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Abstract. The pentagram map is a discrete integrable system on the mod-

uli space of planar polygons. The corresponding first integrals are so-called

monodromy invariants E1, O1, E2, O2, . . . By analyzing the combinatorics of
these invariants, R. Schwartz and S. Tabachnikov have recently proved that

for polygons inscribed in a conic section one has Ek = Ok for all k. In this

paper we give a simple conceptual proof of the Schwartz-Tabachnikov theo-
rem. Our main observation is that for inscribed polygons the corresponding

monodromy satisfies a certain self-duality relation. From this we also deduce

that the space of inscribed polygons with fixed values of the monodromy in-
variants is an open dense subset in the Prym variety (i.e., a half-dimensional

torus in the Jacobian) of the spectral curve. As a byproduct, we also prove

another conjecture of Schwartz and Tabachnikov on positivity of monodromy
invariants for convex polygons.

1. Introduction and main results

The pentagram map was introduced by R. Schwartz [14] in 1992 and is now
one of the most renowned discrete integrable systems which has deep connections
with many different subjects such as projective geometry, integrable PDEs, cluster
algebras, etc. The definition of the pentagram map is illustrated in Figure 1: the
image of the polygon P under the pentagram map is the polygon P ′ whose vertices
are the intersection points of consecutive “short” diagonals of P (i.e., diagonals
connecting second-nearest vertices).

Since this construction is projectively invariant, one usually regards the penta-
gram map as a dynamical system on the space of polygons in P2 modulo projective
equivalence. (Here P2 denotes the real or complex projective plane. More generally,
one can consider polygons in the projective plane over any field.) The pentagram
map also naturally extends to a bigger space of so-called twisted polygons. A bi-
infinite sequence of points vi ∈ P2 is called a twisted n-gon if vi+n = M(vi) for
every i ∈ Z and a fixed projective transformation M , called the monodromy. The
case M = Id corresponds to closed polygons. The pentagram map is well-defined
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P

P ′

Figure 1. The pentagram map.

on the space of projective equivalence classes of twisted polygons and preserves the
conjugacy class of the monodromy.

From the beginning there was a strong indication that the pentagram map is in-
tegrable. In [15] Schwartz established a first result in this direction proving that the
pentagram map is recurrent. Further, in [17] he constructed two sequences Ek, Ok

of so-called monodromy invariants preserved by the pentagram map. The func-
tions Ek, Ok are, roughly speaking, weighted homogeneous components of spectral
invariants of the monodromy matrix. Remarkably, this construction, essentially
based on the notion of a twisted polygon, provides invariants for the pentagram
map in both twisted and closed cases.

V. Ovsienko, R. Schwartz, and S. Tabachnikov [12] proved that the pentagram
map on twisted polygons has an invariant Poisson bracket, and that the monodromy
invariants Poisson commute, thus establishing Arnold-Liouville integrability in the
twisted case. F. Soloviev [21] showed that the pentagram map is algebraically
integrable, both in twisted and closed cases. An alternative proof of integrability
in the closed case can be found in [13].

We also mention, in random order, several works which generalize the pentagram
map and explore its relations to other subjects. M. Glick [5] interpreted the penta-
gram map in terms of cluster algebras. M. Gekhtman, M. Shapiro, S. Tabachnikov,
and A. Vainshtein [4] generalized Glick’s work by including the pentagram map
into a family of discrete integrable systems related to weighted directed networks.
In this family one finds a discrete version of the relativistic Toda lattice, as well as
certain multidimensional generalizations of the pentagram map defined on so-called
corrugated polygons. Other integrable generalizations of the pentagram map were
studied by B. Khesin and F. Soloviev [9, 10], G. Maŕı Beffa [11], and R. Felipe with
G. Maŕı Beffa [1]. Some of these maps have been recently put in the context of
cluster algebra by M. Glick and P. Pylyavskyy [7]. We finally mention the work of
V. Fock and A. Marshakov [2], which, in particular, relates the pentagram map to
Poisson-Lie groups, and the paper [8] by R. Kedem and P. Vichitkunakorn, which
interprets the pentagram map in terms of T-systems.

In the present paper, we study the interaction of the pentagram map with poly-
gons inscribed in conic sections. Schwartz and Tabachnikov [20] proved that the
restrictions of the monodromy invariants to inscribed polygons satisfy the following
identities.
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Theorem 1.1. For polygons inscribed in a nondegenerate conic, one has Ek = Ok

for every k.

