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1. Introduction

The idea to publish such a paper was on the one hand inspired by our discussions with both the organisers and the
participants of the conference ‘‘Finite Dimensional Integrable Systems in Geometry and Mathematical Physics (FDIS 2015)’’
held in July 2015 at the Mathematical Research and Conference Center (MRCC) in Będlewo. On the other hand, for a number
of years our research group has been working on a list of open problems [1] published in Russian and almost unavailable for
the general audience. That list included about 70 problems with various levels of difficulty — from M.Sc. and Ph.D. levels to
serious conjectures which could rather be considered as possible directions for further research. The present paper is based
on [1] and is to some extent a part of it. The problems offered herein are selected and extended according to our preferences
and adapted for publication as a journal paper. So, first of all, we would like to acknowledge the contribution of Andrey
Konyaev and Andrey Oshemkov, our co-authors in [1] with whom we are currently working on the English version of the
latter. It will contain a background section for beginners, comments and updates and, hopefully, will soon appear on the
arXiv. For a similar paper of open problems the reader may wish to refer to a recently published work by S. Rosemann and
K. Schöbel [2].

The immediate goal of this paper is to introduce the reader to a bunch of interesting open problems. There is no section
with preliminaries but we have tried all our best to define the main concepts as well as to properly motivate the problems
to follow. Our selection of problems concerns bi-Poisson algebra and geometry, Jordan–Kronecker invariants, applications to
projective geometry, and singular Lagrangian fibrations. It is worth mentioning that many of the problems under discussion
are, directly or indirectly, related to the argument shift method [3] which originated from a two-page note by S. Manakov [4]
published in 1976. It is quite surprising that 40 years later this very elegant and simple idea still remains a source of non-
trivial problems, new constructions and applications. Therefore, we would like to take this opportunity to emphasise its
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importance in a context much wider than one could have expected forty years ago. It is our intention to try to convince the
reader that not only there are reasonable open problems in the area but also that some of the ideas/solutions may have far
reaching applications.

This set of problems have been discussed with many of our colleagues, including the authors of [2], and we are very
grateful to all of them. We are especially thankful to A. Borisov, D.Dowell, L. Guglielmi, I. Kozlov, V.Matveev, E.Miranda,
A. Panasyuk, C.Wacheux, N.T. Zung.

2. Existence of integrable systems and chaotic Poisson brackets

LetM be a smooth manifold. A Poisson bracket onM is a bilinear (over R) skew-symmetric operation { , } on the space of
smooth functions C∞(M) which satisfies the Leibniz rule

{fg, h} = f {g, h} + {f , h}g

and the Jacobi identity

{f , {g, h}} + {h, {f , g}} + {g, {h, f }} = 0

for any f , g, h ∈ C∞(M). This operation turns C∞(M) into an infinite-dimensional Lie algebra. A manifold M endowed with
a Poisson bracket is called a Poisson manifold.

A Poisson bracket on M can be given by means of a smooth tensor field A =
(
Aij

)
, called a Poisson tensor, or a Poisson

structure:

{f , g} = A(df , dg) =

∑
i,j

Aij(x)
∂ f
∂xi

∂g
∂xj
, f , g ∈ C∞(M).

The rank of a Poisson bracket at a point x ∈ M is the rank of the corresponding tensor A at this point. The rank of the
Poisson tensor (equivalently, of the Poisson bracket) on M is defined to be rankA = maxx∈MrankA(x). A bracket is called
non-degenerate if det(Aij) ̸= 0. The non-degeneracy of the Poisson bracket everywhere on M is equivalent to the fact that
the 2-form ω = A−1 defines a symplectic structure onM .

Our first question is about the existence of integrable Hamiltonian systems on Poisson and symplectic manifolds. In the
case of symplectic manifolds (equivalently, non-degenerate Poisson), by an integrable systemwe understand a collection of
n =

1
2 dimM Poisson commuting functions f1, . . . , fn which are independent almost everywhere onM . If the Poisson bracket

is degenerate then we need more commuting functions, namely,

k =
1
2
(dimM + corankA). (1)

If one ignores the structure of the singular setwhere the differentials of commuting functions become linearly dependent,
then, by using partition of unity argument, one can easily construct a C∞-integrable system on any Poisson manifold [5].
However, in applications we have to deal with polynomial or real-analytic Poisson structures, so it is natural to require
that commuting functions (or at least one of them, considered as a Hamiltonian) belong to a natural functional space,
e.g., polynomial, rational or real analytic. Alternatively, onemay impose some additional conditions on common singularities
of these functions (e.g., to require that all of them are non-degenerate). These additional assumptions lead us to a natural
existence problem ‘‘Do any integrable systems exist on a given Poisson manifold?’’ or, conversely, to a question on
obstructions to integrability. In the algebraic context, this problem can be stated as follows:

Problem 1. Let V be a vector space endowed with a polynomial Poisson structure A, i.e., the bracket of two polynomials is
again a polynomial. Do there exist any polynomial integrable systems on (V ,A)? This question can be naturally generalised
by replacing V with an arbitrary algebraic Poisson variety or polynomial Poisson algebra.

One of the important achievements in this directionwas the proof of theMischenko–Fomenko conjecture by S. Sadetov [6]
(see also [7,8]), which says that for linear Poisson structures on V the answer to the above question is always positive.

There are, however, many other examples of polynomial Poisson brackets for which the above problem remains open.
In the theory of integrable geodesic flows on Riemannian manifolds, the following question naturally appears. Consider a
homogeneous space G/H of a compact Lie group G assuming, for simplicity, that both G and H are connected (one may, of
course, consider an arbitrary homogeneous space). Let F be the algebra of all G-invariant functions on T ∗(G/H) which are
polynomial in momenta. This algebra can be naturally considered as a polynomial Lie algebra (see [9,10]).

Problem 2. For which homogeneous spacesM = G/H does F admit a complete commutative subalgebra? Notice that such
a subalgebra can be equivalently understood as an integrable system on the orbit space T ∗M/Gwhich has a natural structure
of an algebraic Poisson variety.

Let g∗ be the dual space of g = Lie(G) endowed with the standard (linear) Lie–Poisson bracket and P(g) denotes the
space of all polynomials on g∗ considered as polynomial Poisson algebra. Consider the coadjoint action of H on g∗ and the
subalgebraP(g)h ⊂ P(g) of allH-invariant functions. Equivalently,P(g)h can be characterised as the centraliser of h = Lie(H)
in P(g).
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Problem 3. Does P(g)h admit a complete commutative subalgebra?

The algebrasP(g)h andF from Problems 2 and 3 are closely related. Geometrically,P(g)h can be understood as the algebra
of functions on the orbit space g∗/H whereas F is the algebra of functions on the Poisson submanifold h⊥/H ⊂ g∗/H where
h⊥

⊂ g∗, the annihilator of h in g∗, is considered as an invariant subspace of the coadjoint action of H on g∗. Problems 2 and
3 have been discussed for various classes of homogeneous spaces in the context of integrability of geodesic flows (e.g., see
the review paper [9] and the recent paper by I. Mykytyuk [10]) but, in the general setting, they remain open. Although it
is hard to expect a complete answer, developing new methods for constructing integrable systems in polynomial Poisson
algebras (as well as finding algebraic obstructions to integrability) is, in our opinion, an interesting and promising direction
of research.

