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(Communicated by Deane Yang)

Abstract. Consider the map S which sends a planar polygon P to a new
polygon S(P ) whose vertices are the intersection points of second-nearest sides
of P . This map is the inverse of the famous pentagram map. In this paper
we investigate the dynamics of the map S. Namely, we address the question

of whether a convex polygon stays convex under iterations of S. Computer
experiments suggest that this almost never happens. We prove that indeed the
set of polygons which remain convex under iterations of S has measure zero,
and moreover it is an algebraic subvariety of codimension two. We also discuss
the equations cutting out this subvariety, as well as their geometric meaning
in the case of pentagons.

1. Introduction

Let P be a planar polygon, and let S(P ) be the polygon whose vertices are the
intersection points of second-nearest sides of P ; see Figure 1. The map S is the
inverse of the celebrated pentagram map, defined by R. Schwartz [6] and studied
by many others. Indeed, as can be seen in Figure 1, one can recover P from S(P )
by intersecting consecutive shortest diagonals (i.e. diagonals connecting second-
nearest vertices), which is precisely the definition of the pentagram map. In what
follows, we denote the pentagram map by D, so that S = D−1 and D = S−1.

S(P )

P

(a)

S(P )

P

(b)

Figure 1. The inverse pentagram map

As can be seen from Figure 1, the image of a convex polygon under the inverse
pentagram map S does not have to be convex. Moreover, computer experiments
show that a randomly chosen polygon becomes non-convex after several applica-
tions of S; see Figure 2. The goal of the present paper is to determine necessary
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2 ANTON IZOSIMOV

Figure 2. The orbit of a polygon under the inverse pentagram
map. Each iteration is normalized by means of an appropriate
affine transformation.

and sufficient conditions on a convex polygon P which guarantee that all successive
images of P under S, i.e. S(P ), S(S(P )), . . . , are convex polygons. Our main result
is that the set of polygons with this property has zero measure and moreover is a
codimension two algebraic surface. Furthermore, we present explicit equations de-
scribing this surface, i.e. explicit conditions on P which ensure that all its successive
images under the map S are convex.

We will state our main result in two different forms: in terms of a certain vector
dP associated with the polygon P , and in terms of a certain operator GP also
associated with P .

To define dP , consider a convex planar n-gon P in the affine plane. Assume that
the vertices of P are labeled in cyclic order by residues modulo n. Denote by di the
vector connecting the vertices i− 1 and i+1, and let Ai be the area of the triangle
cut out by the line joining those vertices; see Figure 3. Then dP is defined by

dP :=
n∑

i=1

di
Ai

.(1)

The first way to formulate our main result is as follows: for a convex polygon P , all
successive images of P under the inverse pentagram map S are convex if and only
if dP = 0. Since this is equivalent to two algebraic equations on the coordinates of
vertices, it follows that the set of convex n-gons P such that Sk(P ) is convex for
every k ≥ 0 is a codimension two algebraic surface in the 2n-dimensional space of
all convex n-gons.

Another way to state our result is in terms of a certain operator introduced
by M.Glick [2]. This operator is defined as follows. Assume that we are given a
polygon P in the projective plane P

2. Let vi ∈ R
3 be the vector of homogeneous

coordinates of the i’th vertex of P . Then Glick’s operator GP : R3 → R3 is defined

i+1

i

i−1

di

Ai

dP :=
∑n

i=1
di

Ai

Figure 3. To the construction of the vector dP
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INTERSECTING THE SIDES OF A POLYGON 3

by

GP (v) := nv −
n∑

i=1

vi−1 ∧ v ∧ vi+1

vi−1 ∧ vi ∧ vi+1
vi.(2)

Observe that the right-hand side does not change under rescaling of vi’s, so this is
indeed a well-defined operator. Furthermore, as any operator in the 3-space, Glick’s
operator can be interpreted as a projective mapping P

2 → P
2.

Theorem 1.1. Consider a convex planar polygon P in the affine plane with at
least five vertices. Then the following conditions are equivalent:

(1) All successive images of the polygon P under the inverse pentagram map S
are convex.

