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Abstract. A bi-Hamiltonian structure is a pair of Poisson structures P , Q which are com-
patible, meaning that any linear combination αP +βQ is again a Poisson structure. A bi-
Hamiltonian structure (P,Q) is called flat if P and Q can be simultaneously brought
to a constant form in a neighborhood of a generic point. We prove that a generic bi-
Hamiltonian structure (P,Q) on an odd-dimensional manifold is flat if and only if there
exists a local density which is preserved by all vector fields Hamiltonian with respect to
P , as well as by all vector fields Hamiltonian with respect to Q.
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1. Introduction

Two Poisson structures P and Q on a manifold M are called compatible if any lin-
ear combination of them is again a Poisson structure. A pair of compatible Poisson
structures is called a bi-Hamiltonian structure. A vector field v on M is called bi-
Hamiltonian with respect to a bi-Hamiltonian structure (P,Q) if it is Hamiltonian
with respect to both P and Q.

Bi-Hamiltonian structures play a fundamental role in the theory of integrable
systems. Since the pioneering works of Magri [11] and Gelfand and Dorfman [6],
it is known that bi-Hamiltonian systems automatically possess a large number of
conservation laws and, as a consequence, tend to be completely integrable. Con-
versely, most of the known integrable systems possess a bi-Hamiltonian structure.
For this reason, bi-Hamiltonian structures have received a great deal of attention
from the mathematical physics community.
In this note, we study local geometry of finite-dimensional bi-Hamiltonian struc-

tures. One of the most natural geometric questions about bi-Hamiltonian struc-
tures is whether there exists an analog of the Darboux theorem for compatible
Poisson brackets. In other words, can two compatible Poisson tensors be simulta-
neously brought to a constant form in a neighborhood of a generic point? Besides
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being natural from the point of view of abstract Poisson geometry, this problem
also arises in the theory of integrable systems, in particular, in the context of sep-
aration of variables, see, e.g., [4] and references therein.
Geometry of bi-Hamiltonian structures has been intensively studied in the last

20 years. Main results in this field belong to Gelfand and Zakharevich [7–9,21],
Olver [12], Panasyuk [13], and Turiel [14–16,18,19].
If two compatible Poisson tensors P and Q can be simultaneously brought to

a constant form in a neighborhood of a generic point, then the bi-Hamiltonian
structure (P,Q) is called flat. The main problem of the present paper is to find
explicit conditions on tensors P and Q under which the structure (P,Q) is flat.
We note that while flat bi-Hamiltonian structures are very non-generic objects, and
one should expect flat examples to be rare, the situation is quite the opposite: most
of bi-Hamiltonian structures naturally arising in mathematical physics are in fact
flat. Here is just one remarkable example.

EXAMPLE 1.1. Let g be a finite-dimensional real Lie algebra, and let a ∈ g∗.
Then, on g∗, there are two compatible Poisson structures, one being the standard
Lie-Poisson bracket

{ f, g}P (x) := 〈x, [d f (x),dg(x)]〉,
and the other one being the frozen argument bracket

{ f, g}Q(x) := 〈a, [d f (x),dg(x)]〉.
For an arbitrary Lie algebra g, there is absolutely no reason for the bi-Hamiltonian
structure (P,Q) to be flat. However, it is flat if g is simple [13,21].

Note that, in bi-Hamiltonian geometry, one needs to distinguish between the
even and odd dimensional cases. The reason for this comes from linear alge-
bra. A generic skew-symmetric form on an even-dimensional vector space is non-
degenerate. For two non-degenerate Poisson brackets P and Q, one can define the
recursion operator R=Q−1P . Clearly, if the structure (P,Q) is flat, then the eigen-
values of R must be constant. The converse is also true, as was proved by Turiel
[15].
In the odd-dimensional case, the situation is different. Any two generic pairs