The proof of Schwartz and Tabachnikov is rather hard and is based on combina-
torial analysis of explicit formulas for the monodromy invariants. Our first result
is a new proof of Theorem 1.1. Our argument does not rely on explicit formulas
but employs the definition of Ek, Ok in terms of the spectrum of the monodromy.
Namely, we show that, up to conjugation, the monodromy matrix for inscribed
polygons satisfies a self-duality relation

M(z)−1 = M(z−1)t, (1)

where z is the spectral parameter. As a corollary, the spectral curve, defined, rough-
ly speaking, as the zero locus of the characteristic polynomial det(M(z)− w Id), is
invariant under the involution σ : (z, w) ↔ (z−1, w−1), which implies Ek = Ok for
every k.

Remark 1.2. Note that Theorem 1.1 is, in general, not true for polygons inscribed
in degenerate conics. Although any degenerate conic C can be approximated by
nondegenerate conics Cε → C, a twisted polygon inscribed in C cannot be, in
general, approximated by twisted polygons inscribed in Cε. For this reason, one
cannot apply a limiting argument to conclude that Ek = Ok in the degenerate case,
and, in fact, there are twisted polygons inscribed in degenerate conics with Ek 6= Ok.
Nevertheless, for closed polygons, Theorem 1.1 is true in both nondegenerate and
degenerate cases.

We also obtain a geometric characterization of inscribed polygons with fixed
values of the monodromy invariants and describe the behavior of this set under the
pentagram map. For simplicity, consider the case of n-gons with odd n. In this case,
the variety of polygons with fixed generic monodromy invariants Ek, Ok is identified
with an open dense subset in the Jacobian of the spectral curve, while the pentagram
map is a shift relative to the group structure on the Jacobian [21]. Consider a level
set of the monodromy invariants which contains at least one inscribed polygon. In
this case, there is an involution σ : (z, w) ↔ (z−1, w−1) on the spectral curve X,
defining a double covering π : X → Y := X/σ. Now recall that, given a ramified
(non-étale) double covering of curves π : X → Y , one can decompose the Jacobian
of X in a sum of Abelian subvarieties of complementary dimensions:

Jac(X) = Jac(Y ) + Prym(X|Y ).

Here Jac(Y ) is the Jacobian of the base curve Y embedded in Jac(X) by means of
the pullback homomorphism π∗, while Prym(X|Y ) is the Prym variety of X over Y ,
which can be defined as the kernel of the pushforward (or norm) homomorphism
π∗. The intersection Jac(Y ) ∩ Prym(X|Y ) is the finite set of order 2 points in
Jac(Y ).

In the following theorem, we consider twisted polygons in the complex projective
plane.
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Prym(X|Y ),
inscribed polygons

Jac(Y )

Squared pentagram map

Jac(X)

Figure 2. The pentagram map and inscribed polygons.

Theorem 1.3.

(1) The space of twisted inscribed (2q + 1)-gons with fixed generic monodromy
invariants Ek = Ok is an open dense subset in a subtorus of Jac(X) para-
llel1 to the Prym variety Prym(X|Y ).

(2) The square of the pentagram map is, up to a relabeling of vertices, a trans-
lation along the complementary Abelian subvariety Jac(Y ).

See Figure 2 (opposite sides of the rectangle are glued together to make a torus).

Remark 1.4. Let us comment on the dimensions of the sets mentioned in The-
orem 1.3. For twisted (2q + 1)-gons, the number of monodromy invariants is
2(q + 1). The restriction Ek = Ok gives a (q + 1)-dimensional space of possible
values of invariants. Theorem 1.3 says that the variety of inscribed polygons mod-
ulo projective transformations is a fibration over this (q + 1)-dimensional space
with generic fiber Prym(X|Y ). The genus of the spectral curve X is generically
2q. The involution (z, w) ↔ (z−1, w−1) on X has two fixed points, therefore,
by the Riemann-Hurwitz formula, the genus of Y is q. So, dim Jac(Y ) = q, and
dim Prym(X|Y ) = dim Jac(X)− dim Jac(Y ) = q.

We conclude that the moduli space of inscribed twisted (2q + 1)-gons is a fi-
bration over a (q + 1)-dimensional base with q-dimensional fibers, and thus has
total dimension 2q + 1. Note that the latter dimension can also be computed by
identifying inscribed polygons with polygons in P1.

