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commuting difference operators
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Abstract

The pentagram map takes a planar polygon P to a polygon P ′ whose vertices are the
intersection points of consecutive shortest diagonals of P . This map is known to interact
nicely with Poncelet polygons, that is, polygons which are simultaneously inscribed in
a conic and circumscribed about a conic. A theorem of Schwartz states that if P is
a Poncelet polygon, then the image of P under the pentagram map is projectively
equivalent to P . In the present paper, we show that in the convex case this property
characterizes Poncelet polygons: if a convex polygon is projectively equivalent to its
pentagram image, then it is Poncelet. The proof is based on the theory of commuting
difference operators, as well as on properties of real elliptic curves and theta functions.
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1. Introduction

It is a classical result of Clebsch [Cle71] that every planar pentagon P is projectively equivalent
to the pentagon P ′ formed by intersections of diagonals of P . More precisely, if we label the
vertices of P and P ′ in such way that the kth vertex of P ′ is opposite to the kth vertex of P
(see Figure 1), then there is a projective transformation that takes P to P ′ and respects the
labelings.

Furthermore, as was proved by Schwartz [Sch07], Clebsch’s theorem is true for all Poncelet
polygons with an odd number of vertices. Recall that a Poncelet polygon is a polygon which
is inscribed in a conic and circumscribed about another conic. In particular, any pentagon is
Poncelet, whereas for n-gons with n ≥ 6 being Poncelet is a non-trivial restriction. Poncelet
polygons owe their name to Poncelet and his famous ‘porism’ which states that if there exists
an n-gon inscribed in a conic C1 and circumscribed about a conic C2, then any point of C1 is a
vertex of such an n-gon (see Figure 2).

Schwartz’s generalization of Clebsch’s theorem is as follows. Let P be an n-gon with odd n,
and let P ′ be the polygon whose vertices are the intersections of consecutive shortest diagonals
of P , that is, diagonals connecting second-nearest vertices. Label the vertices of P ′ as in Clebsch’s
theorem: the kth vertex of P ′ is opposite to the kth vertex of P (see Figure 3). Assume that
P is Poncelet. Then there is a projective transformation that carries P to P ′ and respects the
labelings (a weaker result saying that if P is Poncelet, then P ′ is circumscribed about a conic was
known to Darboux, see [DR14, Theorem 2.1]). The goal of the present paper is to show that in
the convex setting the converse is also true. More precisely, we prove the converse of Schwartz’s
theorem for a broader class of weakly convex polygons. Weak convexity is a technical condition
(see Definition 3.1) which, in particular, holds for truly convex polygons.

Theorem A. Let P be a weakly convex closed polygon with an odd number of vertices. Let also
P ′ be the polygon whose vertices are the intersections of consecutive shortest diagonals of P ,
labeled as in Figure 3. Assume that there is a projective transformation that carries P to P ′ and
respects the labelings. Then P (and, hence, P ′) is a Poncelet polygon.

Combining Theorem A with Schwartz’s theorem, we obtain the following characterization of
weakly convex Poncelet polygons.

Corollary 1.1. Let P be a weakly convex closed polygon with an odd number of vertices.
Let also P ′ be the polygon whose vertices are the intersections of consecutive shortest diagonals
of P , labeled as in Figure 3. Then P is Poncelet if and only if it is projectively equivalent to P ′.

The map taking the polygon P in Figure 3 to P ′ is known as the pentagram map. It was
defined by Schwartz in 1992 [Sch92] but became especially popular in the last decade thanks to
the discovery that it is a discrete integrable system [OST10, OST13, Sol13], and also because of its
connections with cluster algebras [Gli11, GSTV16, GP16, KV15, FM16]. As the pentagram map
commutes with projective transformations, it is usually considered as a dynamical system on the
space of polygons modulo projective equivalence. Our result can thus be viewed as a description
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Figure 1. Pentagons P = v1v2v3v4v5 and P ′ = v′1v′2v′3v′4v′5 are projectively equivalent.

Figure 2. Every point of C1 is a vertex of a pentagon inscribed in C1 and circumscribed
about C2.
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Figure 3. A convex polygon P is Poncelet if and only if it is projectively equivalent to P ′.

of fixed points of the pentagram map, which has been an open question since Schwartz’s first
paper [Sch92].