of forms on an odd-dimensional vector space are equivalent to each other. For
this reason, generic odd-dimensional bi-Hamiltonian structures have no algebraic
invariants, and the obstruction to flatness is of geometric nature. A fundamen-
tal theorem by Gelfand and Zakharevich [7,8] provides an isomorphism between
the category of generic odd-dimensional bi-Hamiltonian structures and the cate-
gory of Veronese webs. As a corollary of the Gelfand–Zakharevich theorem, a bi-
Hamiltonian structure is flat if and only if the associated Veronese web is trivial-
izable.
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The goal of the present note is to obtain a more intrinsic condition for flatness
which does not appeal to the theory of webs. Our main observation is that the
flatness problem for generic odd-dimensional bi-Hamiltonian structures is closely
related to the notion of invariant densities, as introduced by Weinstein [20]. Let P
be a Poisson structure on a manifold M . A density or, which is the same, a volume
form on M is called invariant if it is preserved by all vector fields Hamiltonian with
respect to P . Likewise, if M is endowed with a bi-Hamiltonian structure (P,Q),
one can consider bi-invariant densities, that are densities which are invariant with
respect to both P and Q. We say that a bi-Hamiltonian structure is unimodular if
it admits a bi-invariant density.
Our main result is that a generic odd-dimensional bi-Hamiltonian structure is

flat if and only if it is locally unimodular. This result, albeit simple, is, to the best
of our knowledge, first constructive criterion for flatness of bi-Hamiltonian struc-
tures.

2. Pairs of Bivectors on a Vector Space

In this section, we discuss some algebraic properties of pairs of bivectors on a
finite-dimensional vector space. These properties serve as a motivation for the
definition of a generic bi-Hamiltonian structure, and also explain the difference
between the even and odd dimensional cases in bi-Hamiltonian geometry.
Let V be a finite-dimensional vector space. Consider the space �2V of bivectors

on V (i.e., bilinear skew-symmetric forms on V ∗). Let �m :={A∈�2V |corank A=
m} be the set of bivectors of corank m. Then, one has the following straightfor-
ward result.

PROPOSITION 2.1. The set �m is empty for m �≡ dim V (mod 2). For m ≡ dim V
(mod 2), the set �m is a smooth submanifold of �2V of codimension

codim�m = 1
2
m(m−1).

We say that a bivector is singular if its rank is lower than maximum possible.
From Proposition 2.1, it follows that the set of singular bivectors has codimen-
sion 1 if dim V is even, and codimension 3 if dim V is odd. This fact is the reason
for the difference between the even and odd dimensional cases in bi-Hamiltonian
geometry.

DEFINITION 2.2. Let V be an odd-dimensional vector space. We say that a pair
of bivectors A, B∈�2V is generic if αA+βB is non-singular for all (α,β)∈C

2\{0},
i.e., if dimKer (αA+βB)=1 for all (α,β)∈C

2\{0}.

Let �=�2V ×�2V be the space of pairs of bivectors on V , and let �0 ⊂� be
the set of generic pairs. Then, Proposition 2.1 implies the following result.
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PROPOSITION 2.3. �0 is an open dense subset of �.

Proof. The set of linear combinations αA+βB can be viewed as a projective line
in the projectivization P�2V of the space of bivectors on V . The set �0 consists
of pairs (A, B)∈� such that the line passing through A and B does not intersect
(the projectivization of) the set of singular bivectors. Since the latter set has codi-
mension 3 in P�2V , a generic line does not intersect it. The result follows.

Furthermore, as follows from the proposition below, �0 is a homogeneous space
for the natural GL(V )-action on �. In other words, generic pairs of bivectors
on an odd-dimensional vector space have no invariants. Note that in the even-
dimensional case such invariants are given by the eigenvalues of the recursion oper-
ator A−1B.

PROPOSITION 2.4. Let V be a vector space of dimension 2n + 1. Assume that
(A, B)∈�0. Then, there exists a basis e1, . . . , e2n+1 in V such that

A=
n∑

i=1

ei ∧ ei+n, B=
n∑

i=1

ei ∧ ei+n+1.

Proof. The proof follows from the Jordan–Kronecker theorem; see, e.g., [2].

3. Generic Bi-Hamiltonian Structures on Odd-Dimensional Manifolds

In this section, we discuss the notions of generic and flat bi-Hamiltonian structures
on an odd-dimensional manifold.

DEFINITION 3.1. Let M be an odd-dimensional manifold. A bi-Hamiltonian
structure (P,Q) on M is called generic at a point z ∈ M if dimKer (αP(z) +
βQ(z))=1 for all (α,β)∈C

2\{0}.

