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DIMERS, NETWORKS, AND CLUSTER INTEGRABLE
SYSTEMS

Anton Izosimov

Abstract. We prove that the class of cluster integrable systems constructed by
Goncharov and Kenyon out of the dimer model on a torus coincides with the one
defined by Gekhtman, Shapiro, Tabachnikov, and Vainshtein using Postnikov’s per-
fect networks. To that end we express the characteristic polynomial of a perfect
network’s boundary measurement matrix in terms of the dimer partition function
of the associated bipartite graph. Our main tool is flat geometry. Namely, we show
that if a perfect network is drawn on a flat torus in such a way that the edges of
the network are Euclidian geodesics, then the angles between the edges endow the
associated bipartite graph with a canonical fractional Kasteleyn orientation. That
orientation is then used to relate the partition function to boundary measurements.

1 Introduction

Background. This paper deals with two a priori different constructions of inte-
grable systems related to cluster algebras. One is due to Goncharov and Kenyon [11]
and is based on the dimer model on a bipartite graph on a torus. The other one is
due to Gekhtman et al. [6] and uses Postnikov’s perfect networks. Our main result
is that these two constructions produce exactly the same class of integrable systems.

Cluster algebras were introduced by Fomin and Zelevinskiy [5]. Gekhtman et al.
[7] defined a family of Poisson structures compatible with the cluster structure. Fock
and Goncharov [3] showed that every X -type (also known as Y -type) cluster variety
has a canonical Poisson structure. Furthermore, in [6, 11] this Poisson structure was
promoted to a completely integrable system. Loosely speaking, both works show that
a cluster structure gives rise to an integrable system provided that the correspond-
ing quiver can be drawn on a torus. The corresponding commuting Hamiltonians
are defined using objects which are in a certain sense dual to the quiver. Namely,
in [11] the dual object is a bipartite graph, while in [6] it is a perfect network.
Goncharov and Kenyon [11] conjectured that “in the cases of interest ... the models
are essentially equivalent.” In the present paper we show that the two models are
in fact equivalent in all cases. This generalizes a series of examples known to fit in
both constructions, with the best known example being Schwartz’s pentagram map
[16]. The cluster structure of the pentagram map was found in [10]. Its connection
with networks is described in [6]. A dimer model interpretation is found in [1, 4].
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Fock and Marshakov [4] also showed that the class of Goncharov–Kenyon systems
coincides with the one given by central functions on the loop group of GLn. As
a corollary, we have three equivalent descriptions of the same class of integrable
systems: using the dimer model, using networks, and using Poisson-Lie groups. To
get from the network description to Poisson-Lie description, one can also use the
Poisson property of the boundary measurement map established in [9].

The Goncharov–Kenyon system. To state our main result, we first briefly
describe the two constructions. We start with the Goncharov–Kenyon system based
on the dimer model [11]. A toric graph Γ is a graph embedded in a 2-torus T 2 in
such a way that its faces, i.e. the connected components of its complement T 2\Γ, are
contractible. A graph is bipartite if its vertices are colored black and white in such a
way that each edge has one white vertex and one black vertex. In the present paper
we only consider bipartite graphs that are leafless, i.e. have no univalent vertices.
A dimer cover of a bipartite graph (or a perfect matching) is a set of edges with
the property that every vertex is adjacent to a unique edge of the cover. A weighted
graph is a graph with numbers assigned to edges (in the present paper the weights
are assumed to be complex). Given a dimer cover of a weighted bipartite graph Γ,
its weight is defined as the product of weights of its edges. The sum of weights of all
dimer covers of Γ is called the dimer partition function. It can be computed as the
determinant of the so-called Kasteleyn matrix [12].

The Goncharov–Kenyon Hamiltonians are basically given by the partition func-
tion, modified to take into account the topology of each dimer cover. Namely, assume
we are given a toric weighted bipartite graph Γ. Then, since the edges of Γ can be
canonically oriented from white to black, its any dimer cover may be viewed as an
integral 1-chain. Furthermore, all such chains have the same boundary, namely the
sum of black vertices minus the sum of white vertices. In other words, the differ-
ence of two dimer covers is a cycle. Therefore, one can speak about the homology
class of a dimer cover. The Goncharov–Kenyon Hamiltonian Hξ corresponding to
a class ξ ∈ H1(T 2,Z) is defined as the sum of weights of all dimer covers in the
class ξ. These Hamiltonians are considered as functions on the space of edge weights
up to gauge transformations. A gauge transformation is multiplication of weights of
all edges adjacent to a given vertex by a given number. Viewing the space of edge
weights as the space of 1-cochains, one identifies its quotient by gauge transforma-
tions with the cohomology group H1(Γ,C∗). Since a gauge transformation multiplies
all Goncharov–Kenyon Hamiltonians Hξ by the same number, the Hamiltonians are
well-defined as functions on H1(Γ,C∗), up to a common factor. Furthermore, it is
shown in [11] that the space H1(Γ,C∗) has a natural Poisson structure such that after
a suitable normalization the Hamiltonians Hξ Poisson-commute. Moreover, if Γ sat-
isfies a certain minimality condition, then the Hamiltonians Hξ define a completely
integrable system. In what follows, we will not care about completeness and use the
term integrable system to refer to any collection of Poisson-commuting functions.
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Just like the partition function, Goncharov–Kenyon Hamiltonians can be com-
puted from a certain determinant. Namely, as shown in [14] (see also Sect. 2 below),
one can introduce a parameter-dependent version of the Kasteleyn matrix in such a
way that its determinant reads