(2) The associated vector dP defined by (1) is zero.
(3) The associated Glick’s operator GP defined by (2), regarded as a projective

mapping, is affine.

We prove this theorem by establishing equivalences 2 ⇔ 3 and 1 ⇔ 3. The proof
of 2 ⇔ 3 is a direct computation which we outline in Section 2. As for 1 ⇔ 3,
that part is based on more subtle properties of Glick’s operator and its connection
with pentagram dynamics. We discuss these properties in Section 3, after which
we complete the proof in Section 4.

Remark 1.2. Since the condition dP = 0 is equivalent to two algebraic equations in
terms of vertices of P , it follows from Theorem 1.1 that the set of polygons which
remain convex under iterations of S is an algebraic subvariety of codimension two.
The latter can also be proved without using the vector dP , as outlined in Remark
4.6.

In the case of pentagons, there is one more condition equivalent to the above
three:

Theorem 1.3. For pentagons, the three conditions of Theorem 1.1 are equivalent
to the following one:

(4) The conic inscribed in P and the conic circumscribed about P are concen-
tric.

Apparently, there should be an elementary way of proving this by establishing
equivalence 2 ⇔ 4: the inscribed and circumscribed conics are concentric if and
only if dP = 0. However, we are not aware of such a proof. What we do instead is
directly prove the equivalence 1 ⇔ 4. The main ingredient of the proof is E.Kasner’s
theorem on pentagons.

Remark 1.4. S.Tabachnikov [7] proved that Kasner’s theorem holds for all Pon-
celet polygons (i.e. polygons inscribed in conic and circumscribed about a conic).
Therefore, Theorem 1.3 should be true for such polygons too. We do not consider
this case here so as to not encumber the exposition.

Remark 1.5. Glick (personal communication) suggested the following geometric
interpretation of the condition dP = 0, valid regardless of the number of vertices.
Say that two polygons P and Q are dual with respect to the line at infinity if sides
of P are parallel to shortest diagonals of Q, while sides of Q are parallel to shortest
diagonals of P ; see Figure 4. Then it turns out that a polygon P admits such a
dual if and only if dP = 0.
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4 ANTON IZOSIMOV

Figure 4. Polygons dual with respect to the line at infinity. Lines
of the same color and style are parallel to each other.

2. When is Glick’s operator affine?

We start the proof of Theorem 1.1 by showing the equivalence 2 ⇔ 3: Glick’s
operator’s GP is affine if and only dP = 0. Given a polygon in the affine plane,
denote by (xi, yi) the Cartesian coordinates of its vertices. We assume that the
vertices are labeled in the counter-clockwise order. As in Section 1, denote by di
the vector connecting the vertices i − 1 and i + 1, and let Ai be the area of the
triangle cut out by the line joining those vertices, as shown in Figure 3. Then a
straightforward calculation shows that Glick’s operator GP is given by

(3) GP

⎛
⎝ x

y
z

⎞
⎠

= n

⎛
⎝ x

y
z

⎞
⎠− n∑

i=1

1

Ai

(
det

(
x
y

di

)
−z · det

(
xi−1 xi+1

yi−1 yi+1

))⎛
⎝ xi

yi
1

⎞
⎠

From this formula it follows that the preimage of the line at infinity under GP is
given in homogeneous coordinates x, y, z by

det

(
x
y

dP

)
= z

(
n+

n∑
i=1

1

Ai
det

(
xi−1 xi+1

yi−1 yi+1

))
.(4)

Now assume that GP is affine. Then the line at infinity is mapped to itself, so
the above equation implies dP = 0. Conversely, assume that dP = 0. Then the
coefficient of z in the above equation is easily seen to be invariant under coordinate
transformations, and by choosing coordinates in such a way that the origin is in
the interior of the polygon, one shows that the coefficient of z is always positive
and in particular does not vanish. At the same time, since dP = 0, the coefficients
of x and y vanish, so the preimage of the line at infinity is the line at infinity, as
desired.