Possible obstructions to existence of integrable systems could be related to the chaoticity of the Poisson structure itself.
We illustrate this idea by a couple of simple models. In the theory of integrable Hamiltonian systems, formula (1) can be
interpreted as follows: if the rank of the Poisson bracket is 2r , then for complete integrability we need to have r nontrivial
integrals in addition to Casimir functions (which are usually considered as trivial integrals). In particular, if r = 1, then the
Hamiltonian itself can be taken as a nontrivial integral and therefore in this case one should expect that every Hamiltonian
system is integrable.

For some concrete problems in mechanics, however, A.V. Borisov, A.A. Kilin and I.S.Mamaev [11] found a series of
examples of Hamiltonian systems on Poissonmanifolds of rank 2 that demonstrate chaotic dynamics, i. e., are not integrable.

One such system is a particular case of the Suslov problem. Without going into the mechanical nature of the problem
and following the original notation from [11] we shall explicitly define the corresponding Poisson bracket. ConsiderR5 with
coordinates γ1, γ2, γ3, ω1, ω2 and set:

{ω1, γ3} = −
1
A
∂V
∂γ2

, {ω2, γ3} =
1
B
∂V
∂γ1

,

{γ1, γ3} = −ω2, {γ2, γ3} = ω1,

where A, B are constants and V (γ1, γ2) is an arbitrary function of γ1 and γ2. It can be shown [11] that for A = B and a suitable
choice of V (potential of some non-integrable natural system on the plane), the Hamiltonian H = γ 2

1 + γ 2
2 + γ 2

3 from the
Suslov problem determines a non-integrable system.

This effect is due to the fact that the Poisson structure itself is chaotic in the sense that its symplectic leaves are embedded
in the Poisson manifold in some chaotic manner. In particular, the Casimir functions are not globally defined.

Problem 4. Give a rigorous definition of chaotic Poisson brackets and construct examples of such brackets.

Theminimal research programmewould be to clarify the situation when a dynamical system, which is Hamiltonian with
respect to a Poisson structure of rank 2, might be non-integrable and even chaotic. The following example helps to better
understand this phenomenon.

Let v be an arbitrary vector field on Rn. Consider the space Rn+1
= Rn

× R, where τ is taken as an additional coordinate
on R and define the bi-vector A = v ∧ ∂τ on it. Since the vector fields v and ∂τ commute, A is a Poisson structure of rank 2.
If we take the Hamiltonian H = τ then the corresponding Hamiltonian vector field precisely coincides with v. If v is chaotic
on Rn, then it will still remain chaotic on Rn+1.

Problem 5. (a) What will the dynamics be in the example just described if we take the Hamiltonian H =
∑

x2i + τ 2? This
Hamiltonian is interesting because its isoenergy surfaces {H = ε} for small ε are spheres on which local Casimir functions
arewell-defined. It follows from this that for small ε almost all trajectories are closed and therefore there should be no chaos.
Can chaos appear with the growth of ε?

(b) A more general question is: can chaotic dynamics arise if the Poisson structure has rank 2 and the level sets of the
Hamiltonian H are compact?

(c) Does there exist an analytic (polynomial) Poisson structure of rank 2 for which every analytic (polynomial) Hamilto-
nian gives a chaotic system? Note that such a Poisson structure would give an example of a Poisson algebra which does not
admit a complete commutative subalgebra.

(d) Generalise the above example for Poisson structures of an arbitrary rank.

In classical mechanics there are quite simple examples of Poisson brackets whose symplectic leaves are not separated by
global Casimir functions which lead to interesting dynamical phenomena related to Problem 5, see [12].

3. Bi-Poisson linear algebra

A vector space V is called bi-Poisson if it is endowed with a pair of skew-symmetric bilinear forms A and B. The reader
may think of these forms as (constant) Poisson tensors defined on V ∗ or, alternatively, as two (compatible) Poisson tensors
on T ∗

x M , i.e., at a fixed point x. Both interpretations make sense and give us a natural motivation to study the properties of
bi-Poisson vector spaces just in the same manner we study the standard objects in linear algebra.

Themain tool of the bi-Poisson linear algebra is the Jordan–Kronecker decomposition theorem (see [13,14]) that describes
the canonical form of the pair A, B (over C).
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Theorem 1. A pair of skew-symmetric bilinear forms A and B on V = Cm can be simultaneously reduced to a block-diagonal
matrix form by means of an appropriate change of coordinates:

A ↦→

⎛⎜⎜⎝
A1

A2
. . .

Ak

⎞⎟⎟⎠ , B ↦→

⎛⎜⎜⎝
B1

B2
. . .

Bk

⎞⎟⎟⎠ (2)

where the corresponding pairs of blocks have one of the following three possible types:

(1) Jordan type µi-block : Ai =

(
0 Id

−Id 0

)
, Bi =

(
0 J(µi)

−J⊤(µi) 0

)
,

where J(µi) is a Jordan block of size ki × ki with eigenvalue µi and Id is the identity matrix of the same size;

(2) Jordan type ∞-block : Ai =

(
0 J(0)

−J⊤(0) 0

)
, Bi =

(
0 Id

−Id 0

)
,

where J(0) is a Jordan block of size ki × ki with eigenvalue 0 and Id is the identity matrix of the same size;

(3) Kronecker block : Ai =

(
0 D

−D⊤ 0

)
, Bi =

(
0 D′

−D′⊤ 0

)
,

where D and D′ are both matrices of size ki × (ki + 1) of the form:

D =

⎛⎜⎝1 0
. . .

. . .

1 0

⎞⎟⎠ , D′
=

⎛⎜⎝0 1
. . .

. . .

0 1

⎞⎟⎠ .

Bi-Poisson linear algebra seems to be a rather new topic. Albeit some basic results can be found in [13,15], there are still
a lot of natural questions to clarify. Below we list some of them.

Instead of working with A and B, it is more convenient to work with the pencil of skew-symmetric bilinear forms
J = {Aλ = A + λB}λ∈C̄ generated by them (we may consider the forms from the pencil up to proportionality and formally
set A∞ = B). The automorphism group of the pencil is an algebraic group defined by

Aut(V , J) = {φ ∈ End(V ) | Aλ(φ(ξ ), φ(η)) = Aλ(ξ, η), for all Aλ ∈ J}. (3)

Obviously, the structure of this group essentially depends on the algebraic type of J (see [15]), that is, the type of the
canonical Jordan–Kronecker decomposition (2).

Problem6. Consider the action of Aut(V , J) on the set of all subspacesU ⊂ V of dimension k < dim V (or equivalently, on the
Grassmannian Gr(k, V )). It is not hard to see that this action admits infinitely many orbits. What are the orbits (equivalently,
subspaces) of generic type?

Problem 7. What happens to the algebraic type of a pencil J under reduction? This question is very important in the
differential-geometric context for various applications related to (bi)-Hamiltonian reduction. In bi-Poisson linear algebra,
by reduction one can understand the restriction of a pencil to a certain subspace U ⊂ V . The simplest version of this question
is as follows. Consider a pencil J of a certain algebraic type and take its restriction to a subspace U ⊂ V of codimension 1.
What may happen to its algebraic structure? Which scenarios are typical (i.e., what happens for a generic subspace U)? The
converse is also interesting: what happens to the algebraic structure of a pencil if the dimension is increased by one and the
pencil is prolonged to the extended space? What is the typical scenario?