K(λ, μ) =
∑

(i,j)
±H(i,j)λ

iμj

where the summation is over all classes (i, j) ∈ H1(T 2,Z) which contain dimer covers,
and H(i,j) is the sum of weights of all dimer covers in the class (i, j). The sign in
front of Hi,j depends only on the parity of i and j. Signs corresponding to three of
the four possible parities are positive, while the fourth sign is negative. A particular
combination of signs depends on the choice of a discrete spin structure. Polynomials
K(λ, μ) corresponding to each of the four different spin structures can be obtained
from each other by means of a substitution of the form K(λ, μ) �→ K(±λ, ±μ).
The polynomial K(λ, μ) is called the characteristic polynomial of the toric bipartite
graph Γ. Up to signs, the characteristic polynomial is the generating function of
Goncharov–Kenyon Hamiltonians. It is well-defined up to a monomial factor.
The Gekhtman–Shapiro–Tabachnikov–Vainshtein system. We now describe
the construction of Gekhtman et al. [6]. It is based on the notion of a perfect network,
introduced in the case of a disk by Postnikov [15]. A perfect network is a weighted
directed graph whose vertices are of two type: white and black. White vertices have
exactly one incoming edge, while black vertices have exactly one outgoing edge. As
with bipartite graphs, we only consider leafless networks. A toric perfect network is
a perfect network which is at the same time a toric graph. Given such a network, an
ideal rim is a simple loop on the torus disjoint from the set of vertices and intersecting
the edges in such a way that all intersections have the same sign. Cutting the torus
along a rim, one obtains a network on a cylinder (when an edge is cut into two, the
weights of the newly formed edges are defined in such a way that their product is
equal to the weight of the initial edge). It is no longer perfect in the above sense,
because in addition to black and white vertices it has uncolored ones. Each uncolored
vertex is either a source or a sink and is located at the boundary of the cylinder.
Moreover, all sources are located at one boundary component, while all sinks are at
the other one. Such a network is called a perfect network on a cylinder. Given such
a network, one defines its boundary measurement matrix as follows:

Mij(λ) :=
∑

γ
(−1)c(γ)λind(γ)wt(γ).

Here the sum is taken over all directed paths γ from source i to sink j. The weight
wt(γ) of γ is the product of weights of all edges along γ. The number c(γ) ∈ Z is
called the concordance number of γ and is basically the self-intersection index mod
2 (see Sect. 5). The number ind(γ) ∈ Z is called the index of γ and is, roughly
speaking, the number of times γ goes around the cylinder. More precisely, given a
toric network, one considers a simple cycle which has a unique intersection with the
rim. Such a cycle is called a cut. The image of the cut in the corresponding cylindric
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←→

Figure 1: A transformation of bipartite graphs yielding equivalent graphs.

network is a path connecting the two boundary components. We orient the cut in
such a way that it starts at the component containing the sources and ends at the
component containing the sinks. The index of a directed path is then defined as its
intersection number with the cut.

In the presence of directed cycles the entries of the boundary measurement matrix
may be infinite series. However, they can be always rewritten as rational functions.
This is proved in [15] in the disk case and [9] in the cylinder case.

The Gekhtman–Shapiro–Tabachnikov–Vainshtein Hamiltonians are, basically,
coefficients of the characteristic polynomial of the boundary measurement matrix.
More precisely, since the characteristic polynomial is a rational function of λ, the
Hamiltonians are defined as the coefficients of its numerator. It is shown in [6]
that they commute with respect to a Poisson structure on the space of edge weights
defined in [8, 9]. Furthermore, the Hamiltonians and the Poisson structure are invari-
ant under gauge transformations, so both descend to the quotient space, which is
again the cohomology group of the toric network with coefficients in C

∗ (also known
as the space of face and trail weights). Our main result is that the so obtained
integrable system on the cohomology coincides with the Goncharov–Kenyon system.
The coincidence of Poisson structures was already noted in [11]. Here we will prove
that the Hamiltonians coincide too.
From networks to bipartite graphs. To give a precise statement of our result,
we need to explain how to pass from a perfect network to a bipartite graph. We say
that two toric bipartite graphs are equivalent if they are related by a sequence of 2-
valent vertex removals or additions, see Fig. 1 (there is an analogous transformation
with opposite vertex colors). Clearly, the cohomology groups of equivalent graphs
are canonically isomorphic. Moreover, as shown in [11], this isomorphism identifies
the corresponding Goncharov–Kenyon integrable systems.

Similarly, we say that two perfect networks are equivalent if they are related by a
sequence of the following trasformations or their inverses: (a) Insertion of a 2-valent
vertex of any color in the middle of any edge. (b) Contraction of a unicolored edge
which is not a loop. (c) Reversal of an oriented cycle. As with bipartite graphs,
cohomology groups of equivalent networks are isomorphic. Furthermore, we will see
below that integrable systems associated with, in some sense, generic networks from
a given equivalence class are also isomorphic to each other.

Now, define a map from the set of perfect toric networks to the set of bipartite
toric graphs as follows: given a perfect network, insert an opposite color vertex
in the middle of every unicolored edge, and forget the orientations. Note that a
bipartite graph obtained in this way comes equipped with a dimer covering. The
latter is defined by the edges that were oriented from black to white before we
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forgot the orientations. So we actually have a map from perfect networks to bipartite
graphs admitting a dimer covering. It is easy to see that this map is a bijection at
the level of the above defined equivalence classes. Also note that if N is a perfect
network, and Γ is the associated bipartite graph, then we have a natural isomorphism
H1(N ,C∗) � H1(Γ,C∗).
The main result. Given a perfect toric network, one can define its boundary
measurement matrix, provided the network admits an ideal rim. We will call perfect
networks which have an ideal rim admissible. As follows from [6, Proposition 4.2],
there is an admissible perfect network in every equivalence class.