Remark 1.5. The reason why in part 2 of Theorem 1.3 one needs to relabel the
vertices to identify the squared pentagram map with a translation along Jac(Y )
is the following. There are two equally natural ways (the so-called left and right
labeling schemes) to define the pentagram map on polygons with labeled vertices.
Figure 3 depicts these two labeling schemes and the squares of the corresponding
maps. Notice that in both cases, the squared map exhibits a shift of indices. At the
same time, the translation along Jac(Y ) corresponds to the “canonical squared pen-
tagram map” depicted in Figure 4 (the latter is, in fact, not a square of any map).

1 In fact, since the identification between the level set of the monodromy invariants and Jac(X)
is only defined up to a shift, one can assume that this subtorus is exactly Prym(X|Y ).
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Figure 3. Left and right labeling schemes.
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Figure 4. The natural labeling for the squared pentagram map.
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The proof of Theorem 1.3 is somewhat involved and is based on relation (1).
Details of the proof will be published elsewhere.

The structure of the paper is as follows. In Section 2, we recall the derivation of
the monodromy invariants. In Section 3, we show that the monodromy invariants
arise as coefficients in the equation of the spectral curve. In Section 4, we derive a
formula for the monodromy in terms of the corner invariants. Finally, in Section 5,
we use these results to prove Theorem 1.1. Section 6 is devoted to open questions.
Additionally, the paper contains an appendix where we apply our technique to
prove another conjecture of Schwartz and Tabachnikov on positivity of monodromy
invariants for convex polygons.

To conclude this introduction, we also mention two works [19, 18] both studying
the pentagram map or its variations for polygons inscribed or circumscribed about
a conic section. We find it an interesting problem to obtain an algebraic geometric
explanation of these results in the spirit of the present paper.

2. Monodromy invariants

In this section, we briefly recall the derivation of first integrals for the pentagram
map – the monodromy invariants Ek, Ok. Details can be found in almost any paper
on the subject, for instance, in [12, 17].

Let Pn be the space of twisted n-gons modulo projective transformations. Re-
call that a twisted n-gon is a bi-infinite sequence of points vi ∈ P2 such that
vi+n = M(vi) for every i ∈ Z and a fixed projective transformation M , called
the monodromy. For an equivalence class of polygons P ∈ Pn, the monodromy
M ∈ PGL3 is well-defined up to conjugation (this means that, as a matrix, the
monodromy is defined up to conjugation and scalar multiplication).

In what follows, we only consider polygons satisfying the following genericity
assumption: any three consecutive vertices vi, vi+1, vi+2 are not collinear. Note
that for inscribed polygons this always holds.

Any twisted n-gon is uniquely determined by its n consecutive vertices and its
monodromy M ∈ PGL3. Therefore, the dimension of the space of twisted n-gons
is 2n + 8, while the dimension of the moduli space Pn is 2n. As coordinates on
the space Pn, one can take the so-called corner invariants. To every vertex vi of
a twisted n-gon, one associates two cross-ratios xi, yi, as shown in Figure 5. We
note that while there are several different ways how to define the cross-ratio, the
one traditionally used in the definition of corner invariants is

[t1, t2, t3, t4] :=
(t1 − t2)(t3 − t4)

(t1 − t3)(t2 − t4)
.

Clearly, the sequences (xi), (yi) are n-periodic and depend only on the projec-
tive equivalence class of the polygon (vi). Furthermore, {x1, y1, . . . , xn, yn} is a
coordinate system on an open dense subset of Pn [17].

To define the pentagram map, we use the right labeling scheme (see Figure 3).
The image of a polygon (vi) is the polygon (v′i) such that v′i = [vi, vi+2]∩[vi−1, vi+1].
This map descends to a densely defined map T : Pn → Pn (which we also call the
pentagram map). In terms of the corner invariants xi, yi, the map T is given by

x′i = xi
1− xi−1yi−1
1− xi+1yi+1

, y′i = yi+1
1− xi+2yi+2

1− xiyi
. (2)
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vi−2
vi−1

vi

vi+1

vi+2

v̄i

ṽi

v̂i

xi := [vi−2, vi−1, ṽi, v̄i]

yi := [v̄i, v̂i, vi+1, vi+2]

Figure 5. The definition of the corner invariants.