In other words, (P,Q) is generic at z if the pair of bivectors (P(z),Q(z)) on
TzM is generic in the sense of Definition 2.2. From Proposition 2.3, it follows
that a bi-Hamiltonian structure generic at a point z is also generic in a sufficiently
small neighborhood of z.

Remark 3.2. In Definition 3.1, we follow the original terminology of Gelfand and
Zakharevich [7,8]. Note that generic bi-Hamiltonian structures on odd-dimensional
manifolds are a particular case of Kronecker structures. A bi-Hamiltonian struc-
ture (P,Q) on a manifold M is called Kronecker at a point z ∈ M if the rank
of αP(z)+βQ(z) is the same for all (α,β)∈C

2\{0}. So, a generic bi-Hamiltonian
structure is the same as a Kronecker structure of corank one.



FLAT BI-HAMILTONIAN STRUCTURES AND INVARIANT DENSITIES 1419

Kronecker bi-Hamiltonian structures are characterized by the following impor-
tant property: if (P,Q) is a Kronecker structure, then the set of all local Casimir
functions of all brackets of the pencil αP + βQ is a completely integrable sys-
tem; see [1]. In particular, this is so for generic bi-Hamiltonian structures on odd-
dimensional manifolds.

DEFINITION 3.3. A bi-Hamiltonian structure (P,Q) is flat in a neighborhood of
a point z if there exists a chart around z in which both tensors P and Q have
constant coefficients.

By Proposition 2.4, any flat generic bi-Hamiltonian structure on M2n+1 can be
locally brought to the form

P =
n∑

i=1

∂

∂xi
∧ ∂

∂xi+n
, Q=

n∑

i=1

∂

∂xi
∧ ∂

∂xi+n+1
.

4. Flatness via λ-Casimir Families

In this section, we recall the flatness criterion for generic odd-dimensional bi-
Hamiltonian structures due to Gelfand and Zakharevich [9].

DEFINITION 4.1. Let (P,Q) be a bi-Hamiltonian structure on a manifold M . A
family of functions Fλ : M →R parametrized by λ∈R is called a λ-Casimir family
if, for any λ ∈R, the function Fλ is a Casimir function of P + λQ. A λ-Casimir
family Fλ is polynomial of degree d if it is a degree d polynomial in λ. A λ-Casimir
family is non-singular if dFλ �=0 in M for any λ∈R.

THEOREM 4.2. Let (P,Q) be a bi-Hamiltonian structure on a manifold M2n+1.
Assume that (P,Q) is generic at a point z∈M2n+1. Then, (P,Q) is flat in a neigh-
borhood of z if and only if near z it admits a non-singular λ-Casimir family of
degree n.

Remark 4.3. The condition of Theorem 4.2 can be reformulated in terms of
Veronese webs; see [9]. We do not use Veronese webs in the present paper.

Remark 4.4. It can be shown that a generic bi-Hamiltonian structure in dimension
2n+1 cannot have a non-singular λ-Casimir family of degree less than n. So, n is
actually the minimal possible degree of a λ-Casimir family. We also note that exis-
tence of a non-singular polynomial λ-Casimir family of degree higher than n does
not imply flatness. As an example, consider the following bi-Hamiltonian structure
in R

3.



1420 ANTON IZOSIMOV

{x1, x2}P =0, {x3, x1}P = x1, {x3, x2}P =−2x2,

{x1, x2}Q =0, {x3, x1}Q =1, {x3, x2}Q =−2.

This structure is generic at all points where x1 �= x2 and has a λ-Casimir family
of degree 3 given by Fλ = (x1 +λ)2(x2 +λ). However, this structure is not flat; see
Example 6.4 below.

Theorem 4.2 was proved by Gelfand and Zakharevich in the analytic case [9]
and by Turiel in the smooth case [18]. Note that it is, in general, hard to use
this result to prove or disprove flatness of an explicitly given bi-Hamiltonian struc-
ture. The problem is that any odd-dimensional bi-Hamiltonian structure admits
infinitely many local λ-Casimir families, and it is not clear a priori whether there
exists a distinguished one which is polynomial in λ and has degree n. Below, we
show that λ-Casimir families of degree n can be constructed by means of bi-
invariant densities. This allows us to give an alternative criterion for flatness which
is easy to verify in particular examples; see Theorem 6.2 below.