3. Glick’s operator and the pentagram map

In this section we discuss properties of Glick’s operator GP and its connection
with the dynamics of the pentagram map D. This is mainly an overview of [2], but
for some of the results we present a refined version.
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INTERSECTING THE SIDES OF A POLYGON 5

Proposition 3.1. Let P be a convex polygon in the affine plane with at least five
vertices. Then the following is true:

(1) For the dual polygon P ∗, one has GP ∗ = G∗
P (recall that the dual polygon

is the polygon in the dual projective plane whose vertices are the sides of
initial polygon).

(2) Let conv(P ) be the convex hull of vertices of P , and let int(conv(P )) be its
interior. Then GP (conv(P )) ⊂ int(conv(P )). In particular, the projective
mapping GP is well-defined at all points of conv(P ) (i.e. none of those
points belong to the kernel of GP when the latter is regarded as an operator
in the 3-space).

(3) The intersection
⋂

k≥0 conv(D
k(P )) =

⋂
k≥0 int(conv(D

k(P ))) is a single

point, known as the limit point of the pentagram orbit Dk(P ). This point is
a fixed point of GP . Moreover, it is the only fixed point of GP in conv(P ).

Proof. (1) See [2, Proposition 3.3].
(2) See [2, Proposition 4.1]. The statement of that proposition is that

GP (conv(P )) ⊂ conv(P ), but it is actually proved that GP (conv(P )) ⊂
int(conv(P )).

(3) The existence of the limit point follows from [6, Theorem 3.1]. Denote that
point by X. Then, by [2, Proposition 1.2], we have GP (X) = X. So it
remains to show that there are no other fixed points in conv(P ). Assume
that Y �= X is another fixed point, GP (Y ) = Y . Note that Y must be in
the interior of P , since GP (conv(P )) ⊂ int(conv(P )). Let L be the line
in RP2 through X and Y . Then GP restricts to and defines a Moebius
transformation of L. Furthermore, G2

P preserves each of the two connected
components of L\{X,Y }. Now, let W and Z be the intersection points of
L with the boundary of the polygon, as shown in Figure 5. Then, since
GP (conv(P )) ⊂ int(conv(P )), it follows that G2

P mapsW inside the interval
WX and Z inside the interval Y Z. At the same time, this Moebius trans-
formation preserves X and Y . But Moebius transformations with these
properties do not exist. Indeed, for any non-trivial Moebius transforma-
tion which has two fixed points and preserves both of the intervals between
those points, one of the fixed points must be attractive and the other one
repelling. So, if W is moved by G2

P towards X, then Z should be moved
away from Y . Thus, it is indeed not possible that GP has two fixed points
in conv(P ).

�

X
Y

L

W

Z

Figure 5. To the proof of Proposition 3.1
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6 ANTON IZOSIMOV

4. Convexity persists if and only if Glick’s operator is affine

We now prove the equivalence 1 ⇔ 3: for a convex polygon P , all its successive
images under the inverse pentagram map S are convex if and only if the projective
mapping GP is affine. To that end, we will reformulate the former condition in
terms of the dual polygon. The following is well-known.

Proposition 4.1. Projective duality intertwines the inverse pentagram map S with
the direct pentagram map D = S−1. In other words, S(P )∗ = D(P ∗).

Proof. The sides of S(P )∗ are vertices of S(P ), which, by definition of S, are
intersections of second-nearest sides of P . At the same time, the sides of D(P ∗)
are shortest diagonals of P ∗, i.e. diagonals connecting second-nearest vertices.
But second-nearest vertices of P ∗ are second-nearest sides of P , so the diagonals
connecting them are precisely the intersections of second-nearest sides of P . So,
S(P )∗ and D(P ∗) have the same sides and hence coincide, as claimed. �

We now reformulate the convexity condition for the polygon Sk(P ) in terms of its
dual Dk(P ∗). Note that it is in general not true that the dual of a convex polygon
is convex. In fact, this statement does not even make sense, since the definitions
of convexity in the initial and dual planes require different structures. To define
convexity in the initial plane, one needs to pick an affine chart, which is determined
by choosing a line. Likewise, convexity in the dual plane also becomes well-defined
upon choice of a line, i.e. a point in the initial plane. So, in order to be able to talk
about convexity in both the initial and dual planes, in the initial plane one needs
to pick a line (which defines an affine chart) and a point (which defines an affine
chart in the dual plane). The following is a folklore result.