Remark 1.2. Note that the pentagram map can be considered either on labeled polygons
(i.e. polygons with labeled vertices) or on unlabeled polygons. Theorem A describes fixed points
of the pentagram map on the space of projective equivalence classes of labeled polygons, where
the labeling rule is depicted in Figure 3. Although this is not the only possible labeling, it is the
only one for which the pentagram map commutes with the action of the dihedral group and,
hence, the most symmetric of all labelings. A more common, non-symmetric labeling is given
by the rule v′k := (vk−1, vk+1) ∩ (vk, vk+2). One can easily see that the only fixed points of the
pentagram map with this non-symmetric labeling are regular polygons (again, assuming that
the number of vertices is odd). The problem of describing the fixed points of the pentagram map
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for an arbitrary labeling can also be approached using the techniques of the present paper, but
due to the break of symmetry, one should not expect an answer as nice as for the symmetric
labeling.

Theorem A also has an interpretation in terms of billiards. Indeed, if the conic C1 circum-
scribed about a Poncelet polygon P is confocal to the inscribed conic C2 (which can always be
arranged by applying a suitable projective transformation), then P can be viewed as a closed
trajectory of a billiard ball in the domain bounded by C1. Conversely, any closed billiard trajec-
tory in a conic is a Poncelet polygon. Thus, Corollary 1.1 establishes a correspondence between
fixed points of the pentagram map and periodic billiard trajectories in conics. Also note that,
as shown in [LT07], the fact that a closed billiard trajectory in a conic is projectively equivalent
to its pentagram image is essentially a corollary of integrability of the corresponding billiard
system. At the same time, we show that if P is projectively equivalent to its pentagram image
then the vertices of P are contained in a conic. Thus, one may hope to combine our results with
the approach of [LT07] to show that for any integrable billiard the impact points of a periodic
trajectory are contained in a conic and, hence, shed some light on the Birkhoff conjecture which
says that the only integrable billiards are those in conics.

It is also an interesting question whether this correspondence between periodic billiard
trajectories in conics and fixed points of the pentagram map extends to higher dimensions.
There exists numerous generalizations of the pentagram map to higher-dimensional spaces
[GSTV16, KS13, KS16, FB19] and one may wonder if their fixed points are related to periodic
trajectories of billiards in multidimensional quadrics.

Remark 1.3. We do not know whether Theorem A is true with no convexity-type assumptions,
but it is certainly not true over complex numbers, as demonstrated by the following example. Let
λ := exp(2πi/7), where i =

√
−1, and let P be a heptagon in C2 with vertices vk := (λ2k, λ3k).

Then a direct computation shows that there exists a projective (in fact, even affine) transforma-
tion φ taking P to P ′ (see also Remark 4.3 for a conceptual proof). Moreover, for any vertex v
of P and v′ of P ′, the map φ can be chosen to take v to v′. This means that the projective equiv-
alence class of P is fixed by the pentagram map, regardless of the labeling convention used to
define the map. However, P is not Poncelet. Moreover, it is not even inscribed in a conic. Indeed,
the vertices of P lie on a semi-cubical parabola y2 = x3, which has at most six intersection points
with any conic. Thus, there exists no conic which contains all seven vertices of P .

Theorem A being not true over C is one of the reasons one should not expect it to have
any kind of ‘elementary’ proof, as such a proof would be valid over any field. Another reason
is that the theorem is not true for non-closed polygons (see Remark 1.4). Again, if there was
a local (i.e. involving only a few adjacent vertices) geometric construction producing inscribed
and circumscribed conics for P based on the projective equivalence between P and P ′, such a
construction would work whether P is closed or not.

We now outline the scheme of the proof of Theorem A. As a first step, we prove the theorem
under an additional assumption that the polygon P is self-dual. Recall that the dual of a polygon
is the polygon in the dual projective plane whose vertices are the sides of the initial one. We label
the vertices of the dual polygon as shown in Figure 4. A polygon is self-dual if it is projectively
equivalent to its dual.

Under this additional assumption of self-duality, Theorem A is true in a more general setting
of twisted polygons, that is, polygons that are closed only up to a projective transformation. More
precisely, a twisted n-gon is a sequence vk ∈ P2 such that vk+n = ψ(vk) for a certain projective
transformation ψ, called the monodromy.
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Figure 4. The kth vertex of the dual polygon is opposite to the kth vertex of the initial one.