Theorem 1.1. Consider an admissible perfect toric network N with a chosen ideal
rim and cut, and let M(λ) be its boundary measurement matrix. Let also Γ be the
toric bipartite graph corresponding to N , and let Ψ: H1(N ,C∗) → H1(Γ,C∗) be the
natural isomorphism of cohomology groups. Then, for an appropriate choice of a
spin structure, one has

det(I − μM(λ)) = Ψ∗
(

K(λ, μ)
K(λ, 0)

)
,

where K(λ, μ) is the characteristic polynomial of Γ written in the homology basis
given by the rim and cut of N and normalized in such a way that it is a polynomial
in μ not divisible by μ.

It follows that while the Goncharov–Kenyon system is given by the coefficients
of K(λ, μ), the Gekhtman–Shapiro–Tabachnikov–Vainshtein system is given by
K(λ, μ)/Q(λ), where Q(λ) is the greatest common divisor of K(λ, μ) and K(λ, 0). In
particular, if the two latter polynomials are coprime (which is equivalent to saying
that K(λ, μ) is not divisible by a non-trivial polynomial of λ), then the Gekhtman–
Shapiro–Tabachnikov–Vainshtein system coincides with the Goncharov–Kenyon sys-
tem. Since K(λ, μ) has only finitely many irreducible factors, this can be always
arranged by adjusting the rim direction. This is always possible, because as follows
from [6, Proposition 4.2], any homology class on a torus can be taken as the rim
direction for a suitable network from a given equivalence class. Therefore, we obtain
the following:

Corollary 1.2. Given a perfect toric network N , one can choose an equivalent
admissible network N ′ so that for a certain rim direction the Gekhtman–Shapiro–
Tabachnikov–Vainshtein system associated with N ′ coincides with the Goncharov–
Kenyon system associated with the bipartite graph Γ corresponding to N .

Conversely, given a toric bipartite graph Γ, one can find an orientation turn-
ing it into an admissible perfect network N , so that for a certain rim direction
the Gekhtman–Shapiro–Tabachnikov–Vainshtein system associated with N coincides
with the Goncharov–Kenyon system associated with Γ.

Theorem 1.1 assumes a particularly simple form when the network N is itself
bipartite. In that case, Γ is basically the same graph as N , with the only difference
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Figure 2: A perfect toric network.
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Figure 3: Dimer covers of the bipartite graph shown in Fig. 2.

that while N has a non-trivial orientation, all edges of Γ are thought of as oriented
from white to black. As a result, the map Ψ: H1(N ,C∗) → H1(Γ,C∗) boils down to
the following map between edge weight spaces: replace all weights of black-to-white
edges by their reciprocals while keeping all weights of white-to-black edges intact,
see Example 1.3 below.

Example 1.3. Figure 2 shows a perfect toric network N (the opposite sides of the
square are identified). Choose the rim and cut as shown in the figure and label the
sources and sinks from top down. Denote the weight of each edge ei by xi. Then the
boundary measurement matrix is

M(λ) =
(

x3x5 x2x4x6 + x1x4x6λ
0 x4x6

)
.

Consider now the associated bipartite graph Γ. It is the same graph as N but without
orientations. It has four dimer covers shown in Fig. 3. Under each cover we provide
its weight and homology class (the homology classes are defined up to shift). One
can choose the spin structure so that the characteristic polynomial reads

K(λ, μ) = x4x5 − (x3x4 + x5x6)μ + x3x6μ
2.

Then

K(λ, μ)
K(λ, 0)

= 1 −
(

x3

x5
+

x6

x4

)
μ +

x3x6

x4x5
μ2 =

(
1 − x3

x5
μ

)(
1 − x6

x4
μ

)
.



GAFA DIMERS, NETWORKS, AND CLUSTER INTEGRABLE SYSTEMS

The natural isomorphism Ψ: H1(N ,C∗) → H1(Γ,C∗) is induced by the following
map between edge weight spaces:

(x1, x2, x3, x4, x5, x6) �→ (x1, x2, x3, x
−1
4 , x−1

5 , x6),

so

Ψ∗
(

K(λ, μ)
K(λ, 0)

)
= (1 − x3x5μ)(1 − x4x6μ) = det(I − μM(λ)).

Note that in this example K(λ, μ) is not divisible by a non-trivial polynomial of
λ, so the two integrable systems coincide. The corresponding Hamiltonians are given
by the sum and product of the functions on the cohomology given by pairing with
the cycles e3+e5 and e4+e6. This is, however, no longer the case if we switch the rim
with the cut. In this new basis, the dimer characteristic polynomial is a polynomial
of λ, so the characteristic polynomial of the boundary measurement matrix is trivial.
And indeed, there is a single source and a single sink, with no directed paths going
from the source to the sink. So the boundary measurement matrix vanishes and
det(I − μM(λ)) = 1. In this case, the Goncharov–Kenyon system is still the same
(as it is basis independent), while the Gekhtman–Shapiro–Tabachnikov–Vainshtein
system is trivial.