Lemma 4.2. Consider a projective plane P2 with a fixed line L and point O.
Assume that P is a polygon in that plane which is convex in the affine chart P2\L
and contains the point O in its interior. Then the dual polygon P ∗ is convex in the
affine chart (P2)∗\O and contains the point L in ins interior.

Remark 4.3. The choice of a point O turns P2 \L into a vector space. In that
setting, the lemma can be reformulated by saying that the dual of a convex polygon
containing the origin is also a convex polygon containing the origin. This is in fact
true for any convex set, with an appropriate definition of duality.

Proof of Lemma 4.2. Figure 6 shows a polygon P in the affine chart P2 \L. Let
A be an arbitrary vertex of P . Consider the straight line interval connecting O
to A. Then none of the sides of P non-adjacent to A intersect that interval, and
neither does the line at infinity L. Therefore, all the sides of P non-adjacent to A,
as well as the line L belong to the same connected component in the space of lines

A

O

Figure 6. To the proof of Lemma 4.2
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INTERSECTING THE SIDES OF A POLYGON 7

in P2\{O,A}. But this means that all vertices of P ∗ not adjacent to the side A,
as well as the point L, belong to the same connected component of (P2)∗\(O ∪A).
In other words, these points lie on the same side of the line A in the affine plane
(P2)∗\O, and since this holds for every side A of P ∗, this precisely means that P ∗

is convex and contains the point L in its interior. �

Now, consider a convex polygon P in the affine plane, and let L be the line at
infinity. Fix a point O in the interior of P . Then, by Lemma 4.2, the dual polygon
P ∗ is convex in the affine chart (P2)∗\O and contains the point L in its interior.

Proposition 4.4. For any given k > 0, the polygon Sk(P ) is convex if and only if
its dual Dk(P ∗) contains the point L ∈ (P2)∗ in its interior.

Proof. Assume that the polygon Sk(P ) is convex. Observe that Dk(Sk(P )) = P , so
Sk(P ) contains the polygon P and hence the point O in its interior. Therefore, since
Sk(P ) is convex and contains the point O, by Lemma 4.2 the polygon Dk(P ∗) =
Sk(P )∗ contains the point L. Conversely, assume that Dk(P ∗) contains the point
L. Note that since the pentagram map D preserves convexity, and P ∗ is convex, we
also have that Dk(P ∗) is convex. Therefore, since Dk(P ∗) is convex and contains
the point L, by Lemma 4.2 we have that Sk(P ) = Dk(P ∗)∗ is convex too, as
desired. �

Corollary 4.5. Each of the polygons Sk(P ), where k > 0, is convex if and only if
the limit point of the sequence Dk(P ∗) is the line at infinity L.

Proof. The limit point is the unique point in the intersection
⋂

k>0 conv(D
k(P ∗)),

so L ∈ conv(Dk(P ∗)) for every k > 0 if and only if the limit point is L. �

Now, to complete the proof of Theorem 1.1, it suffices to show that the limit
point of the pentagram orbit Dk(P ∗) is L if and only if the projective mapping GP

is affine. First, assume that L is the limit point for Dk(P ∗). Then, L, viewed as
a point in the dual plane, is fixed by the mapping GP ∗ (Proposition 3.1, Item 3).
But in view of the equality GP ∗ = G∗

P (Proposition 3.1, Item 1), this is equivalent
to saying that L, viewed as the line in the initial plane, is invariant under GP . So,
GP preserves the line at infinity and hence is affine. Conversely, assume that the
mapping GP is affine. Then the line at infinity L, viewed as a point in the dual
plane, is a fixed point of GP ∗ . And since L is inside P ∗, it follows from Proposition
3.1, Item 3 that L must be the limit point of Dk(P ∗), as desired. Thus, Theorem
1.1 is proved.