Problem 8. The reductions occurring in applications are not ‘‘generic’’ in the sense of linear algebra; they correspond to
subspaces with some special properties. One of them can be defined as follows. We will say that a subspace U ⊂ V of a
bi-Poisson vector space is admissible if its Aλ-orthogonal subspace {v ∈ V | Aλ(v,U) = 0} does not depend on the choice
of a (generic) skew-symmetric form Aλ from the pencil. We want to describe such subspaces and study their properties.
In particular, we want to understand how the algebraic structure of the pencil J changes under reduction to an admissible
subspace U ⊂ V .

In the theory of bi-Poisson manifolds, an analogue of the subspace U ⊂ V is a bi-Poisson subalgebra F ⊂ C∞(M), and
the above property in terms of Poisson subalgebras means that the polar subalgebras1 of F with respect to the compatible
Poisson structures A and B coincide, which is a very useful property in the bi-Hamiltonian context.

Problem 9. What happens to the algebraic structure of a pencil A + λB under continuous deformation Aα + λBα? Which
pencils are ‘‘more stable’’ than others?

1 Following S. Lie, by the polar subalgebra of a Poisson algebra F we understand the collection of functions f satisfying {f ,F} = 0.
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More precisely, consider a pencil Jα = {Aα + λBα} which depends (continuously, smoothly, analytically, algebraically) on
a parameter α in such a way that its algebraic type remains the same for all values of α except for a certain bifurcation value
α0. What the algebraic type of Jα0 could be? In other words, the goal is to study bifurcations of pencils. Which bifurcations
are generic? From a more formal point of view, the problem is to describe the so-called ‘‘closure of orbits’’ diagram for the
natural action of GL(V ) on the set of all pencils.

Without loss of generality we may assume that A and B are both regular, that is, they have a maximal rank within the
pencil. We shall say that a subspace L ⊂ V is bi-Lagrangian if it is simultaneously Lagrangian with respect to both forms A
and B. The set LG(V , J) of all bi-Lagrangian subspaces is called the bi-Lagrangian Grassmannian. This is a projective algebraic
varietywith rather non-trivial properties (a detailed description of LG(V , J) is an important open problem, see the discussion
in [2]), which essentially depends on the algebraic type of the pencil J . For example, if J is of Kronecker type, then there is
a unique bi-Lagrangian subspace, i.e., LG(V , J) consists of one single point. If, on the contrary, J is of Jordan type and is
diagonalisable with simple spectrum, i.e., all the blocks Ai, Bi in Theorem 1 are 2 ×2 and all µi are distinct, then LG(V , J) is
diffeomorphic to the torus T k

= (S1)k, (in the real case) or (CP1)k (in the complex case), k =
1
2 dim V . Moreover, the action of

Aut(V , J) on LG(V , J) is transitive. However, if the structure of Jordan blocks is more complicated, then LG(V , J) may consist
of several orbits.

Problem 10. Describe the partition of the bi-Lagrangian Grassmannian LG(V , J) into orbits of the automorphism group
Aut(V , J).

In a symplectic space every isotropic space is contained in a Lagrangian one. In a bi-Poisson vector space, this is not true
anymore.

Problem 11. Describe bi-isotropic subspacesW ⊂ V that can be extended up to bi-Lagrangian ones. In bi-Poisson geometry,
a non-linear analogue of this question is the following — ‘‘Which sets of functions in bi-involution can be (at least locally)
extended up to a bi-integrable system (or, equivalently, up to a complete set of functions in bi-involution)?’’

4. Bi-Poisson geometry and the argument shift method

4.1. Existence of bi-integrable systems

It is well known that compatible Poisson structures are one of themost effective tools for constructing integrable systems,
see for example [16,17]. In particular, in almost all non-trivial examples of Poisson algebras P(g)h and F from Problems 2
and 3 for which complete commutative subalgebras (i.e., integrable systems) have been found, this was done by using an
appropriate pencil of compatible Poisson brackets. Recall that two Poisson brackets { , }1 and { , }2 are called compatible if any
linear combination of them is again a Poisson bracket (a necessary and sufficient condition for this is the Jacobi identity for
the sum { , }1 +{ , }2). The set {λ{ , }1 +µ{ , }2 | (λ,µ) ∈ R2

\ (0, 0)} of all non-trivial linear combinations of two compatible
Poisson brackets is called a Poisson pencil.

The rank of a Poisson pencil at a point x ∈ M is defined as the maximum of the ranks of the brackets λ{ , }1 + µ{ , }2 at
that point. The rank of the pencil in a neighbourhood of a point x ∈ M (or on the whole manifoldM) is the maximum of the
ranks of the pencil over all points of that neighbourhood (manifold).

It deserves to be noticed that by virtue of the Jordan–Kronecker theorem (Theorem1)we can distinguish three essentially
different types of Poisson pencils according to the Jordan–Kronecker decomposition of a given pencil at a generic point. Thus,
we shall say that a Poisson pencil is of Kronecker type if its canonical form only consists of Kronecker blocks. Similarly, if the
canonical form of a pencil consists only of Jordan blocks, we shall call it Jordan or symplectic. In the most general case, we
shall just say that the pencil is of amixed algebraic type.

As pointed out in Section 3, every bi-Poisson vector space (V , J = {A + λB}) admits a bi-Lagrangian subspace L ⊂ V
(at least one), i.e., a subspace which is simultaneously Lagrangian (i. e., maximal isotropic) with respect to all regular forms
A + λB.

An analogous statement in the case of compatible Poisson brackets would be the existence of a complete subalgebra
F ⊂ C∞(M) consisting of functions in involution with respect to all the brackets in a given pencil. By completeness in this
case we mean that the subspace generated by the differentials of functions f ∈ F in the cotangent space T ∗

x M is maximal
isotropic. It is natural to refer to such a subalgebra (or to a collection of its generators) as a bi-integrable system.

In the case of Kronecker pencils such a subalgebra F is generated by the (local) Casimir functions of all the brackets in
the pencil. It is well known that F so obtained is complete and commutative with respect to all the brackets in the pencil
[18,19]. Similar results in the symplectic case can be found in the works of P. Olver [20] and H. Turiel [21].

Of great interest, however, is the mixed case.

Problem 12. Let A1 and A2 be two compatible Poisson structures of an arbitrary type on a manifold M and x ∈ M be
a generic point in the sense that the structure of the Jordan–Kronecker decomposition of the pencil does not change in a
neighbourhood of x. Does there exist, in a neighbourhood of x, a complete set of functions in bi-involution?
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In fact, the answer to this question is positive but to the best of our knowledge this result has never been published. We
would like, however, to formulate amore interesting version of this local problem. As pointed out in Section 3, bi-Lagrangian
subspaces L ⊂ V may have different algebraic types (in other words, the bi-Lagrangian Grassmannian LG(V , J) may consist
of several orbits of the automorphism group of the pencil J). In this view, bi-integrable systemsmay be of different algebraic
types too. More precisely, let f1, . . . , fk be a complete set of functions in bi-involution, i.e., a bi-integrable system.We restrict
our considerations to a small neighbourhood U of a generic point x ∈ M such that for each y ∈ U the Jordan–Kronecker type
of the pencil defined on T ∗

y M by a pair of compatible Poisson brackets is the same. If we think of T ∗
y M as a bi-Poisson vector

space, then the subspace Ly = span{df1(y), . . . , dfk(y)} ⊂ T ∗
y M is bi-Lagrangian and therefore can be characterised by its

algebraic type (i.e., by the type of the orbit of the automorphism group action on the bi-Lagrangian Grassmannian to which
L belongs). If this type remains the same for all points y ∈ U , we refer to it as the algebraic type of the bi-integrable system
f1, . . . , fk.