Theorem B. Let P be a weakly convex twisted n-gon with odd n, and let P ′ be as in Theorem A.
Assume that P is self-dual and projectively equivalent to P ′. Then P is a Poncelet polygon.

Remark 1.4. Theorem B is not true without the self-duality assumption (in other words,
Theorem A is not true for non-closed polygons). As an example, consider a polygon P in R2

whose vertices are given by vk := (4k, 8k). This is a twisted n-gon for any n, weakly convex and
projectively equivalent to its pentagram image P ′. However, P is not Poncelet (cf. Remark 1.3).

The proof of Theorem B is based on the theory of commuting difference operators, elliptic
curves, and theta functions. Given the result of the theorem, the appearance of elliptic curves
is not surprising, as their connection to Poncelet polygons is well-known. However, we are not
given a priori that P is Poncelet, so there should be some other source where the elliptic curve
is coming from. In our approach, that source is the theory of commuting difference operators.
Namely, we show that a twisted polygon P is projectively equivalent to its pentagram image
P ′ if and only if certain associated difference operators commute (see § 4). The general theory
then states that the joint spectrum of those operators is a Riemann surface Γ, called the spectral
curve (see, e.g., [KN03]). Using further that the operators in question are of special form and, in
particular, dual to each other (which is a reflection of self-duality of P ), we show that the genus
of Γ is at most one, that is, Γ is rational or elliptic (see § 5.1). This is one of the few places in the
proof where we use weak convexity in an essential way. Without that assumption, one only seems
to be able to conclude that the genus is at most two. In particular, it seems possible to construct
non-weakly-convex counterexamples to Theorems A and B using genus-2 theta functions.

The next step is to show that our upper bound on the genus of Γ implies that P is Poncelet (as
a priori there is no connection between the elliptic curve Γ and that which is classically associated
with a Poncelet polygon). More precisely, we show that elliptic spectral curves correspond to
generic Poncelet polygons, whereas rational curves correspond to their degenerations (such as
the regular polygon). To that end, we express coordinates of vertices of P in terms of certain
meromorphic functions on the spectral curve Γ. One ends up with elementary functions or theta
functions, depending on whether the curve Γ is rational or elliptic. In both cases, using relations
between those functions (e.g. Riemann’s relation in the elliptic case), one shows that P is a
Poncelet polygon, so Theorem B holds (see § 6.1 for the rational case and § 6.2 for the elliptic
case). Furthermore, in the elliptic case the spectral curve Γ turns out to be isogenous to the
elliptic curve attached to P due to its Poncelet property.

After that, we proceed to prove Theorem A. To that end, we first show that the self-duality
assumption of Theorem B is not too restrictive. Namely, given a polygon that is projectively
equivalent to its pentagram image, it can be what is called rescaled so that it becomes self-dual.
This rescaling (closely related to the notion of spectral parameter) is a one-parametric group
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of transformations of the moduli space of twisted polygons which preserves weak convexity but
not closedness. Thus, starting with a closed polygon as in Theorem A, we rescale it to a non-
necessarily closed, but self-dual, weakly convex polygon, which is the setting of Theorem B. In this
way, we conclude that a weakly convex closed polygon projectively equivalent to its pentagram
image is Poncelet up to rescaling. The last step is to show that this rescaling must actually be
trivial. To that end, we show that no non-trivial rescaling of a weakly convex Poncelet polygon
is closed. In the rational case, this is proved by an elementary argument (see § 7.2), whereas the
elliptic case requires careful analysis of the real part of the spectral curve (see § 7.3). In the latter
case, the proof once again essentially relies on weak convexity.

In addition to proofs of Theorems A and B, the paper contains an appendix (Appendix A)
where we establish an auxiliary result on correspondence between dual difference operators and
dual polygons. Although that result seems to be well-known, we could not find a proof in the
literature that does not rely on a computation. Thus, we provide a proof here.

We tried to make the exposition self-contained. In particular, we do not assume that the
reader is familiar with the general theory of integrable systems or commuting difference operators.
Only basic knowledge of Riemann surfaces is assumed.