Outline of the proof. The rest of the paper is devoted to the proof of Theorem
1.1. Our proof strategy is as follows. First, we know that boundary measurements do
not change when we insert 2-valent vertices. So, it is sufficient to prove the theorem
for bipartite networks. Moreover, one can assume that after cutting the torus along
the rim all vertices connected to sources are white, while all vertices connected to
sinks are black. This again can be arranged by inserting additional vertices. Finally,
inserting additional vertices if needed, one can assume that the network can be
drawn on a flat torus in such a way that all edges are straight lines, and moreover
all edges intersecting the rim are parallel to each other. This flat structure is the
main tool we use to establish the equivalence of two constructions. Namely, we
show that if a bipartite perfect network is drawn on a flat torus, then the angles
between its edges endow it with a canonical fractional Kasteleyn orientation. This
orientation, on one hand, determines the concordance numbers needed to calculate
the boundary measurement matrix, and on the other hand allows one to compute the
dimer characteristic polynomial. As a result, we obtain the stated relation between
the two objects.

2 Determinantal Expression for the Characteristic Polynomial of
the Dimer Model

In this section we recall the determinantal description of the characteristic polyno-
mial K(λ, μ) of the dimer model. Our approach is similar to that of [13, Section 2.1]
and [4, Section 5.6].
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Kasteleyn orientations and markings. Consider a toric bipartite graph Γ. For
notational convenience, assume that every face of Γ is an embedded polygon (if not,
then the closure of every face f of Γ can still be thought as the image of a polygon
f ′ under a cellular map, and in the following definitions instead of counting vertices
and edges of f one needs to count vertices and edges of f ′).

Definition 2.1. An orientation of a toric bipartite graph is called a Kasteleyn ori-
entation if it satisfies one of the following equivalent conditions:

1. For every face, the number of clockwise oriented boundary edges is odd (since
every face of a bipartite graph has even number of vertices, this is equivalent to
saying that the number of counter-clockwise oriented boundary edges is odd).

2. Every 4k-gonal face has odd number of black-to-white oriented edges (and hence
odd number of white-to-black oriented edges), while every (4k + 2)-gonal face
has even number of black-to-white oriented edges (and hence even number of
white-to-black oriented edges).

Definition 2.2. A Kasteleyn marking on a toric bipartite graph is an assignment
of ±1 to every edge such that for every face f the product of signs over its edges is
equal to (−1)l(f)/2+1 where l(f) is the number of vertices of f .

Kasteleyn markings are in one-to-one correspondence with Kasteleyn orientations.
To get a Kasteleyn marking from a Kasteleyn orientation, one assigns 1 to edges
oriented from white to black, and −1 to edges oriented from black to white.
The Kasteleyn operator and characteristic polynomial. Consider a weighted
toric bipartite graph Γ. Choose some Kasteleyn orientation (equivalently, Kasteleyn
marking) of Γ. Consider the lift Γ̃ of Γ to the universal covering of the torus, and
let B (respectively, W ) be the set of black (respectively, white) vertices of Γ̃. The
Kasteleyn operator K : CB → C

W between the corresponding function spaces is
defined as follows. For a white vertex w ∈ W , let e1, . . . , em be the edges of Γ̃
incident to w, and let b1, . . . , bm be their other endpoints. For an edge e of Γ̃, denote
by wt(e) the weight of e, and by k(e) the Kasteleyn marking of e (the weights and
markings for the covering Γ̃ are defined by pulling back the corresponding objects
from Γ). Then, for a function g : B → C, one sets

(K(g))(w) :=
∑m

j=1
k(ej)wt(ej)g(bj).

Let γ1, γ2 be simple oriented cycles on the torus intersecting at one point and disjoint
from the vertices of Γ. Their homology classes form a basis in H1(T 2,Z) and also
give rise to a basis T1, T2 of the group of deck transformations for the universal
covering of the torus. Let C

B
λ,μ := {g ∈ C

B | T ∗
1 g = λg; T ∗

2 g = μg} be the space of
quasi-periodic functions on black vertices with monodromies λ, μ. Analogously, one
defines the space C

W
λ,μ of quasi-periodic functions on white vertices. The Kasteleyn

operator restricts to a linear map C
B
λ,μ → C

W
λ,μ, which we denote by K(λ, μ). Note

that the dimension of CB
λ,μ is equal to the number of black vertices of Γ, while the
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dimension of CW
λ,μ is equal to the number of white vertices, so the dimensions are the

same as long as the graph Γ admits at least one dimer covering (which we from now
on assume to be the case). In particular, the determinant of the operator K(λ, μ) is
well-defined.

Definition 2.3. The characteristic polynomial of Γ (relative to the homology basis
given by γ1, γ2) is

K(λ, μ) := detK(λ, μ).

As we show below, for a suitable choice of bases in the spaces C
B
λ,μ and C

W
λ,μ this

function is a Laurent polynomial in terms of λ, μ. Since the zero locus of K(λ, μ)
in the torus (C∗)2 is basis-independent, it follows that K(λ, μ) is well-defined up
to a monomial factor. Furthermore, up to a monomial factor it coincides with the
characteristic polynomial defined in the introduction, i.e. it is a sign-twisted gener-
ating function of sums of weights of dimer covers in each homology class. The latter
statement is essentially the content of Kasteleyn’s theorem [12].

