂ f /∂x ∂ g/∂x

∂ f /∂ y ∂ g/∂ y

)
.

Compute � f g . We have

P =
⎛
⎝

0 {x, y}p {x, z}p

{y, x}p 0 {y, z}p

{z, x}p {z, y}p 0

⎞
⎠ .

Since f is a Casimir function of P , we have

d f = μ
({y, z}p, {z, x}p, {x, y}p

)
,

where μ �= 0 is a function (an integrating factor). Analogously,

dg = ν
({y, z}q, {z, x}q, {x, y}q

)
.

Consequently,

� f g = μν�z.

First assume that �z = 0. Since π∗
2 (θ) is proportional to d f ∧ dg , the curvature form Θ(P,Q) is proportional to

d f (x, y, z) ∧ dg(x, y, z). Further,

� f g = �z

μν
= 0,

so there is no dx ∧ dy term in d f (x, y, z) ∧ dg(x, y, z) and in Θ(P,Q).
Now assume that �z �= 0. In this case � f g �= 0, so f , g, z is a well-defined local coordinate system. We have

π∗
2 (θ) =

(
2

∂

∂ f

∂

∂ g
log

∂h/∂ g

∂h/∂ f

)
d f ∧ dg.

To get Θ(P,Q) we need to pass back to the coordinates x, y, z. The dx ∧ dy term of Θ(P,Q) is

Θxy =
(

2� f g
∂

∂ f

∂

∂ g
log

∂h/∂ g

∂h/∂ f

)
dx ∧ dy,

where
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∂

∂ f
= ∂x

∂ f

∂

∂x
+ ∂ y

∂ f

∂

∂ y
= 1

� f g

(
g y

∂

∂x
− gx

∂

∂ y

)
= ν

� f g

(
{z, x}q

∂

∂x
+ {z, y}q

∂

∂ y

)
= ν

� f g
{z,∗}q,

∂

∂ g
= ∂x

∂ g

∂

∂x
+ ∂ y

∂ g

∂

∂ y
= 1

� f g

(
− f y

∂

∂x
+ fx

∂

∂ y

)
= − μ

� f g

(
{z, x}p

∂

∂x
+ {z, y}p

∂

∂ y

)
= − μ

� f g
{z,∗}p.

Since h is a Casimir function of P +Q, we have {z,h}p + {z,h}q = 0, and

∂h/∂ g

∂h/∂ f
= −μ

ν
· {z,h}p

{z,h}q
= μ

ν
.

Consequently,

Θxy =
(

2� f g
∂

∂ f

∂

∂ g
log

μ

ν

)
dx ∧ dy = (L1 − L2)dx ∧ dy,

where

L1 = 2� f g
∂

∂ f

∂

∂ g
logμ,

L2 = 2� f g
∂

∂ f

∂

∂ g
logν.

Let us compute L1. We have

∂

∂ g
logμ = − μ

� f g

(
{z, x}p

μx

μ
+ {z, y}p

μy

μ

)
= − 1

� f g

({z, x}p μx + {z, y}p μy
)
.

Recall that μ{z, x}p = f y and μ{y, z}p = fx , so

∂

∂x

(
μ{z, x}p

) = ∂

∂ y

(
μ{y, z}p

)
, (6)

and

{z, x}p μx + {z, y}p μy = μ

(
∂

∂x
{z, x}p + ∂

∂ y
{z, y}p

)
= μ · div sgradp z.

Consequently,

∂

∂ g
logμ = −μ · div sgradp z

� f g
= −div sgradp z

ν�z
,

and

∂

∂ f

∂

∂ g
logμ = − ∂

∂ f

div sgradp z

ν�z
= M1 + M2,

where

M1 = −div sgradp z

�z
· ∂

∂ f

1

ν
,

M2 = − 1

ν

∂

∂ f

div sgradp z

�z
.

We have

M1 = div sgradp z

ν2�z
· ∂ν

∂ f
= div sgradp z

ν2�z
· ν

� f g

({z, x}q νx + {z, y}qνy
)
.

Analogously to (6), we get

∂

∂x

(
ν{z, x}q

) = ∂

∂ y

(
ν{y, z}q

)
, (7)

and

{z, x}qνx + {z, y}qνy = ν · div sgradq z,
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so

M1 = div sgradp z

ν2�z
· ν

� f g
· ν · div sgradq z = div sgradp z · div sgradq z

�z� f g
.

Further,

M2 = − 1

ν

∂

∂ f

div sgradq z

�z
= − 1

� f g

{
z,

div sgradp z

�z

}
q
.

So,

L1 = 2� f g(M1 + M2) = 2 · div sgradp z · div sgradq z

�z
− 2

{
z,

div sgradp z

�z

}
q
.

To compute L2, we change the order of partial derivatives ∂/∂ f , ∂/∂ g . We get

L2 = 2
div sgradp z · div sgradq z

�z
− 2

{
z,

div sgradq z

�z

}
p
.

So,

Θxy = (L1 − L2)dx ∧ dy = 2

({
z,

div sgradq z

�z

}
p

−
{

z,
div sgradp z

�z

}
q

)
dx ∧ dy.

Remark 11. The most important step of the proof is to introduce the integrating factors ν,μ and use the compatibility
conditions (6), (7). All the rest is a straightforward computation. What is not obvious a priori, is that the integrating factors
ν,μ, which cannot be found explicitly, disappear and do not enter the final formula for Θ .

Also, it helps a lot to change the order of partial derivatives ∂/∂ f , ∂/∂ g when computing L2. Otherwise, second deriva-
tives of ν,μ arise, and the computation becomes very hard.

11. Proof of Theorem 6

Let P,Q be two generators of the pencil. To prove the existence part, choose vector fields X, Y , Z such that

P = X ∧ Y ,

Q = X ∧ Z .

Clearly, such vector fields exist (however, in general, they do not define a coordinate system; if they do, the pencil is flat).
Vector fields X, Y are tangent to the symplectic leaves of P , so [X, Y ] must be a linear combination of X, Y . Analogously,
[X, Z ] is a linear combination of X, Z , and [X, Y + Z ] is a linear combination of X, Y + Z . So,

[X, Y ] = aX + cY ,

[X, Z ] = b X + c Z . (8)

Since P and Q must be covariantly constant, we have

∇w X ∧ Y + X ∧ ∇wY = 0,

∇w X ∧ Z + X ∧ ∇w Z = 0

for any vector field W . These conditions can be written as

∇w X = α(W )X,

∇wY = β(W )X − α(W )Y ,

∇w Z = γ (W )X − α(W )Z , (9)

where α,β,γ are 1-forms. Any connection given by (9) is compatible with the pencil. However, it is not necessarily torsion-
free. A connection is torsion-free if and only if

[U , V ] = ∇u V − ∇vU

for any vector fields U , V . So, (9) is torsion-free if and only if
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[X, Y ] = (
β(X) − α(Y )

)
X − α(X)Y ,

[X, Z ] = (
γ (X) − α(Z)

)
X − α(X)Z ,

[Y , Z ] = (
γ (Y ) − β(Z)

)
X + α(Z)Y − α(Y )Z . (10)

Conditions (8) imply that (10) is solvable with respect to α,β,γ , which proves the first part of the theorem.
The second part of the theorem is proved by writing down both forms in coordinates. To simplify computations, bring P

to a constant form.
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