5. Invariant Densities on Poisson Manifolds

In this section, we recall the notion of an invariant density. For details, see [20].

DEFINITION 5.1. Let M be a finite-dimensional manifold endowed with a Pois-
son structure P . A density (i.e., a non-vanishing top-degree form) ω on M is
invariant with respect P if is preserved by all vector fields which are Hamiltonian
with respect to P . A Poisson structure which admits an invariant density is called
unimodular.

EXAMPLE 5.2. Assume that P is a non-degenerate Poisson structure on a man-
ifold M2n , i.e., P−1 is a symplectic structure. Then, the density ω := �n(P−1) is
invariant with respect to P . Furthermore, any other P-invariant density coincides
with ω up to a constant factor.

Note that any Poisson structure P on M is unimodular in a neighborhood of
a generic point z ∈ M (we say that a point z is generic for a Poisson structure P
if there exists a neighborhood of z in which the rank of P is constant). Indeed,
by the Darboux theorem, there exists a coordinate system (x1, . . . , xn) around z
in which the Poisson tensor P has a constant form. In this coordinate system, an
invariant density is given by ω :=dx1 ∧· · ·∧dxn .

The proposition below gives a local description of all densities which are invari-
ant with respect to a Poisson tensor P .

PROPOSITION 5.3. Let P be a Poisson structure on a manifold M . Let also
(x1, . . . , xn) be local coordinates on M, and let Pi j be the components of the tensor
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P in these coordinates. Then, a density ω =ρ(x1, . . . , xn)dx1 ∧ . . .∧dxn is invariant
with respect to P if and only if

n∑

j=1

(
Pi j

∂ logρ

∂x j
+ ∂Pi j

∂x j

)
=0. (1)

Remark 5.4. The coordinate-free form of Equation (1) is d(P 	 ω) = 0, where the
star denotes contraction. In other words, an invariant density is the same as a top
degree cycle in Poisson homology; see [20].

6. Flatness via Bi-invariant Densities

In this section, we formulate our main result: a necessary and sufficient condition
for flatness of a generic odd-dimensional bi-Hamiltonian structure in terms of bi-
invariant densities.

DEFINITION 6.1. A density ω is bi-invariant with respect to a bi-Hamiltonian
structure (P,Q) if it is invariant with respect to both P and Q. A bi-Hamiltonian
structure (P,Q) is called unimodular if it admits a bi-invariant density.

The following theorem is our main result.

THEOREM 6.2. Let (P,Q) be a bi-Hamiltonian structure on an odd-dimensional
manifold M . Assume that (P,Q) is generic at a point z0 ∈ M . Then, (P,Q) is flat
in a neighborhood of z0 if and only if it is unimodular in a neighborhood of z0.

The proof of Theorem 6.2 is given in the next section. The following proposition
shows how to apply this theorem in concrete examples.

COROLLARY 6.3. Let (P,Q) be a bi-Hamiltonian structure on M2n+1 which is
generic at a point z0∈M2n+1. Let also (x1, . . . , x2n+1) be a coordinate system around
z0. Consider the following system of linear equations:

⎧
⎪⎪⎨

⎪⎪⎩

∑2n+1
j=1

(
Pi jα j + ∂Pi j

∂x j

)
=0,

∑2n+1
j=1

(
Qi jα j + ∂Qi j

∂x j

)
=0,

(2)

where α1, . . . , α2n+1 are unknowns, and Pi j ,Qi j are components of the Poisson ten-
sors P,Q in coordinates (x1, . . . , x2n+1). Then, the following statements hold.
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1. If (2) is solvable, then the solution is unique.
2. The bi-Hamiltonian structure (P,Q) is locally unimodular if and only if (2) is

solvable, and the 1-form

α :=
2n+1∑

i=1

αidxi (3)

is closed.
3. If (2) is solvable, and the form α given by (3) is closed, then

ω := exp

⎛

⎝
z∫

z0

α

⎞

⎠dx1 ∧· · ·∧dx2n+1 (4)

is a bi-invariant density.