The bases in the spaces C
B
λ,μ and C

W
λ,μ are constructed as follows. Number the

black and white vertices of Γ by 1, . . . , n (recall that the numbers of black and
white vertices are assumed to be the same). Choose a fundamental domain Ω of
the universal covering of the torus bounded by preimages of the cycles γ1, γ2. Let
gb
i : B → C be the function that takes the value 1 at the vertex bi ∈ Ω corresponding

to the black vertex i of Γ, and value 0 at other black vertices b ∈ Ω. Then gb
1, . . . , g

b
n

is a basis in C
B
λ,μ. Furthermore, the same choice of a fundamental domain determines

a basis gw
1 , . . . , gw

n in C
W
λ,μ. The matrix of the operator K(λ, μ) written in those bases

is given by

Kij(λ, μ) =
∑

e
k(e)wt(e)λ〈e,γ2〉μ〈γ1,e〉 (1)

where the sum is taken over all edges going from i’th white to j’th black vertex
of Γ, and 〈a, b〉 stands for the intersection number of the curves a, b. We assume
that all intersections are transversal, and that the orientation is chosen in such a
way that 〈γ1, γ2〉 = 1. As before, the edges of Γ are oriented from white to black.
The matrix Kij(λ, μ) is a version of the magnetically altered Kasteleyn matrix of
[14], with slightly different sign conventions. It is manifestly a Laurent polynomial
in λ, μ, and hence so is its determinant K(λ, μ).
Dependence of the characteristic polynomial on the Kasteleyn orienta-
tion. Notice that the ratio of two Kasteleyn markings is a Z2-valued 1-cocycle on
the torus, so by choosing a reference marking one can identify the space of Kasteleyn
markings with the space of Z2-valued 1-cocycles for the cellular decomposition of
T 2 given by the graph Γ. Furthermore, it is easy to see that changing a Kasteleyn
marking by a coboundary does not affect the characteristic polynomial K(λ, μ) (up
to a factor independent of λ and μ). So, the characteristic polynomial only depends
on the cohomology class of a Kasteleyn marking, also known as a discrete spin struc-
ture [2]. By choosing a reference spin structure, one can identify the space of spin
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structures with the cohomology group H1(T 2,Z2). Upon a change of the spin struc-
ture, the characteristic polynomial transforms as K(λ, μ) �→ K(±λ, ±μ). There are
four different spin structures, one for each of the four possible combinations of signs.

3 A Fractional Kasteleyn Marking from Turning Numbers

Fractional Kasteleyn markings. In order to relate the characteristic polyno-
mial of the dimer model to boundary measurements, we extend the definition of
a Kasteleyn orientation/marking to allow for fractional markings. The following is
equivalent to the notion of a Kasteleyn line bundle with connection defined in [11,
Section 1.4].

Definition 3.1. A fractional Kasteleyn marking on a toric bipartite graph is an
assignment of a non-zero complex number to every edge such that:

1. For every face f the alternating product of markings around f is equal to
(−1)l(f)/2+1 where l(f) is the number of vertices of f .

2. The alternating product of markings over any cycle is ±1 (this follows from
the first condition for contractible cycles).

It is clear that one can define the Kasteleyn operator and the characteristic
polynomial using a fractional Kasteleyn marking instead of an integral one. The
characteristic polynomial is still well-defined, up to a transformation of the form
K(λ, μ) �→ K(±λ, ±μ).
A canonical fractional Kasteleyn marking from turning numbers. We now
give a construction of a special fractional Kasteleyn marking which is well suited
for our purposes. From now on, we assume that the graph Γ is drawn on a flat
torus, with straight edges, and is obtained from a bipartite network. The latter
can be reformulated by saying that Γ is endowed with a perfect orientation, i.e.
an orientation such that any white vertex has exactly one incoming edge, and any
black vertex has exactly one outgoing edge. Such a structure is equivalent to a dimer
cover. Indeed, given a dimer cover one obtains a perfect orientation by orienting all
edges of the cover from black to white, and all other edges from white to black. And
conversely, black-to-white edges of a perfect orientation form a dimer cover.

Given a bipartite graph on a flat torus and its perfect orientation, one obtains
a fractional Kasteleyn marking as follows. Consider an edge e oriented from white
to black. Such an edge has a unique predecessor e− and a unique successor e+ (see
Fig. 4). Let α− ∈ (−π, π) be the signed angle between the vectors e− and e (note
that the angle between two successive edges cannot be equal to π). Likewise, let
α+ ∈ (−π, π) be the signed angle between e and e+.

Definition 3.2. The turning number of a white-to-black edge e is

turn(e) := exp
(

i
2
(α− + α+)

)
.
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turn(e) := exp
(
i
2
(α− + α+)

)
.

e−

α−
e

e+
α+

Figure 4: To the definition of the turning number.
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Figure 5: Turning numbers in a directed cycle.

Proposition 3.3. The assignment of the turning number to each white-to-black
edge and −1 to each black-to-white edge is a fractional Kasteleyn marking.

Remark 3.4. Recall that in terms of Kasteleyn orientations, −1 means from black
to white. That means we keep the orientation of black-to-white edges unchanged.
As for white-to-black edges, they get fractional orientations.

The proof of Proposition 3.3 is given at the end of this section.

Example 3.5. Assume that all edges of a face f are oriented in the same direction.
Then, since every second edge is white-to-black, and every other edge is black-to-
white, the alternating product of markings is equal to the product of turning numbers
of white-to-black edges times (−1)l(f)/2. Furthermore, for any white-to-black edge e
of f we have

turn(e) = exp
(

i
2
(ext+(e) + ext−(e))

)
,

where ext±(e) are exterior angles of f adjacent to e, see Fig. 5. And since the sum of
all exterior angles is 2π, the product of turning numbers is exp(πi) = −1. Therefore,
the alternating product of all markings is indeed (−1)l(f)/2+1.

Example 3.6. Consider a face shown in Fig. 6. Here α, β, γ, δ, φ, ψ ∈ [0, π) are
unsigned angles. The turning numbers of white-to-black edges are



A. IZOSIMOV GAFA

e3

α e2

e4

e1

β
γ

δ
φ

f

ψ

Figure 6: To Example 3.6.