Problem 13. Do bi-integrable systems of a given algebraic type exist? In the local setting, this question can be reformulated
as follows. Let us consider a (co)-distribution on U all of whose subspaces Ly ⊂ T ∗

y M are bi-Lagrangian and belong to the
same algebraic type. Do there exist integrable (in the sense of Frobenius) co-distributions of this kind?

4.2. Argument shift method, the generalised argument shift conjecture, and Jordan–Kronecker invariants

The argument shift method was developed by A.S.Mischenko and A.T. Fomenko [3] as a generalisation of S.V.Manakov’s
construction suggested in [4]. In the context of bi-integrable systems, it is perhaps the first non-trivial example which
illustrates almost all phenomena that one can observe in finite-dimensional bi-Poisson geometry.

Let g∗ be the dual space of a finite-dimensional Lie algebra g. It is well known that g∗ possesses two natural compatible
Poisson brackets. The first one is the standard linear Lie–Poisson bracket

{f , g}(x) = ⟨x, [df (x), dg(x)]⟩, (4)

and the second one is a constant bracket given by

{f , g}a(x) = ⟨a, [df (x), dg(x)]⟩, (5)

where a ∈ g∗ is a fixed element. Here we assume a to be regular although formula (5) makes sense for an arbitrary a (see
the next section).

Now, let f ∈ P(g) be a polynomial invariant of the coadjoint action. Then its shift f (x + λa) is Casimir for the linear
combination { , } + λ{ , }a. Therefore, for any two coadjoint invariant polynomials f , g ∈ C∞(g∗), their shifts f (x + λa) and
g(x+µa) commutewith respect to both brackets (4) and (5). In thisway, one can, as a rule, construct a large (bi-)commutative
subalgebra of P(g). However, in many examples, there are either no polynomial coadjoint invariants, or their number is too
small. In this case, one needs to modify the construction. To that end, consider local analytic invariants f1, . . . , fs, s = ind g
defined in a neighbourhood of a ∈ g∗ such that their differentials dfi(a) form a basis of Ann a (recall that a is regular so that
such invariants do exist). Take the Taylor expansions of fi at a:

fi(a + λx) = f (0)i + λf (1)i (x) + λ2f (2)i (x) + λ3f (3)i (x) + · · · , (6)

and consider the commutative subalgebra Fa ⊂ P(g) generated by the polynomials f (k)i where i = 1, . . . , ind g, and k > 0.
We call Fa the algebra of (polynomial) shifts. In terms of the algebra Fa, the main result of [3] can be stated as follows

Theorem 2 (A.S.Mischenko, A.T. Fomenko [3]). (1) The functions from Fa pairwise commute with respect to both brackets { , }
and { , }a.

(2) If g is semisimple, then Fa is complete, i.e., it contains 1
2 (dim g + ind g) algebraically independent polynomials.

Although in general Fa is not necessarily complete, A.S.Mischenko and A.T. Fomenko stated the following well known
conjecture.
Mischenko–Fomenko conjecture. On the dual space g∗ of an arbitrary Lie algebra g there exists a complete family F of
commuting polynomials.

In other words, for each g one can construct a (polynomial) completely integrable system on g∗ or, speaking in algebraic
terms, the Lie–Poisson algebra P(g) always contains a complete commutative subalgebra.

This conjecture was proved in 2004 by S.T. Sadetov [6], see also [7,8]. However, Sadetov’s family F ⊂ P(g) is essentially
different from the algebraFa of shifts. Thus, it is still an open questionwhether one canmodify the argument shift method to
construct a complete family of polynomials in bi-involution, that is, commuting with respect to both brackets (4) and (5). In
many examples we have already studied, the answer turned out to be positive which led us to the following bi-Hamiltonian
version of the Mischenko–Fomenko conjecture.
Generalised argument shift conjecture [13]. Let g be a finite-dimensional Lie algebra. Then for every regular element a ∈ g∗,
there exists a complete family Ga ⊂ P(g) of polynomials in bi-involution, i.e., in involution w.r.t. the two brackets { , } and { , }a.

In fact, our conjecture can be reformulated in the following equivalent way: the algebra Fa of polynomial shifts can always
be extended up to a complete subalgebra Ga ⊂ P(g) of polynomials in bi-involution.
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Problem 14. Either prove this conjecture or construct a counterexample.

Some results in this direction can be found in [13,22] where this conjecture has been verified for several classes of Lie
algebras. However, there is one example for which we could not do it.

Problem 15. Let g = gl(4) + (R4
+ R4) be the semidirect sum of gl(4) with two copies of R4 on each of which gl(4) acts in

the standard way.2 Construct a complete family of polynomials in bi-involution or prove that no such family exists.

Possible difficulties are related to the algebraic structure of the ‘‘argument shift’’ pencil on g = gl(4) + (R4
+ R4) which

can be naturally described by means of the so-called Jordan–Kronecker invariants introduced in [13].
Consider an arbitrary Lie algebra g and its dual space g∗. For an arbitrary pair of elements x, a ∈ g∗ we define two skew-

symmetric forms on g by

Ax(ξ, η) = ⟨x, [ξ, η]⟩ and Aa(ξ, η) = ⟨a, [ξ, η]⟩.

These forms can be understood as the Poisson tensors corresponding to the brackets (4) and (5) (at the point x ∈ g∗). By the
Jordan–Kronecker theorem (Theorem 1) the forms Ax and Aa can be reduced to some canonical form. We are interested in
their discrete invariants:

(1) the number jm and the sizes n1, . . . , njm of the Jordan blocks for each eigenvalue µm;
(2) the number i and the sizes 2p1 + 1, . . . , 2pi + 1 of the Kronecker blocks.
Consider a generic pencil of this type, i. e., such that these invariants do not change under small perturbations of its

parameters x, a ∈ g∗. It can be shown that the set of such generic pairs (x, a) ∈ g∗
× g∗ is Zariski open. Then, the numbers

jm, nr and ps are invariants of the Lie algebra g and are called Jordan–Kronecker invariants (for more details see [13]). They are
closely related to some important properties of g. For instance, the completeness of the algebra of shifts Fa is equivalent to
the absence of Jordan blocks, i. e., j =

∑
jm = 0. Lie algebras of purely Jordan type (i.e., with no Kronecker blocks) are exactly

Frobenius Lie algebras g, i.e., can be characterised by the condition ind g = 0 (see [23]). Furthermore, the numbers ps in the
semisimple case are related to the so-called Chevalley indices (exponents of g) and in the general case may be considered as
lower estimates for the degrees of Ad∗-invariant polynomials of g (A.S. Vorontsov [24]).