2. Background results: polygons, difference operators, and corner invariants

This section is an overview of mostly well-known results on the relation between difference
operators and polygons. Namely, we give an introduction to difference operators in § 2.1, after
which we connect them to polygons in § 2.2. Note that although the description of the moduli
space of polygons in terms of difference operators is well-known, our point of view is slightly
different from the standard one. In particular, we identify the space of polygons with a certain
quotient of the space of third-order difference operators, as opposed to the standard approach in
which one identifies polygons with a certain subspace of that space. In that respect, our approach
is close to that of [CO19]. In addition, we provide, in § 2.3, another description of the polygon
space, in terms of so-called corner invariants. Note that although corner invariants per se are
not used heavily in the paper, they are needed to define weakly convex polygons and rescaling.
Rescaling is also defined in § 2.3, whereas weakly convex polygons are discussed in § 3.

2.1 A primer on difference operators
This section is a brief introduction to the elementary theory of difference operators. Our
terminology mainly follows that of [VM79]. Let R∞ be the vector space of bi-infinite sequences
of real numbers. For ξ ∈ R∞ and any k ∈ Z, let ξk ∈ R be the kth entry of the sequence ξ, so
that ξ = (ξk)k∈Z. Let also m− ≤ m+ be integers. A linear operator D : R∞ → R∞ is called a
difference operator supported in [m−,m+] := {m−, . . . ,m+} if it can be written as

(Dξ)k =
m+∑

j=m−

aj
kξk+j , (1)

where aj
k ∈ R for every k ∈ Z and every j ∈ [m−,m+]. In matrix terms, this can be rewritten as

Dξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . .
a

m−
k−1 . . . a

m+
k−1

a
m−
k . . . a

m+
k

a
m−
k+1 . . . a

m+
k+1

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
ξ, (2)
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so difference operators can be equivalently described as those whose matrices are finite band
(i.e. have only finitely many non-zero diagonals). Furthermore, denoting, for every j, the sequence
of aj

k by aj , formula (1) can be rewritten as

D =
m+∑

j=m−

ajT j , (3)

where T : R∞ → R∞ is the left shift operator (Tξ)k = ξk+1, and each aj ∈ R∞ acts on R∞ by
term-wise multiplication.

The order of difference operator (1) is the number ordD := m+ −m−. Difference opera-
tor (1) is called properly bounded if am−

k �= 0 and am+

k �= 0 for every k ∈ Z. Clearly, for a properly
bounded difference operator D one has dim KerD = ordD. Sequences ξ1, . . . , ξd ∈ KerD, where
d := ordD, form a basis in KerD if and only if the associated difference Wronskian

Wk :=

∣∣∣∣∣∣
ξ1k . . . ξd

k

. . .
ξ1k+d−1 . . . ξd

k+d−1

∣∣∣∣∣∣ ,
(where |M | denotes the determinant of the matrix M) is non-vanishing for some k ∈ Z. This is
equivalent to non-vanishing of Wk for any k due to the relation

Wk+1 = (−1)d
a

m−
k−m−

a
m+

k−m−
Wk. (4)

Along with R∞, difference operators naturally act on the space (Rd)∞ of bi-infinite sequences
of vectors in Rd. The case d = ordD is of particular interest. Let V ∈ (Rd)∞, where d = ordD, be
a solution of the difference equation DV = 0. Define scalar sequences ξ1, . . . , ξd ∈ R∞ by setting
ξj
k to be equal to the jth coordinate of Vk. We say that V is a fundamental solution if the sequences
ξ1, . . . , ξd ∈ R∞ form a basis in KerD. As follows from the Wronskian criterion, a solution of
DV = 0 is fundamental if and only if the vectors Vk, . . . , Vk+d−1 are linearly independent for
some (equivalently, for all) k ∈ Z.