Proof. Statements 2 and 3 follow from Proposition 5.3. To prove the first state-
ment, notice then the difference of any two solutions of (2) belongs to KerP ∩
KerQ. At the same time, from Proposition 2.4 it follows that KerP ∩ Ker
Q=0.

EXAMPLE 6.4. The bi-Hamiltonian structure considered in Remark 4.4 is not
flat. Indeed, solving system (2), we obtain

3∑

i=1

αidxi = dx1
x2 − x1

+ dx2
2(x2 − x1)

.

This form is not closed.

EXAMPLE 6.5 (Volterra lattice). Consider the bi-Hamiltonian structure of the
periodic Volterra lattice; see, e.g., [3,5]. This structure is given on R

n by

Pi j := (δi+1, j − δi, j+1)xi x j ,

Qi j := (δi+1, j − δi, j+1)xi x j (xi + x j )+ δi+2, j xi xi+1xi+2 − δi−2, j xi xi−1xi−2,

where all indices are modulo n and δi j is the Kronecker delta. If n is odd, this
structure is generic almost everywhere. Let us prove that it is flat. The first equa-
tion in (2) reads

xi+1αi+1 − xi−1αi−1 =0 ∀ i ∈Z/nZ.

Since n is odd, the latter equation implies xiαi = x jα j for all i, j ∈Z/nZ. Denote
xiαi by β. Then, the second equation in (2) takes the form

β(xi + xi+1)−β(xi + xi−1)+βxi+1 −βxi−1 +3(xi+1 − xi−1)=0,
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so β =−3/2, and

∑

i

αidxi =−3
2

∑

i

dxi
xi

.

This form is closed, so the structure (P,Q) is flat. The density

ω := (x1 . . . xn)
−3/2 dx1 ∧· · ·∧dxn

is invariant with respect to P and Q.

Remark 6.6. Let us comment on the dependence of the test proposed in Corol-
lary 6.3 on the choice of coordinates. First, note that if the system (2) is consistent
in one coordinate system, then it is also consistent in all coordinate systems. How-
ever, its solution α does depend on the choice of coordinates. A straightforward
computation shows that solutions associated with coordinate systems (xi ) and (x ′

i )

are related by
∑

i

αidxi =
∑

i

α′
idx

′
i +d log det J,

where J is the Jacobian of the transformation (xi )→ (x ′
i ). From the latter formula,

it follows that the 2-form

� :=d
(∑

αidxi
)

(5)

does not depend on the choice of coordinates. In particular, if the 1-form (3) is
closed in one coordinate system, then it is closed in all coordinate systems. Fur-
thermore, if (3) is closed, then the density (4) is well defined up to a constant fac-
tor.

Remark 6.7. A straightforward computation shows that system (2) is always con-
sistent in dimension 3. Therefore, in dimension 3 the form � given by (5) is always
well defined, and a generic bi-Hamiltonian structure on a 3-manifold is flat if and
only if �=0. It turns out that, up to a constant factor, the form � coincides with
the curvature form defined in [10]. This curvature form can be interpreted in the
following two ways. Firstly, it coincides with the pullback of the Blaschke curva-
ture of the 3-web associated with the bi-Hamiltonian structure. Second, it is equal,
up to a constant factor, to the skew-symmetric part of the Ricci tensor of any
torsion-free affine connection ∇ such that ∇P =∇Q=0.
Apparently, there should exist a similar interpretation of the form � in any

odd dimension. Note, however, that in higher dimensions system (2) is, in general,
inconsistent.

Remark 6.8. Note that for Kronecker structures of higher corank (see Remark 3.2
for the definition of Kronecker structures) unimodularity does not imply flatness
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(although it is still a necessary condition). As an example, consider two Poisson
structures on R

4 given by

{x1, x2}P = x2, {x1, x3}P = x3, {x1, x4}P =−2x4,

{x1, x2}Q =1, {x1, x3}Q =1, {x1, x4}Q =−2.