Problem 16. Compute the Jordan–Kronecker invariants for the most interesting classes of Lie algebras, and particularly for
the following:
(a) semidirect sums g +ρ V , where ρ : g → End(V ) is a representation of a semisimple Lie algebra g and V is assumed to be
commutative;
(b) Borel subalgebras of simple Lie algebras;
(c) parabolic subalgebras of simple Lie algebras;
(d) the centralisers of singular elements a ∈ g, where g is simple;
(e) Lie algebras of small dimensions.

For Lie algebras of dimension ≤5, the Jordan–Kronecker invariants were computed by P. Zhang. Her results, as well as
some other examples of computing Jordan–Kronecker invariants, can be found in the arXiv version of [13].

Problem 17. Can an arbitrary set of Jordan–Kronecker invariants jm, nr , ps be realised by means of an appropriately chosen
Lie algebra? Or there are some non-trivial restrictions?

A partial, but quite substantial, solution to Problem 17 has been obtained by Ivan Kozlov, see [13]. Roughly speaking, the
answer is obtained for Lie algebras of Jordan and Kronecker type. It turns out that in the Jordan case there are non-trivial
restrictions on the sizes of blocks, while in the Kronecker case any combination of blocks is allowed. Themixed case remains
open because of possible non-trivial interaction between Kronecker and Jordan blocks.

Coming back to Problem 15, the Lie algebra g = gl(4) + (R4
+ R4) is Frobenius, i.e., of pure Jordan type. The Jordan–

Kronecker decomposition of a generic pencil Ax + λAa contains 6 Jordan blocks of size 4 ×4 (i.e., non-trivial) with distinct
characteristic numbers λ1, . . . , λ6. It can be shown that locally bi-integrable systems on g∗ exist but it is not clear if the
corresponding bi-Lagrangian integrable (co)-distribution can be defined by means of polynomial functions.

4.3. The limit of the algebra of shifts

Let us recall, in more detail, how the argument shift method works in the case of a simple Lie algebra g. Identify gwith its
dual space bymeans of the Killing form. As before, letP(g) denote the symmetric algebra of g, i.e., the algebra of polynomials
on g∗

= g, endowed with the standard Lie–Poisson bracket. Further, let I(g) ⊂ P(g) be the subalgebra of polynomial
invariants of the adjoint, or, which is the same, of the coadjoint, representation (recall that I(g) is exactly the centre of P(g)
with respect to the Lie–Poisson bracket). Then it is known that I(g) is freely generated by certain homogeneous polynomials
I1, . . . , In, where n is the rank of the Lie algebra g. Consider an arbitrary element a ∈ g and the corresponding expansion

Ii(x + λa) =

∑
j

λjfij(x, a).

2 The matrix representation of this Lie algebra is very simple: all 6 ×6 matrices with two zero rows.
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Each coefficient fij in this expansion is a certain homogeneous polynomial of degree deg Ii − j. In this way we obtain exactly
1
2 (dim g + rank g) non-constant functions fij.

The subalgebra Fa ⊂ P(g) generated by the polynomials fij is called theMischenko–Fomenko subalgebra corresponding to
the element a ∈ g. Note that the symmetric algebra P(g) has a natural grading by polynomial degrees

P =

⨁
i≥0

P i,

and since the subalgebra Fa ⊂ P(g) is generated by homogeneous functions it inherits the grading:

Fa =

⨁
i≥0

F i
a,

where F i
a = Fa ∩ P i.

It follows from Theorem 2 that the subalgebra Fa ⊂ P(g) is commutative with respect to the Lie–Poisson bracket.
Furthermore, if a is a regular element, then Fa has maximal (for a Poisson-commutative subalgebra) transcendence degree
1
2 (dim g + rank g), which is, it is complete.

In the case of a singular element a ∈ g, the corresponding subalgebra Fa is not complete. However, as was shown by
E.B. Vinberg [25], it can always be included in somebigger complete commutative subalgebra. To see this, consider an analytic
curve a(t) ∈ g such that a(t) is regular for 0 < |t| < ε, and a(0) = a is a prescribed singular element. Considering the
corresponding Mischenko–Fomenko subalgebras and their homogeneous parts F i

a(t) ⊂ P i, we obtain a family of subspaces
such that ki = dimF i

a(t) is independent of t for 0 < |t| < ε. Now, we claim that if F i
a(t) is regarded as a point in the

corresponding Grassmannian Gr(ki,P i), then there exists the limit limt→0F i
a(t). Indeed, let g t

1, . . . , g
t
ki

be a basis of F i
a(t)

chosen in such a way that the coefficients of every polynomial g t
j are analytic functions of t . Since the Mischenko–Fomenko

subalgebra is free, such a basis can be constructed by taking products of polynomials of suitable degrees and of the form
fij(x, a(t)). Let also

ω(t) = g t
1 ∧ · · · ∧ g t

ki ∈ ΛkiP i.

Now, observe that since the form ω(t) depends analytically on t and does not vanish identically, it follows that there
exists k such that ω(t) = tkω̃(t), where ω̃(0) ̸= 0. Further, notice that the coefficients of the form ω(t) are, by definition, the
Plücker coordinates of the subspace F i

a(t) ⊂ P i. Therefore, since the image of the Plücker embedding

Gr(ki,P i) ↪→ P(ΛkiP i)

is closed, the coefficients of the form ω̃(0) are also Plücker coordinates of a certain subspace of P i, which can be naturally
viewed as the limit limt→0F i

a(t). Now, taking the direct sum⨁
i≥0

lim
t→0

F i
a(t),

weobtain a Poisson-commutative graded algebrawhichwe denote by limt→0Fa(t). Note that, in contrast to the actual algebra
of shiftsFa, this subalgebramaydependon the curve a(t), andnot only on a itself. However,we alwayshave limt→0Fa(t) ⊃ Fa.
So, it remains to show that the subalgebra limt→0Fa(t) is complete. To that end, recall that for any graded algebraF =

⨁
iF

i,

its Poincaré series is defined by F (t) =
∑

init i, where ni = dimF i. In the case of subalgebras of finitely generated algebras,
this series uniquely determines the transcendence degree [25]. Now, notice that by construction the Poincaré series of a pre-
limit algebra Fa(t) coincides with the Poincaré series of the limit algebra limt→0Fa(t). Therefore, the number of algebraically
independent polynomials in the algebra limt→0Fa(t) is equal to 1

2 (dim g+rank g), i. e., the limit algebra is complete as desired.

Problem 18. Generalise the limit argument shift method to the case of an arbitrary Lie algebra. Find a necessary condition
for the completeness of the limit algebra of shifts.

Let a(t) be a polynomial in t whose coefficients lie in the same Cartan subalgebra. In this case, an explicit description of
the generators for the limit Mischenko–Fomenko subalgebra was obtained by V.V. Shuvalov [26]. Namely, assume that

a(t) = a0 + a1t + · · · + amtm.