Now, we recall the construction of the monodromy invariants. For any equivalence
class P ∈ Pn of twisted n-gons, the corresponding monodromy M is a 3× 3 matrix
defined up to scalar multiplication and conjugation. Therefore, the quantities

Ω1 :=
trace3(M−1)

det(M−1)
, Ω2 :=

trace3(M)

det(M)

are well-defined2. Furthermore, since the pentagram map on polygons preserves
the monodromy, the pentagram map T : Pn → Pn on equivalence classes preserves
Ω1,Ω2. Further, let

On :=

n∏
i=1

xi, En :=

n∏
i=1

yi.

Then from formulas (2) it immediately follows that the functions On, En are invari-
ant under the pentagram map. Therefore, the quantities

Ω̃1 := O2
nEnΩ1, Ω̃2 := OnE

2
nΩ2

are also invariant. In [17] it is shown that the Ω̃1, Ω̃2 are polynomials in corner
invariants xi, yi.

Another corollary of (2) is that the pentagram map commutes with the rescaling
operation

Rz : (x1, y1, . . . , xn, yn) 7→ (zx1, z
−1y1, . . . , zxn, z

−1yn). (3)

Therefore, all coefficients in z of the polynomials R∗z(Ω̃1), R∗z(Ω̃2), where R∗z denotes
the natural action of Rz on functions of corner invariants, are also first integrals.
In [17] it is shown that

R∗z(Ω̃1) =

1 +

[n/2]∑
k=1

Okz
k

3

, R∗z(Ω̃2) =

1 +

[n/2]∑
k=1

Ekz
−k

3

, (4)

where Ok, Ek are certain polynomials in corner invariants.

Definition 2.1. The functions Ok, Ek, where k = 1, . . . , [n/2], n, are called the
monodromy invariants.

2There is a typo in the corresponding formula (2.8) of [12]. To be consistent with subsequent
definitions, Ω1 should be defined using M−1, and Ω2 using M , not the other way around.
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The monodromy invariants are polynomials in xi, yi preserved by the pentagram
map. In [12] they are used to prove that the pentagram map is a completely
integrable system.

3. The spectral curve

In this section, we define the spectral curve and relate it to the monodromy
invariants. The pentagram spectral curve first appeared in [21], where it was used
to prove algebraic integrability.

Let P ∈ Pn be an equivalence class of twisted n-gons. Then the rescaling
operation Rz : Pn → Pn defines a family Pz ∈ Pn, Pz := Rz(P ) parametrized by
z ∈ C∗. For each equivalence class Pz, we have the corresponding conjugacy class
of monodromies. Take any representative of this conjugacy class and lift it to GL3.
This gives a family M(z) of 3× 3 matrices parametrized by z ∈ C∗.

Definition 3.1. We call M(z) a scaled monodromy matrix of the equivalence
class P .

The scaled monodromy matrix of a given equivalence class is determined up to
multiplication by a scalar function of z and conjugation by a z-dependent matrix.

Now, given an equivalence class P ∈ Pn, we take its scaled monodromy M(z)
and set

R(z, w) :=
1

λ(z)3
det(λ(z)wI −M(z)),

where λ(z) := (zn detM(z))1/3 and I is the identity matrix. The function R(z, w)
is the characteristic polynomial of M(z) normalized in such a way that it does
not change if M(z) is multiplied by a scalar function of z. Furthermore, R(z, w)
depends only on the conjugacy class of M(z), thus being a well-defined function of
z, w, and the equivalence class P . Explicitly, we have

R(z, w) = w3 − E(z−1)w2 +O(z)z−nw − z−n, (5)

where

E(z) := E
− 2

3
n O

− 1
3

n

1 +

[n/2]∑
k=1

Ekz
k

, O(z) := O
− 2

3
n E

− 1
3

n

1 +

[n/2]∑
k=1

Okz
k

,
and Ek, Ok are the monodromy invariants of the equivalence class P .

Definition 3.2. The zero locus of R(z, w) in the complex torus (C∗)2 is called the
spectral curve.

The spectral curve encodes all the monodromy invariants Ek, Ok. In particular,
we have the following immediate corollary of (5).

Corollary 3.3. The following conditions are equivalent.