It is easy to see that the bi-Hamiltonian structure (P,Q) is Kronecker of corank
2 at all points except those where x2 = x3 = x4. Furthermore, (P,Q) is a unimod-
ular structure: a bi-invariant density is given by dx1 ∧ dx2 ∧ dx3 ∧ dx4. However,
the structure (P,Q) is not flat. To prove this, consider the intersection of kernels
KerP ∩KerQ. The latter is a one-dimensional codistribution spanned by the 1-
form

β =2(x4 − x3)dx2 +2(x2 − x4)dx3 + (x2 − x3)dx4.

We have β ∧dβ �=0, so the codistribution KerP ∩ KerQ is not integrable. On the
other hand, if the structure (P,Q) was flat, this codistribution would be integrable.
So, the bi-Hamiltonian structure (P,Q) is not flat.

Remark 6.9. After the first version of the present work became available on arXiv,
Turiel published another criterion for flatness of generic bi-Hamiltonian structures:

THEOREM 6.10 (Turiel, [17]). Let (P,Q) be a bi-Hamiltonian structure on a man-
ifold M of dimension 2n + 1≥ 5, and let � be an arbitrary density on M . Assume
that (P,Q) is generic at a point z0 ∈ M . Then, the bi-Hamiltonian structure (P,Q)

is flat near z0 if and only if there exists a local 1-form λ such that

d(P 	�)=λ∧ (P 	�), d(Q	�)=λ∧ (Q	�). (6)

Let us show that condition (6) is equivalent to unimodularity. First, assume that
the bi-Hamiltonian structure (P,Q) is unimodular, and let ω be a bi-invariant den-
sity. Let also � be an arbitrary density on M . Then, near z0, we have �= f ω for
a certain non-vanishing function f , and

d(P 	�)=d( f (P 	ω))=d f ∧ (P 	ω)=d log f ∧ (P 	�),

where in the second equality we used that ω is P-invariant, which, according to
Remark 5.4, is equivalent to d(P 	ω)=0. Analogously, we get d(Q	�)=d log f ∧
(Q	�), so, taking λ :=d log f , we obtain (6).

Conversely, assume that (6) holds. Then, as shown by Turiel in the proof of The-
orem 1 of [17], the form λ in (6) has to be closed, provided that dimM ≥ 5. But
this means that locally one has λ=dg for a certain smooth function g, and repeat-
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ing the above computation we get that ω := exp(−g)� is a bi-invariant density, as
desired.

7. Proof of the Flatness Criterion

The proof of Theorem 6.2 is based on the following lemma.

LEMMA 7.1. Let P be a Poisson tensor of rank 2n on an odd-dimensional manifold
M2n+1. Let also ω be a density which is invariant with respect to P . Consider the 1-
form α obtained by contracting ω with the nth exterior power of P: α := ω 	 �nP.

Then, dα =0 and Pα =0.

Proof. It suffices to prove the statement locally. By the Darboux theorem, there
exists a local chart (x1, . . . , x2n+1) in which

P =
n∑

i=1

∂

∂xi
∧ ∂

∂xn+i
.

Let ω=ρ(x1, . . . , xn)dx1 ∧· · ·∧dxn . Then, from Proposition 5.3 and the invariance
of ω, it follows that Pdρ =0, i.e., ρ depends on x2n+1 only:

ω=ρ(x2n+1)dx1 ∧· · ·∧dx2n+1.

Therefore, we have

α =ω	�nP = const ·ρ(x2n+1)dx2n+1,

and the result follows.

Proof of Theorem 6.2. The implication “flatness” ⇒ “unimodularity” is straight-
forward: if the tensors P and Q are constant in a chart (x1, . . . , x2n+1), then the
density ω=dx1 ∧· · ·∧dx2n+1 is invariant with respect to both P and Q.
Conversely, assume that there exists a density ω which is invariant with respect

to P and Q. Let

αλ :=ω	�n(P +λQ).

This form is a degree n polynomial in λ. By Lemma 7.1, we have

(P +λQ)αλ =0, dαλ =0.

Also note that αλ �=0 for any λ∈R, since dimKer (P +λQ)=1. Therefore, taking

Fλ(z)=
∫ z

z0
αλ,
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we obtain a non-singular polynomial λ-Casimir family of degree n. So, by Theo-
rem 4.2, the bi-Hamiltonian structure (P,Q) is flat, q.e.d.
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