A difference operator D is n-periodic if its coefficients aj
k are n-periodic in the index k. This is

equivalent to saying that D commutes with the nth power of the shift operator: DTn = TnD, so
the kernel of an n-periodic operator D is invariant under the action of Tn. The finite-dimensional
operator Tn|KerD is called the monodromy of D. Note that the eigenvectors of the monodromy
are exactly scalar quasi-periodic solutions of the equation Dξ = 0, that is, solutions which belong
to the space

Qn(z) := {ξ ∈ R∞ | ξk+n = zξk} (5)

for some z ∈ R∗.
The monodromy can also be understood in terms of fundamental solutions. Namely, note that

any two fundamental solutions V, V ′ ∈ (Rd)∞ of D are related by V ′ = AV , where A ∈ GLd(R)
acts on (Rd)∞ by term-wise multiplication. Furthermore, if V is a fundamental solution of an
n-periodic operator D, then so is TnV , which means that TnV = AV for some A ∈ GLd(R). In
other words, we have Vk+n = AVk for every k ∈ Z, which means that the fundamental solution
of a periodic difference operator is always quasi-periodic. Furthermore, the matrix A can be
easily seen to be the transpose of the monodromy matrix M of D, written in the basis of KerD
associated with the fundamental solution V . In particular, this implies that the Wronskian of
an n-periodic operator D satisfies Wk+n = (detM)Wk. Combined with (4), the latter formula
gives the following expression for the determinant of the monodromy, which is used several times
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throughout the paper:

detM = (−1)nd
n∏

k=1

a
m−
k

a
m+

k

. (6)

The dual of the operator (3) is defined by

D∗ :=
m∑

j=l

T−jaj =
m∑

j=l

ãjT−j ,

where ãj
k = aj

k−j . In other words, D∗ is the formal adjoint of D with respect to the l2 inner
product on R∞, that is, 〈ξ,Dη〉 = 〈D∗ξ, η〉 whenever at least one of these inner products is well-
defined. In the periodic case, the duality between D and D∗ can also be understood as follows.
If D is an n-periodic operator, then D∗ is n-periodic as well. Furthermore, the formula

〈ξ, η〉 :=
n∑

k=1

ξkηk (7)

defines an inner product on the space Qn(1) of n-periodic sequences, and the restrictions of D
and D∗ to Qn(1) are dual to each other with respect to this inner product. More generally, for
every z ∈ R∗, the restriction of D to Qn(z) is dual to the restriction of D∗ to Qn(z−1) with
respect to the pairing between Qn(z) and Qn(z−1) given by the same formula (7). As a corollary,
we have

dim KerD∗|Qn(z−1) = dim KerD|Qn(z).

In particular, a non-zero number z ∈ R∗ is an eigenvalue of the monodromy of D if and only if
z−1 is an eigenvalue of the monodromy of D∗.

2.2 Difference operators and polygons
In this section we describe the space of projective equivalence classes of planar polygons as a
certain quotient of third-order difference operators.

Definition 2.1. A polygon in RP2 is a bi-infinite sequence of points vk ∈ RP2 satisfying the
following 3-in-a-row condition: for every k ∈ Z the points vk−1, vk, vk+1 are in general position.

Polygons modulo projective transformations can be encoded by means of properly bounded
third-order difference operators, that is, operators of the form

D = aT j + bT j+1 + cT j+2 + dT j+3, (8)

where a, b, c, d ∈ R∞ are such that ak �= 0, dk �= 0 for any k ∈ Z.

Proposition 2.2 (Cf. [OST10, Proposition 4.1]). For any j ∈ Z, there is a one-to-one corre-
spondence between projective equivalence classes of planar polygons and properly bounded
difference operators D supported in [j, j + 3], considered up to the action D �→ λ ◦ D ◦ μ−1, where
λ, μ ∈ (R∗)∞ are sequences of non-zero real numbers, acting on R∞ by term-wise multiplication.

Proof. Given a properly bounded difference operator D supported in [j, j + 3], consider its
fundamental solution V , which is a sequence of non-zero vectors in R3 (see § 2.1). Each term Vk of
that sequence determines a point vk ∈ RP2 with homogeneous coordinates given by Vk. Further-
more, because V is a fundamental solution, the vectors Vk, Vk+1, Vk+2 are linearly independent,
and, thus, the sequence vk ∈ RP2 satisfies the 3-in-a-row condition. Note also that because the
fundamental solution V is unique up to a linear transformation V �→ AV , it follows that the

1091

https://doi.org/10.1112/S0010437X22007345 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007345