(1) The spectral curve is invariant under the involution (z, w)↔ (z−1, w−1).
(2) The monodromy invariants satisfy Ek = Ok for all k = 1, . . . , [n/2], n.

Remark 3.4. The involution on the spectral curve can be illustrated by means
of the Newton polygon. Recall that the Newton polygon of an algebraic curve∑
aijz

iwj = 0 is the convex hull of {(i, j) ∈ Z2 | aij 6= 0}. The Newton
polygon of the pentagram spectral curve is a parallelogram depicted in Figure 6
(here we take n = 7). The labels Ek, Ok at integer points are, up to factors
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Figure 6. The Newton polygon of the spectral curve.

E
−2/3
n O

−1/3
n , O

−2/3
n E

−1/3
n , the coefficients of the corresponding monomials. The

involution (z, w) ↔ (z−1, w−1) corresponds to the symmetry of the parallelogram
with respect to its center (−n/2, 3/2), interchanging Ek with Ok.

Remark 3.5. Note that in [21] the spectral curve is defined using the matrix
M(z−1)−1. Although this definition is not completely equivalent to ours, the cor-
responding curves are related by a change of variables.

4. The monodromy matrix via corner invariants

In this section, we express the monodromy in terms of the corner invariants.
Our approach is similar to that of [21], but we do not assume that the number of
vertices is not divisible by 3. To get rid of this assumption, we use the same idea
as in [12, Remark 4.4].

Lemma 4.1. Let (vi) be a twisted n-gon in P2 with monodromy M ∈ PGL3 and
corner invariants (xi, yi). Then M is conjugate to any of the matrices3 Mi :=
LiLi+1 · · ·Li+n−1, where i ∈ Z is arbitrary and

Lj :=

 0 0 1
−xjyj 0 1

0 −yj 1

. (6)

Proof. Using that vi, vi+1, vi+2 are not collinear, we lift the points vi to vectors
Vi ∈ C3 in such a way that

det(Vi, Vi+1, Vi+2) = 1 ∀ i ∈ Z. (7)

(Here and in what follows, we regard Vi’s as column vectors.) From (7) it follows
that

Vi+3 = aiVi+2 + biVi+1 + Vi (8)

for some sequences ai, bi ∈ C. In matrix form, this can be written as

Wi+1 = WiNi, (9)

3When we say that M ∈ PGL3 is conjugate to a matrix M ′ ∈ GL(3), we mean that M is
conjugate to the projection of M ′ to PGL3.
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where

Wi := (Vi, Vi+1, Vi+2), Ni :=

0 0 1
1 0 bi
0 1 ai

. (10)

It follows that

Wi+n = Wi(NiNi+1 · · ·Ni+n−1). (11)

Further, take an arbitrary lift M̃ ∈ GL3 of the monodromy M . Note that since
M(vi) = vi+n, we have M̃Vi = tiVi+n for some sequence ti ∈ C. This can be
rewritten as

M̃Wi = Wi+nDi, (12)

where Di is a diagonal matrix Di := diag(ti, ti+1, ti+2). Comparing (11) and (12),

we conclude that M̃ (and thus M) is conjugate to

M̃i := (NiNi+1 · · ·Ni+n−1)Di, (13)

for any i ∈ Z. Now, we use the result of [12, Lemma 4.5] which says that given any
lift (Vi) of a twisted polygon satisfying (8), the corner invariants are given by

xi =
ai−2

bi−2bi−1
, yi = − bi−1

ai−2ai−1
.

Using these formulas, one easily verifies that the matrix Lj given by (6) is related
to Nj given by (10) by means of a gauge type transformation:

Lj =
1

aj−1
Λ−1j−2Nj−2Λj−1, Λi := diag(1, bi, ai).

Therefore, for the product Mi = LiLi+1 · · ·Li+n−1, we have

Mi = ciΛ
−1
i−2M̃i−2D

−1
i−2Λi+n−2, (14)

where M̃j is given by (13), and ci ∈ C. Further, multiplying (9) by the monodromy

matrix M̃ from the left and using (12), we get

Wi+n+1Di+1 = Wi+nDiNi.

Comparing the latter equation with (9), we see that

Ni+n = DiNiD
−1
i+1. (15)

Spelling out this equation, we get the relations

ti+3 = ti, ai+n = ai
ti+2

ti
, bi+n = bi

ti+1

ti
(16)

(cf. [12, Remark 4.4 ]). This implies the following quasiperiodicity condition for Λi:

Λi+n =
1

ti
DiΛi. (17)

Using the latter equation, (14) can be rewritten as

Mi =
ci
ti−2

Λ−1i−2M̃i−2Λi−2.