Remark 4.6. As pointed out by the referee, one can use Corollary 4.5 to directly
prove that the set of polygons which remain convex under iterations of S is of
codimension two. The idea is as follows. Let Pn be the space of convex n-gons.
Consider the map ζ : Pn → (P2)∗ which takes a polygon P to the limit point of the
sequence Dk(P ∗). Then, by Corollary 4.5, the set of polygons which remain convex
under iterations of S is the preimage under ζ of the line at infinity. Assuming the
map ζ is smooth (which follows, for example, from Glick’s construction), it must
be a submersion because it commutes with the projective group action. So the
preimage of the line at infinity (which is a single point in (P2)∗) is a codimension
two submanifold, as desired.
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8 ANTON IZOSIMOV

Figure 7. To the definition of the map RP (A) := B

5. Case study: Pentagons

We now prove the equivalence 1 ⇔ 4 (i.e. Theorem 1.3): for a convex pentagon
P , all its successive images under the inverse pentagram map S are convex if and
only if the conic inscribed in P and the conic circumscribed about P are concentric.
The strategy of the proof is as follows. Consider a pentagon P , and let its inscribed
and circumscribed conics be given by homogeneous quadratic forms QI and QC

respectively. Let RP := Q−1
I QC . Note that since the forms QI and QC are defined

up to a constant factor, RP is well-defined as a projective map P2 → P2. The
geometric meaning of that map is the following: it takes a point A ∈ P2 to point
B ∈ P

2 such that the polar line of A with respect to the circumscribed conic is
the same as the polar line of B with respect to the inscribed conic; see Figure 7.
We will show that the operator RP has all the same properties as Glick’s operator
GP . From that it follows that persistence of convexity is equivalent to RP being
affine. But RP is affine precisely when the inscribed and circumscribed conics are
concentric.

To describe the properties of RP , we use the following classical theorem of Kas-
ner. Let D, as before, be the pentagram map, and let I be the map which sends a
pentagon P to a new pentagon whose vertices are the tangency points of the sides
of P and the inscribed conic; see left picture in Figure 8.

Theorem 5.1 (Kasner [3]). The operations D and I on pentagons commute: DI =
ID; see right picture in Figure 8.

Corollary 5.2. For any pentagon P , one has RD(P ) = RP .

Proof. Consider Figure 9. Observe that the sides of P are polar to the vertices
of I(P ) with respect to the inscribed conic and to the vertices of I−1(P ) with

Figure 8. Definition of the operation I and Kasner’s theorem.
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INTERSECTING THE SIDES OF A POLYGON 9

Figure 9. To the proof of Corollary 5.2

respect to the circumscribed conic. Therefore, RP (I
−1(P )) = I(P ). But since the

map I commutes with projective transformations, this is the same as to say that
RP (P ) = I2(P ). At the same time, we have

RD(P )(P ) = D−1(RD(P )(D(P ))) = D−1(I2(D(P ))) = I2(P ),

where the last equality follows from Kasner’s theorem. Thus, the mappings RP

and RD(P ) both map P to I2(P ), while R−1
D(P ) ◦RP maps P to itself. But the only

projective automorphism of a generic pentagon is the identity, so we must have
RD(P ) = RP for generic, and hence, by continuity, for all polygons. �

Remark 5.3. One can also use a more precise version of Kasner’s theorem which
takes into account labeling of vertices to show that RP and RD(P ) map every vertex

of P to the same vertex of I2(P ) and hence coincide.

Proposition 5.4. Let P be a convex pentagon in the affine plane. Then the as-
sociated operator RP has all the properties listed in Proposition 3.1. Namely, the
following is true:

(1) For the dual pentagon P ∗, one has RP ∗ = R∗
P .

(2) One has RP (conv(P )) ⊂ int(conv(P )).
(3) The limit point

⋂
k≥0 conv(D

k(P )) of the pentagram orbit Dk(P ) is a fixed

point of RP . Moreover, it is the only fixed point of RP in conv(P ).

Proof. (1) The conic inscribed in P ∗ is the dual of the conic circumscribed
about P , i.e. it is given by the quadratic form Q−1

C . Likewise, the conic

circumscribed about P ∗ is given by Q−1
I . So,

RP ∗ = (Q−1
C )−1Q−1

I = QCQ
−1
I = (Q−1

I QC)
∗ = R∗

P .