Define

Ci = Cg(a0) ∩ · · · ∩ Cg(ai),

where Cg(ai) is the centraliser of ai in g. Then the limit Mischenko–Fomenko subalgebra limt→0Fa(t) is generated by the
conventional Mischenko–Fomenko subalgebra Fa0 , and by the union of the shifts of invariants for the Lie algebras Ci along
the elements ai+1.

Problem 19. Describe the generators of the limit Mischenko–Fomenko algebra in the case of an arbitrary analytic curve a(t)
in a simple Lie algebra. If Problem 18 is solved, then generalise the description of the generators to the case of an arbitrary
analytic curve a(t) ∈ g∗ for an arbitrary Lie algebra g.
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4.4. Quantisation of the argument shift method

Let g be a finite-dimensional Lie algebra, P(g) be its Lie–Poisson algebra that consists of polynomial functions on g∗, and
let Fa ⊂ P(g) be the commutative subalgebra of shifts for a regular element a ∈ g∗.

The problem of quantisation consists in constructing the corresponding (quantum) commutative subalgebra F̂a in the
universal enveloping algebra U(g). The correspondence between the quantum algebra of shifts F̂a and the classical algebra
of shifts Fa is required to be as follows.

The universal enveloping algebra U(g) has a natural filtration by degree

U0 ⊂ U1 ⊂ · · · ⊂ Uk−1 ⊂ Uk ⊂ . . . , U(g) =

∞⋃
k=0

Uk.

The quotient space Uk/Uk−1 is naturally identified with the subspace Pk ⊂ P(g) of homogeneous polynomials of degree
k. Let p̂ ∈ F̂a ∩Uk be some element of degree k. It is required that its ‘‘principal symbol’’ p ∈ Uk/Uk−1 ≃ Pk lies in the algebra
of shifts Fa, and Fa must be generated by such elements.

Equivalently, this question can be reformulated as a problemof lifting of the homogeneous generators p1, p2, . . . , ps of the
classical algebra of shifts Fa to the universal enveloping algebra U(g) in such a way that the lifted generators still commute.

Amethod for constructing the quantum algebra of shifts F̂a for a semisimple Lie algebra gwas suggested by L.G. Rybnikov
[27]. However, it is not clear whether or not a similar construction works for an arbitrary Lie algebra g.

Problem 20. Quantise the algebra of shifts Fa in the case of an arbitrary finite-dimensional Lie algebra g (or find an
obstruction for quantisation).

4.5. Flat pencils

A Poisson pencil is called flat if there exists a local coordinate system in which the Poisson tensors of all brackets of the
pencil are constant. The problem of flatness of Poisson pencils has been actively studied [19–21,28,29]. At present, some
fundamental results are known.

Recall that a Poisson pencil on a manifold M is called Kronecker at x ∈ M if the Jordan–Kronecker normal form for the
corresponding Poisson tensors at the point x has no Jordan blocks. A Poisson pencil is called Kronecker on a manifold M if it
is Kronecker at a generic point x ∈ M . Note that the problem of flatness is mainly of interest in the Kronecker case, because
if a flat pencil has Jordan blocks, then the corresponding eigenvalues must be constant. At the same time, the latter case can
be easily reduced to the Kronecker situation [30].

To formulate a criterion for flatness of Kronecker pencils, we need the notion of a Lenard chain. A sequence fi of functions
onM is called a Lenard chain for compatible Poisson brackets { , }1 and { , }2 if

{fi+1, g}1 = {fi, g}2

for any two consecutive members fi, fi+1 of the chain and any g ∈ C∞(M).

Theorem 3. Let { , }1 and { , }2 be two compatible Poisson brackets defining a Kronecker pencil with Kronecker blocks of sizes
2n1 − 1, . . . , 2nk − 1. Such a pencil is flat in a neighbourhood of a point x if and only if there exist k Lenard chains

0 → f 11 → · · · → f 1n1 → 0,
. . .

0 → f k1 → · · · → f knk → 0,

where f ji ’s are local smooth functions with linearly independent differentials.

In the case when there is only one Kronecker block and all objects are analytic this theorem was proved by I.M.Gelfand
and I.S. Zakharevich [28]. The general case follows from the results of A. Panasyuk [31] and F.J. Turiel [29].

The paper [32] gives a more explicit criterion for flatness of Kronecker pencils with a single block in terms of bi-invariant
volume forms. A volume form ω on M is called bi-invariant with respect to compatible Poisson brackets { , }1 and { , }2 if ω
is preserved by all vector fields Hamiltonian with respect to { , }1, as well as by all vector fields Hamiltonian with respect to
{ , }2. According to [32], a Kronecker pencil with a single block is locally flat if and only if it admits a local bi-invariant volume
form.

For arbitrary Kronecker pencils, the existence of a bi-invariant volume form no longer implies flatness, see Remark 4.4 of
[32].

Problem 21. Generalise the results of [32] to the case of arbitrary Kronecker pencils.

In the case of the argument shift pencil on the dual of a Lie algebra, that is a pencil generated by brackets (4) and (5),
Theorem 3 implies the following.
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Theorem 4. Let g be a Lie algebra whose ring of polynomial invariants of the coadjoint action has maximal transcendence degree
ind g and is generated by polynomials of total degree 1/2(dim g + ind g). Assume also that the codimension of the singular set in
g∗ is at least two. Then, for any regular a ∈ g∗, the corresponding argument shift pencil is Kronecker and flat in a neighbourhood
of a generic point.

In particular, we have the following

Theorem 5 (A. Panasyuk [31], I.S. Zakharevich [33]). Let g be a semisimple Lie algebra and a ∈ g∗
= g be regular. Then the

argument shift pencil is flat in a neighbourhood of a generic point.

Note that the hypothesis of Theorem 4 is not necessary for flatness. For example, the three-dimensional Lie algebra with
relations [x, y] = y, [x, z] = z does not have polynomial invariants, but the corresponding argument shift pencil is Kronecker
and flat [34]. Also, note that even if a Lie algebra g admits a complete (i.e., of transcendence degree ind g) set of polynomial
invariants but their degrees are too high, then the corresponding argument shift pencil does not have to be flat (consider,
for instance, the algebra discussed in Remark 4.4 of [32]).

Problem 22. Find necessary and sufficient algebraic conditions under which the argument shift pencil on the dual space of
a Lie algebra is flat.

In [34], Problem 22 is solved for all three-dimensional Lie algebras. More generally, the technique of [32] can be used to
study argument shift pencils with a single Kronecker block. In particular, from the flatness criterion of [32] it follows that
any such pencil associated with a unimodular Lie algebra is flat.

Analogous questions may be asked for other natural pencils of compatible Poisson brackets.

Example 1. Consider the Lie algebra gl(n). Let A ∈ gl(n) be fixed. Define a new operation on gl(n) by

[X, Y ]A = XAY − YAX .

It is easy to check that this operation satisfies the Jacobi identity and defines a structure of a Lie algebra on gl(n) which is
compatible with the standard one. Therefore, on the dual space gl(n)∗ we obtain a pair of compatible Poisson brackets.

Furthermore, it is easy to see that if the matrix A is taken to be symmetric, then so(n) ⊂ gl(n) will be a subalgebra with
respect to both commutators. Hence, on the dual space of so(n), we also get a pair of compatible Poisson brackets.

Problem 23. Are the pencils on gl(n) and so(n) defined in Example 1 flat?