Since M̃i−2 is conjugate to the monodromy matrix M , this proves the lemma. �
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Corollary 4.2. For an equivalence class P ∈ Pn with corner invariants (xi, yi),
the scaled monodromy is given by any of the matrices Mi(z) := Li(z)Li+1(z) · · ·
Li+n−1(z), where

Lj(z) :=

 0 0 1
−xjyj 0 1

0 −z−1yj 1

. (18)

Proof. This follows from formula (3) for the rescaling action. �

5. Monodromy invariants for inscribed polygons

In this section, we show that for inscribed polygons the scaled monodromy sat-
isfies a certain self-duality relation and then use this to prove Theorem 1.1.

Lemma 5.1. Consider an equivalence class P ∈ Pn of polygons inscribed in a
nondegenerate conic. Then the corresponding scaled monodromy matrix can be
chosen to satisfy the self-duality relation

M(z) = (M(z−1)−1)t. (19)

Remark 5.2. We call (19) self-duality because the matrix (M(z−1)−1)t represents
the scaled monodromy of the dual polygon.

Remark 5.3. From (19) it follows, in particular, that the matrix M(1), i.e., the
actual non-scaled monodromy of the polygon, is orthogonal. This has a geomet-
ric explanation: if a polygon is inscribed into a conic C, then the corresponding
monodromy should preserve C. But the subgroup of projective transformations
preserving a non-singular conic is conjugate (over C) to SO3 ⊂ PGL3.

Proof of Lemma 5.1. Take any polygon (vi) in the equivalence class P , and let C
be the conic circumscribed about (vi). Using the isomorphism C ' P1, we get a
well-defined notion of cross-ratio of four points on C. Referring to this cross-ratio,
we set

pi := 1− [vi−2, vi−1, vi, vi+1].

The sequence (pi) is n-periodic and depends only on the projective equivalence class
of the polygon (vi). By [20, Lemma 3.1], we have the following relation between
pi’s and the corner invariants:

xi =
1− pi
pi+1

, yi =
1− pi+1

pi
.

Using these formulas and Corollary 4.2, we express the scaled monodromy in terms
of pi’s:

Mi(z) := Li(z)Li+1(z) · · ·Li+n−1(z),

Lj(z) :=

 0 0 1
(1− p−1j )(p−1j+1 − 1) 0 1

0 z−1p−1j (pj+1 − 1) 1

.
Further, we notice that the matrix Lj(z) is related to the matrix

L′j(z) :=

 0 0 1
pj − 1 0 pj

0 z−1(pj − 1)−1 pj(1− pj)−1


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by a gauge type transformation:

L′j(z) :=
pj

1− pj
QjLjQ

−1
j+1, Qj := diag(p−1j − 1, 1− pj , 1).

Therefore, the matrix Mi(z) is conjugate to a scalar multiple of

M ′i(z) := L′i(z)L
′
i+1(z) · · ·L′i+n−1(z).

Further, observe that the matrices L′j(z) satisfy the relation

(Lj(z
−1)−1)t = S(z)−1L′j(z)S(z), S(z) :=

 1 1 −1
1 1 z
−1 z−1 1

.
Therefore, the same relation is satisfied by their product M ′i(z):

(M ′i(z
−1)−1)t = S(z)−1M ′i(z)S(z). (20)

Further, write the matrix S(z) as

S(z) = T (z)T (z−1)t, T (z) :=

 1 0 0
1

√
−1 1

−1 −
√
−1 z−1

, (21)

and set M(z) := T (z)−1M ′1(z)T (z). Note that since M(z) is conjugate to M ′1(z),
it is also conjugate to a scalar multiple of M1(z), and thus can be taken as a scaled
monodromy matrix for P . Furthermore, from (20) and (21) it follows that M(z)
satisfies (19), as desired. �

Proof of Theorem 1.1. Consider a polygon (vi) inscribed in a nondegenerate conic.
By Lemma 5.1, the corresponding equivalence class P ∈ Pn admits a scaled mon-
odromy matrix with self-duality relation (19). From self-duality, it immediately
follows that the corresponding normalized characteristic polynomial (5) satisfies