A. Izosimov

polygon {vk} is well-defined up to projective equivalence. Thus, with each properly bounded
difference operator D supported in [j, j + 3] one can associate a polygon {vk}, defined up to a
projective transformation. Conversely, given a polygon {vk}, one can revert this construction to
obtain a properly bounded difference operator D supported in [j, j + 3]. To that end, one first
lifts every point vk ∈ P2 to a vector Vk ∈ R3, and then finds an operator D whose fundamental
solution is given by V . Since the lifts Vk of the points vk are unique up to a transformation
Vk �→ μkVk, whereas the choice of an operator D with a given fundamental solution V is unique
up to D �→ λ ◦ D, where λ ∈ (R∗)∞, it follows that the operator D corresponding to a given
polygon is defined up to the action D �→ λ ◦ D ◦ μ−1, as desired. �

In what follows, we are interested in closed and, more generally, twisted polygons. A closed
n-gon is a polygon satisfying vk+n = vk for every k ∈ Z. For such a polygon, the corresponding
difference operator D can be chosen to be n-periodic. The converse is, however, not true: poly-
gons corresponding to periodic operators are, in general, not closed but twisted. Indeed, if D is
a periodic operator, then its fundamental solution V ∈ (R3)∞ is, in general, not periodic, but
satisfies Vk+n = AVk, where A ∈ GL3(R) is the transposed monodromy of D. Therefore, the cor-
responding polygon satisfies vk+n = ψ(vk), where ψ ∈ PGL3(R) is the projective transformation
determined by the linear operator A.

Definition 2.3. A twisted n-gon in RP2 is a polygon {vk} which satisfies vk+n = ψ(vk) for
some projective transformation ψ ∈ PGL3, called the monodromy of the polygon.

The above construction (see the proof of Proposition 2.2) allows one to identify the space
of projective equivalence classes of twisted n-gons with an appropriate quotient of the space of
n-periodic properly bounded difference operators supported in [j, j + 3]. Under this identification,
closed polygons correspond to those operators whose monodromy is a scalar multiple of the
identity (furthermore, one can arrange that the monodromy of an operator corresponding to a
closed polygon is exactly the identity).

Remark 2.4. One can adapt the proof of Proposition 2.2 to show that for every j ∈ Z there is a
one-to-one correspondence between projective equivalence classes of twisted planar n-gons and
properly bounded n-periodic difference operators D supported in [j, j + 3], considered up to the
action D �→ λ ◦ D ◦ μ−1, where λ, μ ∈ (R∗)∞ are sequences of non-zero real numbers which are
n-quasi-periodic and have the same monodromy. In other words, one has λ, μ ∈ (R∗)∞ ∩Qn(z)
for some z ∈ R∗ where the space Qn(z) is defined by (5). We do not use the result in this form
in the paper, so we omit the proof.

We also mention that when n is not divisible by three, the above-described action of quasi-
periodic sequences on difference operators admits a section given by n-periodic operators of the
form T j + bT j+1 + aT j+2 − T j+3. This is essentially the content of [OST10, Proposition 4.1]. As
a result, the entries of periodic sequences a, b constitute a global coordinate system on the space
of projective equivalence classes of twisted planar n-gons. Such a coordinate system is no longer
available when n is divisible by three, however our description of the twisted n-gons space as a
quotient remains valid.

Dual difference operators correspond to projectively dual polygons. Recall that the dual of a
polygon is the polygon in the dual projective plane whose vertices are the sides of the initial one.
Note that although there is, in general, no canonical way to label the vertices of the dual polygon,
polygons with odd number of vertices admit one particular labeling which is more symmetric
than the others. This labeling is depicted in Figure 4. For closed polygons, such labeling makes
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Figure 5. The definition of corner invariants.

projective duality an involution. For twisted polygons, it is only an involution up to the action
of the monodromy, but still an actual involution on projective equivalence classes.

Definition 2.5. Let P be a closed or twisted n-gon with odd n. Then the kth vertex of its dual
polygon P ∗ is the side of P which joins the vertices with indices k + (n− 1)/2, k + (n+ 1)/2.
A polygon P is called self-dual if it is projectively equivalent to its dual polygon P ∗.

Remark 2.6. Closed self-dual polygons are studied in [FT09]. In that paper, polygons which are
self-dual in the sense of Definition 2.5 are called n-self-dual (where n is the number of vertices).

With our definition of duality, we have the following result.