This question might be of interest in connection with the unsolved problem of separation of variables for the Manakov
top.

5. Applications to differential geometry

5.1. Sectional operators, projective equivalence and holonomy groups

An interesting relationship between a special class of integrable Hamiltonian systems on semisimple Lie algebras,
projectively equivalentmetrics, andpseudo-Riemannianmetricswith special holonomygroups has beendiscovered recently
[35–37].

Let g = so(g) be the Lie algebra of the (pseudo)-orthogonal group related to a non-degenerate bilinear form g defined
on a finite-dimensional vector space V . Consider a linear operator R : so(n) → so(n), symmetric w.r.t. the Killing form and
satisfying the relation

[R(X), A] = [X, B] for all X ∈ so(g),

where A and B are some fixed g-symmetric matrices.
Such operators play an important role in the theory of finite-dimensional integrable systems since the corresponding

Hamiltonian equations on so(n)

Ẋ = [R(X), X]

can be viewed as natural generalisations of the Euler equations describing the dynamics of an n-dimensional rigid body
[3,4]. These equations admit a family of commuting integrals Tr(X + λA)n which are sufficient for complete integrability if A
is regular. Following [38,39], we will call such operators sectional (see also [36,40–42]).

Two (pseudo)-Riemannian metrics are called projectively equivalent if they have the same unparametrised geodesics and
affinely equivalent if their geodesics coincide with parametrisation.

The following two facts illustrate the relationship between sectional operators and projectively equivalent metrics.
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Theorem 6 (A.V. Bolsinov, V. Kiosak, V.S. Matveev [36]). Let g and ḡ be projectively equivalent metrics on M. Then the Riemann
curvature operator3 of g at each point x ∈ M:

R : Λ2(TxM) ≃ so(g) → so(g) (7)

is a sectional operator in the above sense. Namely, it satisfies

[R(X), A] = [X, B]

where A =

⏐⏐⏐ det ḡdet g

⏐⏐⏐ 1
n+1

ḡ−1g and B =
1
2∇(grad tr A).

If g and ḡ are affinely equivalent, then the operator A from this theorem is covariantly constant, the above identity takes
the form

[R(X), A] = 0

and the Lie algebra hol(∇) of the (local) holonomy group of g is contained in gA = {Y ∈ so(g), YA = AY }.
Is it possible to construct examples of metrics g for which hol(∇) coincides with gA? In other words, is gA a holonomy

algebra (for an appropriate (pseudo)-Riemannian metric)? Not only the answer is positive, but there is also an elegant
construction, based on the idea of sectional operators, that gives a series of explicit examples of such metrics.

Theorem 7 (A.V. Bolsinov, D.M. Tsonev [35]). For any g-symmetric operator A, the algebra gA can be realised as a holonomy Lie
algebra hol(∇) of some (pseudo)-Riemannian metric g. Moreover, such metrics can be constructed explicitly.

The definition of sectional operators is naturally generalised to the case of Z2-graded Lie algebras of the form g = k + v,
where [k, k] ⊂ k, [k, v] ⊂ v and [v, v] ⊂ k:

R : k → k is such that [R(x), a] = [b, x] for all x ∈ k

with a, b ∈ v being fixed (they play the role of parameters for R). In the sense of this definition, the sectional operators (7)
correspond to the standard decomposition of gl(n) into g-skew symmetric and g-symmetric matrices.

Problem 24. Is it possible to generalise the above theorems to the case of the other Z2-graded Lie algebras? Can we use
such sectional operators to construct examples of metrics with non-standard holonomy groups in the (pseudo)-Kähler and
hyper-Kähler setting by means of explicit formulas similar to the so-called magic formulas from [35]? Does the notion of
projective equivalence have a natural meaning in the case of hyper-Kähler manifolds?

These questions have beenmotivated by two recent results. The first one is a description of all possible algebras of parallel
endomorphisms obtained by C. Boubel in [43]. The centralisers of these algebras are exactly the non-standard holonomy
groups mentioned in Problem 24. The second result is an analog of Theorem 6 for the so-called c-projectively equivalent
Kähler metrics which, in algebraic terms, corresponds to the Z2-grading gl(n,C) = u(n) + v where v denotes the space of
Hermitian matrices. The proof of this latter result can be found in [37].

5.2. Singularities of bi-Hamiltonian systems and bi-Hamiltonian reduction

A recent series of papers [44–46] has been devoted to the study of singularities of bi-Hamiltonian systems. The underlying
bi-Hamiltonian structure discussed in these papers is related to Poisson pencils P = {A0 + λA1} of Kronecker type
(see Section 4.1). Such pencils appear in many interesting integrable problems in geometry and physics and usually the
verification of the property of being Kronecker is not very difficult. Recall that this property is in fact algebraic and means
that at a generic point x ∈ M the Jordan–Kronecker decomposition of the pair of skew-symmetric forms A0(x) and A1(x)
consists only of Kronecker blocks (see Theorem 1).

However, there are important examples of Poisson pencils for which such a verification is not obvious at all. In particular,
the situation becomes unclear for Poisson pencils obtained by a bi-Hamiltonian reduction. Here is one example of this kind.
Consider the Lie–Poisson pencil on the space of skew-symmetric matrices from Example 1:

[X, Y ]E+λA = X(E + λA)Y − Y (E + λA)X

where E is the identitymatrix and A = diag(a1, . . . , a1, a2, . . . , a2, . . . , ak, . . . , ak) is a (singular) diagonalmatrix. This pencil
is not Kronecker as λi = −a−1

i is a characteristic number and as a result the bracket [ , ]E−a−1
i A admits a non-trivial centre

isomorphic to so(ni) where ni is the multiplicity of ai. There is, however, a natural way to ‘‘kill’’ all these centres.
To that end, consider the natural decomposition so(n) = k+ v, where k = so(n1)⊕ so(n2)⊕ · · · ⊕ so(nk) ⊂ so(n) and v is

the natural complement to k in so(n). Consider on so(n) ≃ so(n)∗ the subalgebra P
(
so(n)

)k
⊂ P

(
so(n)

)
consisting of all the

3 Recall that the Riemann curvature tensor of a metric g can be considered (pointwise) as a linear map from the space of bi-vectors to the space of
g-skew symmetric operators, and these two spaces can be naturally identified by means of g .



A.V. Bolsinov et al. / Journal of Geometry and Physics 115 (2017) 2–15 13

functions commuting with k (w.r.t. the standard so(n)-bracket). It is easy to see that P(so(n))k is closed w.r.t. { , }A so that we
still have a Poisson pencil on P

(
so(n)

)k. Moreover, this pencil is also naturally defined on the space P(v)k of all k-invariant
functions on v ≃ v∗, cf. Problems 2 and 3.

Problem25. What are the algebraic properties of the Poisson pencil onP(v)k obtained from { , }E+λA by the above reduction?
Are they of Kronecker type? Is there any general mechanism describing the behaviour of (algebraic properties of) Poisson
pencils under reduction?

This particular question is directly related to the integrability of geodesic flowson thehomogeneous space SO(n)/
(
SO(n1)×

SO(n2) × · · · × SO(nk)
)
. It follows from the paper by I. Mykytyuk [10] that the reduced pencil on P(v)k is of Kronecker type.