R(z−1, w−1) = −znw−3R(z, w)

which means that the spectral curve R(z, w) = 0 is invariant under the involution
(z, w) ↔ (z−1, w−1). In view of Corollary 3.3, this shows that Ek = Ok for all k,
proving the theorem. �

6. Discussion and open questions

Circumscribed polygons. By duality, Theorem 1.1 is also true for circumscribed
polygons. Furthermore, there is a “circumscribed” analog of Theorem 1.3. Namely,
circumscribed polygons fill another torus parallel to the Prym variety (see Figure 7).
Note that, in general, the orbit of an inscribed polygon under the pentagram map
does not have to intersect the circumscribed locus. However, there are some spe-
cial cases when a certain iteration of an inscribed polygon under the pentagram
map is circumscribed [19]. It would be interesting to find an algebraic geometric
explanation of this phenomenon.
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Figure 7. Inscribed and circumscribed polygons.

Continuous limit. In the continuous limit, when the number of vertices of a
polygon is large, while the vertices are close to each other, the pentagram map
becomes the Boussinesq flow on curves [12]. In the language of differential operators,
the Boussinesq equation reads

∂tL = [L, (L2/3)+],

where L := ∂3x + u(x)∂x + v(x) and (L2/3)+ denotes the differential part of the
pseudodifferential operator L2/3. The continuous limit of both inscribed and cir-
cumscribed polygons are parametrized conics, corresponding to skew-adjoint opera-
tors L. This, in particular, means that in the limit the inscribed and circumscribed
tori in Figure 7 collide.

Similarly to how the pentagram map does not preserve inscribed polygons, the
Boussinesq flow does not preserve the set of skew-adjoint operators L. However,
odd flows of the Boussinesq hierarchy, that is, flows of the form

∂tL = [L, (Lm/3)+],

where m ∈ Z is odd and not divisible by 3, do preserve skew-adjoint operators.
Is there a discrete analog of this statement? Does there exist an explicit map
commuting with the pentagram map and preserving the set of inscribed polygons?

Poisson structure. By Theorem 1.1, the moduli space of inscribed polygons is
foliated by (open dense subsets of) Prym varieties. Does there exist a Poisson struc-
ture making this foliation into an algebraic completely integrable system? (Note
that the Poisson structure of the pentagram map does not restrict to inscribed
polygons.)

One possible approach to this problem is to use the fact that matrices satisfying
self-duality relation (19) form a subgroup in the loop group of PGL3, somewhat
similar to a twisted loop group. Does this subgroup admit a Poisson-Lie structure?
If the answer to the latter question is positive, one should be able to use this
structure to construct a Poisson bracket on inscribed polygons.

Self-dual polygons. Another class of polygons satisfying Ek = Ok are self-dual
polygons. Recall that, for a polygon (vi) ∈ P2, the vertices of the dual polygon are
sides [vi, vi+1] of the initial one, regarded as points in the dual projective plane. A
polygon (vi) ∈ P2 is called self-dual if there exists some m ∈ Z and a projective map
P2 → (P2)∗ taking the vertex vi to the vertex [vi+m, vi+m+1] of the dual polygon.
Furthermore, for polygons with odd number of vertices, there exists a canonical
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notion of self-duality. We say that a (2q + 1)-gon (vi) ∈ P2 is canonically self-dual
if there exists a projective map P2 → (P2)∗ taking the vertex vi to the vertex
[vi+q, vi+q+1] of the dual polygon (i.e., to the opposite side). Canonically self-dual
polygons form a maximal dimensional stratum in the set of self-dual polygons [3].
Furthermore, one can show that canonically self-dual polygons correspond to a
third torus in Figure 7 parallel to the inscribed and circumscribed tori.

This description suggests that there should exist a (possibly birational) isomor-
phism between the varieties of canonically self-dual and inscribed polygons. For
closed 7-gons and 9-gons, such an isomorphism is constructed in [19]. In particu-
lar, for 7-gons it is given by the pentagram map. Are the varieties of canonically
self-dual and inscribed polygons isomorphic in the general case?