Figure 7: A perfect orientation which is a Kasteleyn orientation.

turn(e1) = exp
(

− i
2
(β + δ)

)
, turn(e2) = exp

(
i
2
(γ − α)

)
,

turn(e4) = exp
(

i
2
(φ − ψ)

)
,

so the alternating product of markings is

−turn(e1)turn(e3)
turn(e4)

= − exp
(

i
2
(−(γ + β) − (δ + φ) + α + ψ)

)
.

The sum of two exterior angles of a quadrilateral is equal to the sum of two non-
adjacent interior angles, so the latter expression is equal to −1, in agreement with
Proposition 3.3.

Example 3.7. Consider a perfect orientation of a square grid on a torus shown
in Fig. 7. Here all black-to-white edges are parallel to each other, so the turning
number of every white-to-black edge is equal to 1. Therefore, the associated fractional
Kasteleyn orientation is actually integral and coincides with the perfect orientation.
The given perfect orientation is indeed Kasteleyn, since every face has exactly one
black-to-white edge.

Example 3.8. Figure 8 shows another perfect orientation of the square grid. Labels
next to edges show the associated fractional Kasteleyn marking. The product of
markings around every face is −1. It is also easy to see that the product of markings
along any cycle is ±1. So this is indeed a Kasteleyn marking.
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Figure 8: A perfect orientation of the square grid and the associated Kasteleyn marking.

To prove Proposition 3.3, we first establish a lemma. Say that a vertex v of a
face f is a switch if the edges of f adjacent to v have opposite orientations.

Lemma 3.9. Let bw(f) be the number of black-to-white edges of f . Then the number
of switches is given by

s(f) = l(f) − 2bw(f).

Proof of the lemma. First assume that there are no switches. Then the boundary
of f is a directed cycle half of whose edges are oriented white-to-black, and half
black-to-white. So l(f) = 2bw(f), and the desired formula holds. Now assume that
there is at least one switch. Then the switches split the boundary of f into s(f)
oriented intervals. Every interval starts at a white vertex and ends at a black one (it
is important that we have no univalent vertices, otherwise this would not be true),
and hence has an odd number 2k + 1 edges, k of which are black-to-white. So, the
contribution of each interval to the quantity l(f) − 2bw(f) is 1, and l(f) − 2bw(f)
is equal to the number of intervals, i.e. s(f). �	
Proof of Proposition 3.3. Consider a face f . The alternating product of markings
around f is (−1)bw(f) times a product of terms of the form turn(ej)±1 where ej are
white-to-black edges of f . Furthermore, since every angle that contributes to the
latter product is between edges that share a vertex, one can break that product
down into terms corresponding to individual vertices. So, the alternating product
of markings is (−1)bw(f) times a certain product over vertices. The contribution of
each vertex v depends on whether v is a switch. If not, then the contribution of v
is exp( i

2ext(v)) where ext(v) is the exterior angle of f at v (cf. Example 3.6). If v
is a switch, then the contribution is exp(− i

2 int(v)) where int(v) = π − ext(v) is the
interior angle at v. Since the sum of exterior angles is 2π, the total contribution of
all vertices is − exp

(−πi
2 s(f)

)
. By Lemma 3.9, this rewrites as

− exp
(

−πi
2

(l(f) − 2bw(f))
)

= (−1)l(f)/2+bw(f)+1

so the product of all markings around f is indeed (−1)l(f)/2+1.
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For an arbitrary cycle, the argument is similar, but in that case the contribution
of a switch is either exp(− i

2 int(v)), or exp(− i
2(int(v)−2π)), while the sum of exterior

angles may be an arbitrary multiple of 2π. So, in general the product of markings
is ±1. �	

4 The Boundary Path Matrix and its Characteristic Polynomial

Characteristic polynomial of the boundary path matrix for an arbitrary
network. Consider an arbitrary finite network (i.e. a weighted directed graph, not
necessarily embedded) N . The weighted path matrix of N is the matrix whose (i, j)
entry is the formal sum of weights of all directed paths going from i’th to j’th vertex
[17]. The entries of that matrix are formal series in terms of the weights which are
actually rational functions. Indeed, let A be the weighted adjacency matrix of N ,
i.e. the matrix whose (i, j) entry is the sum of weights of edges going from i’th to
j’th vertex. Then the weighted path matrix is I + A + A2 + · · · = (I − A)−1.

Now assume that N has n distinguished labeled univalent sources and and n
distinguished labeled univalent sinks (there may be other sources and sinks as well,
but in what follows by sources and sinks we mean these distinguished ones). We
assume that the sources cannot be directly connected to sinks. Define the boundary
path matrix B as the matrix whose (i, j) entry is the formal sum of weights of all
directed paths going from i’th source to j’th sink. It is a submatrix of the weighted
path matrix. The proposition below gives a formula for the characteristic polynomial
of B in terms of certain adjacency matrices. Consider the network N̄ (μ) obtained
from N by gluing sources to the corresponding sinks, deleting the obtained 2-valent
vertices, and defining the weight of every newly formed edge as the product of weights
of two edges of N it came from times μ. Let Ā(μ) be the weighted adjacency matrix
of N̄ (μ).

Proposition 4.1. One has

det(I − μB) =
det(I − Ā(μ))
det(I − Ā(0))

.