(2) Any point in the convex hull of P is inside the circumscribed conic (i.e.
in the contractible component of the complement to that conic in P2), or
belongs to that conic. Therefore, the polar line of that point with respect
to the circumscribed conic is either outside or tangent to that conic, and
the point polar to that line with respect to the inscribed conic is inside the
inscribed conic and hence inside P . So, RP (conv(P )) ⊂ int(conv(P )), as
claimed.
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10 ANTON IZOSIMOV

(3) By Corollary 5.2, we have RP = RDk(P ), so RP (conv(D
k(P ))) =

RDk(P )(conv(D
k(P )), which, by above, is a subset of conv(Dk(P )). There-

fore,

RP

(⋂
k≥0

conv(Dk(P ))
)

⊂
⋂

k≥0
Rp(conv(D

k(P ))) ⊂
⋂

k≥0
conv(Dk(P )),

meaning that the limit point of the pentagram orbit Dk(P ) is indeed fixed
by RP . As for the uniqueness of the fixed point, it follows from other
properties in the same way as for GP .

�

From this proposition it follows that for a convex pentagon P , all its successive
images under the map S are convex if and only if the associated projective mapping
RP is affine. Indeed, the proof of the corresponding statement for GP is based on
Proposition 3.1, and since that proposition also holds for RP , the result follows.
Now, it remains to show that RP is affine if and only if the conic inscribed in P and
the conic circumscribed about P are concentric. To that end, recall that the center
of the conic is, by definition, the point polar to the line at infinity with respect to
that conic. Therefore, the image of the line at infinity under the map RP is the line
polar with respect to the inscribed conic to the center of the circumscribed conic.
Thus, the centers coincide precisely when RP preserves the line at infinity, i.e. is
affine, as desired.

Remark 5.5. Implication 4 ⇒ 1 (P is a convex pentagon with concentric inscribed
and circumscribed conics ⇒ all pentagons Sk(P ) are convex) can also be estab-
lished as follows. First assume that the inscribed and circumscribed conics of P are
confocal. Then, as shown in [4], there exists an affine transformation DP taking P

to its pentagram image D(P ). Therefore, we have Sk(P ) = D−k
P (P ), and Sk(P ) is

convex for every k. Now assume that the inscribed and circumscribed conics of P
are concentric, but not necessarily confocal. Then there exists a (generally speak-
ing, defined over C) affine transformation Q which makes those concentric conics
confocal. Then, since Q(P ) has confocal inscribed and circumscribed conics, all the
pentagons Sk(Q(P )) are convex, and the same holds for Sk(P ) = Q−1(Sk(Q(P ))),
as claimed.

Remark 5.6. Instead of proving the equivalence 1 ⇔ 4, we could have proved 3 ⇔ 4,
i.e. GP is affine ⇔ RP is affine, as follows. First, recall that by Clebsch’s theo-
rem for any pentagon P there exists a projective transformation DP such that
DP (P ) = D(P ); see e.g. [6, Theorem 2.1]. Furthermore, any pentagon is projec-
tively equivalent to its dual; see e.g. [1, Proposition 5]. So, since I(P ) is polar
to P and hence projectively equivalent to P ∗, there exists a projective transfor-
mation such that I(P ) = IP (P ). It is then a direct corollary of Kasner’s theorem
that transformations DP and IP commute, cf. [5, Corollary 7]. Therefore, DP

commutes with RP = I2P . Further, as observed in [2], DP coincides, as a linear
operator in 3-space, with GP − 3 · Id, so RP commutes with GP . Now, assume that
RP is affine. Then the line at infinity L is a fixed point of the dual operator R∗

P .
Moreover, by Proposition 5.4, Item 3, it is the only fixed point of R∗

P in the interior
of P ∗. Then, since G∗

P commutes with R∗
P and preserves the interior of P ∗, it must
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INTERSECTING THE SIDES OF A POLYGON 11

preserve L, which means that GP is affine. Likewise, if GP is affine, then RP is
affine too, as desired.
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