Poncelet polygons. For certain singular spectral curves, the inscribed and cir-
cumscribed tori in Figure 7 coincide, giving rise to polygons which are simultane-
ously inscribed and circumscribed. Such polygons are known as Poncelet polygons,
since they are closely related to the famous Poncelet porism. In [16] it is proved
that Poncelet polygons are fixed points for the squared pentagram map. Is there
an algebraic geometric interpretation of this statement? Does the squared penta-
gram map have other fixed points? Are the fixed points given by Poncelet polygons
Lyapunov stable?

Degenerate conics. How do the results of the present paper generalize to poly-
gons inscribed in degenerate conics? Consider, in particular, a 2q-gon with the
following property: all its odd vertices lie on a straight line l1, while all even ver-
tices lie a on a line l2. Such polygons exhibit an interesting behavior under the
(inverse) pentagram map, known as the Devron property [6]. Is there an alge-
braic geometric explanation for the Devron property? Note that the corresponding
spectral curves are highly singular and have the form

(w − a−1b−1)(w − az−q)(w − bz−q) = 0

for certain a, b ∈ C. We believe that it should it be possible to relate the Devron
property with algebraic geometry of such singular curves.

7. Appendix: Positivity of the monodromy invariants for convex
polygons

Following [20], we define the following “signed” versions of the monodromy in-
variants:

O∗k := (−1)kOk, E∗k := (−1)kEk, k = 1, . . . ,
[n

2

]
,

and also set O∗n := On, E∗n := En. The aim of this appendix is to prove the following
result conjectured in [20].

Theorem 7.1. For convex closed polygons, one has E∗k > 0, O∗k > 0 for every k.

The proof is based on the following lemma.

Lemma 7.2.

(1) The signed monodromy invariants E∗k can be written as polynomials with
positive coefficients in terms of yi, 1− xiyi.

(2) The signed monodromy invariants O∗k can be written as polynomials with
positive coefficients in terms of xi, 1− xiyi.
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Proof. We begin with the first statement. Since the result obviously holds for
E∗n = En, we only consider the case k ≤ [n/2]. Using the matrix Mi(z) from
Corollary 4.2 and the definition of the monodromy invariants, we get

1 +

[n/2]∑
k=1

E∗k(−z)−k = traceMi(z).

Therefore, to prove that E∗k is a polynomial with positive coefficients in terms
of yi, 1 − xiyi, it suffices to show that traceMi(z) is a polynomial with positive
coefficients in yi, 1 − xiyi, and −z−1. To that end, notice that the matrix Lj(z)
from Corollary 4.2 can be written as

Lj(z) = UL̂j(z)U
−1, L̂j(z) :=

 1 0 1
1− xjyj 0 1

0 −z−1yj 0

, U :=

1 0 0
0 1 0
1 0 1

.
Therefore, the product Mi(z) = Li(z) · · ·Li+n−1(z) satisfies the same relation

Mi(z) = UM̂i(z)U
−1, M̂i(z) := L̂i(z) · · · L̂i+n−1(z).

To complete the proof, notice that since all non-zero entries of the matrix L̂j(z) are
polynomials with positive coefficients in terms of yi, 1− xiyi, and −z−1, the same
is true for the entries of the matrix M̂i(z), and thus trace M̂i(z) = traceMi(z), as
desired.

Now, we prove the second statement. Let

L∗j (z) :=
z

yj
adj(Lj(z)) =

 1 −1 0
xjz 0 −xjz
xjyj 0 0

,
where adj stands for the adjoint, i.e., the transposed cofactor matrix, and Lj(z) is
the matrix from Corollary 4.2. Then we have

1 +

[n/2]∑
k=1

O∗k(−z)k = traceM∗i (z), M∗i (z) := L∗i (z) · · ·L∗i+n−1(z).

Now, we notice that L∗j (z) can be written as

L∗j (z) = V L̂∗j (z)V −1, L̂∗j (z) :=

 0 1 1− xjyj
−xjz 0 0

0 1 1

, V :=

 0 0 1
0 −1 0
−1 0 1

,
and then apply the same argument as in the proof of the first statement. Thus the
lemma is proved. �

Remark 7.3. As was observed by R. Schwartz, Lemma 7.2 can also be proved
using the concepts of right and left modifications introduced in [17, Section 2.2].

Proof of Theorem 7.1. It is easy to see that for convex closed polygons the corner
invariants satisfy the inequalities 0 < xi, yi < 1. So, for such polygons one has
xi, yi, 1− xiyi > 0, and the result of the theorem follows from Lemma 7.2. �
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