Proof. Call vertices of N that are neither sources nor sinks internal. Let m be their
number. Let also X be the n×m matrix whose entries are the weights of edges going
from sources to internal vertices, and let Y be the m × n matrix whose entries are
the weights of edges going from internal vertices to sinks. Consider the network N̂
obtained from N by removing sources and sinks (along with adjacent edges), and
let Â be its weighted adjacency matrix. Then, by construction of the network N̄ (μ),
we have

Ā(μ) = Â + μY X. (2)

Let also Ŵ = (I − Â)−1 be the weighted path matrix of the network N̂ . Then (2)
implies

Ŵ (I − Ā(μ)) = Ŵ (I − Â) − μŴY X = I − μŴY X. (3)
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Further, observe that any path in N going from a source to a sink can be uniquely
represented as a concatenation of three paths: a path of length 1 starting at a source,
a path in N̂ , and a path of length 1 ending at a sink. Therefore, we have B = XŴY ,
and

I − μB = I − μXŴY. (4)

Now, using that det(I + PQ) = det(I + QP ) for any n × m matrix P and m × n
matrix Q, from (3) and (4) we get that

det(Ŵ (I − Ā(μ))) = det(I − μB).

Since Ŵ = (I − Â)−1 and Â = Ā(0), the result follows. �	
Characteristic polynomial of the boundary path matrix for a cylin-
dric/toric network. Now assume that N is embedded in a cylinder, with sources
and sinks at the opposite boundary components. Assume also that N is endowed
with a cut, i.e. a distinguished path connecting the boundary components which
becomes a cycle when the boundary components are glued together in such a way
that every source is identified with the corresponding sink. In that case, the weight
of a path γ is defined as the product of weights of its edges multiplied by λind(γ)

where the index ind(γ) of γ is defined as the intersection number of γ with the cut.
The corresponding boundary path matrix B(λ) can be viewed as the unsigned ver-
sion of the boundary measurement matrix. Note that this definition of the boundary
path matrix reduces to the one given above if we multiply the weights of edges of
N crossing the cut by λ±1, depending on the sign of the intersection. As a result,
we obtain the following formula:

Corollary 4.2. Consider a network N on a torus, with a chosen ideal rim and cut.
Let B(λ) be the boundary path matrix of the corresponding network on a cylinder,
and let A(λ, μ) be the adjacency matrix of the network N (λ, μ) obtained from N by
multiplying the weights of edges crossing the cut by λ±1 (depending on the sign of
the intersection) and weights of edges crossing the rim by μ. Then

det(I − μB(λ)) =
det(I − A(λ, μ))
det(I − A(λ, 0))

.

Proof. Apply Proposition 4.1 to the network obtained from N by cutting the torus
along the rim and multiplying the weights of edges crossing the cut by λ±1 (as usual,
when an edge is cut into two, the weights of the newly formed edges are defined in
such a way that their product is equal to the weight of the initial edge). �	
Characteristic polynomial of the boundary path matrix for a bipartite
perfect network. In what follows, we will need a version of Corollary 4.2 for a
bipartite perfect network. First, consider an arbitrary bipartite perfect network N
(not necessarily embedded). Label the vertices in such a way that the unique edge
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starting at i’th black vertex ends at i’th white vertex. Define the bipartite adjacency
matrix A as follows: its (i, j) entry is the sum of weights of edges connecting the
i’th white vertex with j’th black vertex (the edges do not have to be oriented from
white to black). Let Abw be the diagonal part of A (corresponding to black-to-white
edges), and Awb = A−Awb be the off-diagonal part (corresponding to white-to-black
edges). Then, the weighted adjacency matrix of N (as defined above) is

A =
(

0 Abw

Awb 0

)
.

So,

det(I − A) = det(I − AbwAwb), (5)

and the result of Corollary 4.2 can be restated as follows:

Corollary 4.3. Consider a bipartite perfect network N on a torus, with a chosen
ideal rim and cut. Let B(λ) be the boundary path matrix of the corresponding net-
work on a cylinder, and let A(λ, μ) be the bipartite adjacency matrix of the network
N (λ, μ) obtained from N by multiplying the weights of edges crossing the cut by λ±1

(depending on the sign of the intersection) and weights of edges crossing the rim by
μ. Then

det(I − μB(λ)) =
det(I − Abw(λ, μ)Awb(λ, μ))
det(I − Abw(λ, 0)Awb(λ, 0))

,

where Abw(λ, μ) is the diagonal part of A(λ, μ) (corresponding to black-to-white
edges), while Awb(λ, μ) is the off-diagonal part of A(λ, μ) (corresponding to white-
to-black edges).

Proof. This follows from (5) and Corollary 4.2. �	

5 Proof of the Main Result

In this section we prove Theorem 1.1. The strategy of the proof is as follows. We
first show that the boundary measurement matrix of a perfect toric network is equal
to the boundary path matrix of the same network but with modified weights. This
allows us to use the formula provided by Corollary 4.3 to express the characteristic
polynomial of the boundary measurement matrix. The second step is to relate the
right-hand side of that formula to the characteristic polynomial of the dimer model.
That is done using Proposition 3.3.

As explained in the introduction, it is sufficient to prove Theorem 1.1 for a
bipartite network drawn on a flat torus. Moreover, one can assume that all edges
crossing the rim are parallel to each other and oriented from black to white.
The boundary measurement matrix as a path matrix. The difference between
the boundary measurement matrix M(λ) and the boundary path matrix B(λ) is the
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source

sink

Figure 9: Closing up a path.

presence of signs in the definition of the former. Specifically, the contribution of a
path γ to the boundary path matrix is λind(γ)wt(γ), while its contribution to the
boundary measurement matrix is (−1)c(γ)λind(γ)wt(γ). The sign (−1)c(γ) is defined
in [6] using the following inductive construction. Let γ be a path going from a source
to a sink. Then:

1. If γ is simple (i.e. does not cross itself), its sign is (−1)ind(γ).
2. If γ can be decomposed into a path γ′ and a simple cycle, the signs of γ and γ′

are opposite.