The same conclusion follows from [47]. However, the approaches suggested in [10] and [47] do not use the reduced pencil
directly (notice that the sizes of the corresponding Kronecker blocks are still unknown). In fact, the construction in [10] is
applied to arbitrary semisimple Lie algebras, and in this more general setting, Problem 25 remains open.

Could we use the technology developed in [44] to study this problem? The idea of such an alternative approach is as
follows. The reduced Poisson pencil, as a rule, is more complicated than the original one. For example, even if we start with
quite simple brackets (e.g., linear as in our example), the new reduced brackets are no longer linear which leads to many
technical problems (e.g., we do not have any natural coordinate system for explicit computations). The main idea of [44]
is to ‘‘replace’’ a (non-linear) Poisson pencil by its linearisation. For our purposes, this linearisation needs to be done at an
equilibrium point of the corresponding reduced Hamiltonian system (more precisely, at a common equilibrium point for all
reduced Hamiltonians). A ‘‘good’’ linearisation may guarantee that the given (non-linear) pencil is of Kronecker type.

Problem26. What are the common equilibriumpoints for the reduced pencil onP(v)k? Do they exist? Canwe describe them
explicitly? (In the case of a generic Awith simple eigenvalues, the answer is well known; see for example [46].) What is the
linearisation of the reduced pencil at such points? Can one say anything about the algebraic type of the reduced pencil (we
want it to be Kronecker) if its linearisation is known? In themore general setting: underwhich conditions on its linearisation
a (non-linear) Poisson pencil is of Kronecker type?

6. Action variables as symplectic invariants

This section is related to the symplectic topology of integrable systems (see [48–51]). Consider a singular Lagrangian
fibration φ : M → B associated with a certain finite-dimensional integrable system. The base B of this fibration can be
understood as a stratified manifold whose strata correspond to different levels of degeneracy of singular fibres. Recall that
the action variables are defined on the regular part Breg ⊂ B and they, in turn, define an integer affine structure on it. In
a neighbourhood of a singular stratum, this affine structure, as a rule, is not smooth but we still may study its asymptotic
behaviour and think of it as a singular affine structure on B as a whole.

Since the action variables are preserved under symplectomorphisms, we may think of them as symplectic invariants of
(singular) Lagrangian fibrations. Howmuch information do they contain? Examples show that very often the action variables
(equivalently, singular affine structure on B) are sufficient to reconstruct completely the structure of the Lagrangian fibration
up to symplectomorphisms. The classical result illustrating this principle is the Delzant theorem [48] stating that in the case
of Lagrangian fibrations related to Hamiltonian torus actions, the base B is an affine polytope (with some special properties)
which determines the structure of the Lagrangian fibration (as well as the torus action) up to a symplectomorphism.

This situation, however, is almost trivial from the point of view of singularities of action variables as they are smooth
functions both on M2n and B (here we think of B as a manifold with corners). We believe that an analogue of the Delzant
theoremholds true in amuchmore general situation. Ideally, such an analogue could be formulated as the following principle
(it is not a theorem as a counterexample is easy to construct!):

Let φ : M → B and φ′
: M ′

→ B′ be two singular Lagrangian fibrations. If B and B′ are affinely equivalent (as stratified
manifolds with singular affine structures), then these Lagrangian fibrations are fiberwise symplectomorphic.

Problem 27. Under which additional conditions, does this principle become a rigorous theorem?

In our opinion, this is an important general question which is apparently quite difficult to answer in full generality. Some
more specific questions could be of interest too.

Let φ : M4
→ B be an almost toric fibration (see [50,52]), which means in particular that its singularities are all non-

degenerate and can be of elliptic and focus type only. Consider the most typical situation when the base B of such a fibration
is a two-dimensional region with boundary (having some corners) and some isolated singular points of focus type lying
inside B. This domain is endowed with an integer affine structure having singularities at focus points.

Problem28. Consider two Lagrangian fibrationsφ : M4
→ B andφ′

: M ′4
→ B′. Assume that B and B′ are affinely equivalent

in the sense that there exists an affine diffeomorphismψ : B → B′. Is it true that under these assumptions the corresponding
Lagrangian fibrations are symplectomorphic?

In the semi-global setting, wemay ask a similar question for a Lagrangian fibration in a neighbourhood of a singular fibre.
Non-degenerate singularities satisfy one important property: locally, every action variable can be written as I = Ising + Ireg,
where the singular part Ising is the same for all singularities of a given topological type and Ireg is a smooth functionwhich can
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be arbitrary. This reflects the fact that the singular part Ising has a local nature and is defined by the structure of a fibration in
a neighbourhood of a singular point. According to the Eliasson theorem [53], in the non-degenerate case there are no local
symplectic invariants and hence Ising is uniquely defined by the topological type of a singular point.

Problem 29. What happens in the case of degenerate singularities? Do local symplectic invariants exist (for diffeomorphic
singularities)? How many and of what kind are they? This question makes sense even in the simplest case of one-degree-
of-freedom systems.

As we know from concrete examples of integrable systems, many degenerate singularities are stable in the sense that
they cannot be avoided by a small perturbation of a system. The problem of description of stable degenerate singularities is
very important on its own but for many degrees of freedom it is quite complicated. However, in the case of two (and two
and a half) degrees of freedom there are a number of well-known examples of stable singularities (e.g., Hamiltonian Hopf
bifurcation). It would be interesting to clarify the situation with asymptotic behaviour of angle variables at least for such
singularities.

V. Kalashnikov [54] has described all stable singularities of rank 1 for Hamiltonian systems of two degrees of freedom.

Problem 30. Describe the symplectic invariants of stable singularities from [54]. For such singularities one of the action
variables, say I1, is smooth, and the other I2 is singular. Is it true that the singular part Ising of I2 is always ‘‘standard’’, i.e., is
it the same for all singularities of a given topological type?

One could also ask the converse question.

Problem 31. Assume that we know explicit formulas for the action variables I1, . . . , In so that we are able to analyse the
asymptotic behaviour of them in a neighbourhood of a singular fibre. Can we recover the topology of this singularity from
the asymptotic behaviour (or at least to distinguish between different types of singularities)? For example, we know that
in the case of non-degenerate hyperbolic singularities, the singular part Ising is of the form h ln h + · · · . Is this property
characteristic for non-degenerate singularities? The answer is apparently positive so that we could use this property for
verifying the non-degeneracy condition. For degenerate singularities, this question becomes, of course, more interesting
and important.

Another particular question in the same spirit is related to geodesic flows on 3-dimensional manifolds. Among the eight
3-dimensional geometries, there is only one which does not admit integrable geodesic flows, namely, the hyperbolic one.
The situation with the SL(2,R) geometry is not quite clear. The geodesic flow on a compact SL(2,R)-manifold M3 seems to
be ‘‘half’’-integrable in the sense that the phase space T ∗M3 can be partitioned into two open domains one of which carries
integrable dynamics and is foliated into invariant Liouville 3-tori while the other does not admit three commuting integrals.

Problem 32. Do the action variables of integrable geodesic flows on 3-dimensional closed manifolds ‘‘feel’’ the underlying
geometry? In other words, can we recover the geometry (i.e., distinguish between 7 possibilities) from the action variables?
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