Here we use a modified version of this definition. Namely, we assume that:

1. If γ is simple on the universal covering of the cylinder, then its sign is +1.
2. If γ can be decomposed into a path γ′ and a contractible simple cycle, then the

signs of γ and γ′ are opposite.

The boundary measurement matrices constructed using these two definitions differ
by a substitution λ �→ −λ. Such a transformation amounts to changing the spin
structure and does not affect the result of Theorem 1.1.

Proposition 5.1. The sign of a path going from a source to a sink is equal to the
product of turning numbers of all white-to-black edges on that path.

Proof. It is sufficient to check that the product of turning numbers of all white-to-
black edges is equal to +1 for source-to-sink paths that are simple on the universal
covering, and −1 for contractible simple cycles. Given a simple path, one can close it
up to a cycle as shown in Fig. 9 (recall that vertices connected to sources are always
white, vertices connected to sinks are black, and all edges connected to sources
and sinks are parallel to each other). The turning numbers of both newly created
white-to-black edges are equal to i, so the product of turning numbers for the so
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created cycle is equal to the negative product of turning numbers for the initial
path. Therefore, it suffices to show that for a simple contractible cycle the product
of turning numbers of white-to-black edges is −1. The latter is proved using the
same argument as in Example 3.5: for a white-to-black edge e in a directed cycle,
we have

turn(e) = exp
(

i
2
(ext+(e) + ext−(e))

)
,

where ext±(e) are exterior angles adjacent to e. And since the sum of all exterior
angles is 2π, the product of turning numbers is exp(πi) = −1, as desired. �	
Corollary 5.2. We have

det(I − μM(λ)) =
P (λ, μ)
P (λ, 0)

where

P (λ, μ) = det(I − Abw(λ, μ)Aturn
wb (λ, μ)),

and the matrix Aturn
wb (λ, μ) is obtained from the matrix Awb(λ, μ) by means of mul-

tiplying the weight of every edge by its turning number.

Proof. Indeed, in view of Proposition 5.1 the boundary measurement matrix of the
initial network is equal to the boundary path matrix for the network obtained from
the initial one by multiplying the weights of all white-to-black edges by their turning
numbers, so the desired formula follows from Corollary 4.3. �	
Proof of Theorem 1.1. Since the network N is bipartite, its associated bipartite
graph Γ is just N itself. So, the isomorphism Ψ: H1(N ,C∗) → H1(Γ,C∗) is induced
by the identity map on 1-chains. Furthermore, since the black-to-white edges of N
are oriented from white to black when viewed as edges of the bipartite graph Γ, the
identity map on 1-chains amounts to the following map between the edge weight
spaces: replace the weights of all black-to-white edges by their reciprocals, while
keeping the weights of white-to-black edges intact. We need to show that this map
takes the characteristic polynomial det(I − μM(λ)) of the boundary measurement
matrix to the rational function K(λ, μ)/K(λ, 0). To that end it suffices to show that
the function P (λ, μ) from Corollary 5.2, is mapped to the characteristic polynomial
K(λ, μ) of Γ, up to a monomial factor. Pushing forward P (λ, μ) by the map between
edge weight spaces, we get the function

P̃ (λ, μ) = det(I − A−1
bw (λ−1, μ−1)Aturn

wb (λ, μ)),

where we used that Abw is a diagonal matrix, so inverting the weights is the same as
inverting the matrix along with λ and μ. Up to a monomial factor, P̃ (λ, μ) is equal
to the determinant of the matrix

S(λ, μ) := Aturn
wb (λ, μ) − Abw(λ−1, μ−1).
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So, to complete the proof it suffices to show that S(λ, μ) is precisely the magnetically
altered Kasteleyn matrix (1) for the Kasteleyn marking given by Proposition 3.3.
Consider first the off-diagonal part of S, i.e. Aturn

wb (λ, μ). Note that this matrix actu-
ally does not depend on μ, because all edges intersecting the rim are black-to-white.
So, the (i, j) entry of S for i 
= j is

Sij(λ, μ) =
∑

e
turn(e)wt(e)λ〈e,γ2〉

where the sum is taken over all edges going from i’th white to j’th black vertex,
and γ2 is the cut. Note that since every edge entering this sum is white-to-black, we
have k(e) = turn(e), and thus Sij(λ, μ) = Kij(λ, μ). Consider now the diagonal part
of S. By construction of the matrix Abw(λ−1, μ−1), we have

Sii(λ, μ) = −wt(ei)(λ−1)〈ei,γ2〉(μ−1)ε(ei)

where ei is the unique edge from i’th black vertex to i’th white vertex, and ε(ei) = 1
if ei intersects the rim and 0 otherwise. Let γ1 be the rim. Then, since 〈γ1, γ2〉 = 1
and the cut goes in the direction from sources to sinks, it follows that 〈γ1, ei〉 = 1 for
every edge ei intersecting the rim. So, ε(ei) = 〈γ1, ei〉 for every black-to-white edge
ei. Finally, notice that since ei is oriented from black-to-white, the corresponding
canonically oriented edge of Γ is −ei. Rewriting the formula for Sii as

Sii(λ, μ) = −wt(ei)λ〈−ei,γ2〉μ〈γ1,−ei〉.

and taking into account that k(ei) = −1, we see that Sii(λ, μ) = Kii(λ, μ). So we
indeed have S(λ, μ) = K(λ, μ), which completes the proof of Theorem 1.1. �	
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