Proposition 2.7. Let n be odd. Consider a n-periodic properly bounded difference operator
supported in [(n− 3)/2, (n+ 3)/2] and its dual operator D∗. Then the polygons corresponding
to D and D∗ are dual to each other in the sense of Definition 2.5.

Proof. This follows from more general Proposition A.1 in Appendix A. �

2.3 Corner invariants and rescaling
Another description of the space of polygons modulo projective transformations is by means of
so-called corner invariants [Sch08, OST10]. To every vertex vk of a polygon, one associates two
cross-ratios xk, yk, as shown in Figure 5. The definition of the cross-ratio that we use is

[t1, t2, t3, t4] :=
(t1 − t2)(t3 − t4)
(t1 − t3)(t2 − t4)

.

Remark 2.8. Note that the definition of xk, yk requires somewhat more than the 3-in-a-row
condition. However, we do not need to care about this, because in this paper we only deal with
weakly convex polygons (see Definition 3.1 below) for which the numbers xk, yk are well-defined
by definition.

Clearly, the sequences xk, yk only depend on the projective equivalence class of the polygon.
Furthermore, in the twisted case these sequences are n-periodic, and {x1, y1, . . . , xn, yn} is a
coordinate chart on an open dense subset of twisted n-gons modulo projective transformations.
Therefore, because the pentagram map preserves the space of twisted polygons and commutes
with projective transformations, it can be written in terms of the (x, y) coordinates. The following
formulas were obtained in [OST10].

Proposition 2.9. One has

x′k = xk
1 − xk−1yk−1

1 − xk+1yk+1
, y′k = yk+1

1 − xk+2yk+2

1 − xkyk
,
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where xk, yk are the corner invariants of the polygon P , and x′k, y
′
k are corner invariants of its

pentagram image P ′.

Here we label P ′ as in [OST10]. The labeling used in Figure 3 leads to the same formulas
with a certain shift of indices. Although we never use these explicit formulas, we use the following
corollary: the pentagram map, with any labeling of vertices, commutes with the 1-parametric
group of transformations Rs given by

Rs : xk �→ sxk, yk �→ s−1yk. (9)

These transformations are known as rescaling. They were introduced in [OST10] to prove that
the pentagram map is a completely integrable system.

We now discuss the relation between two representations of the space of polygons: in terms
of difference operators, and in terms of corner invariants.

Proposition 2.10. Assume we are given a polygon P defined by a difference operator (8)
supported in [j, j + 3]. Then the corner invariants of P are given by

xk+j+2 =
ckak+1

bkbk+1
, yk+j+2 =

dkbk+1

ckck+1
. (10)

Proof. The proof is a computation following the lines of the proof of Lemma 4.5 in [OST10]. �
Formulas (10) allow one to describe rescaling operation (9) in terms of difference operators

as follows.

Corollary 2.11. In terms of difference operators, rescaling (9) can be defined as

aT j + bT j+1 + cT j+2 + dT j+3 �→ aT j + bT j+1 + s(cT j+2 + dT j+3).

Proof. Formulas (10) show that multiplying c and d coefficients by s is equivalent to multiplying
x variables by s and y variables by s−1, which is exactly rescaling (9). �
Remark 2.12. Note that because there are many operators corresponding to a given polygon,
there are also many different ways to define the rescaling on operators. For example, the following
formula defines the same operation on polygons as the formula provided above:

aT j + bT j+1 + cT j+2 + dT j+3 �→ aT j + s−1/3bT j+1 + s1/3cT j+2 + dT j+3.

3. Weakly convex polygons

In this section we define weakly convex polygons and describe their properties needed to prove
Theorems B and A.

Definition 3.1. A polygon is weakly convex if its corner invariants are well-defined and satisfy

xk > 0, yk > 0, xkyk < 1.

Proposition 3.2. Convex polygons are weakly convex.

Proof. For convex polygons, the collinear points vk−2, vk−1, ṽk, v̄k in Figure 5 are distinct and
their cyclic order is exactly as shown. Thus, xk is well-defined and 0 < xk < 1. Likewise, we have
yk ∈ (0, 1). The result follows. �
Remark 3.3. More generally, all corner invariants of a polygon satisfy xk, yk ∈ (0, 1) if and only
if any five consecutive vertices of that polygon form a convex pentagon (where by a convex
pentagon in RP2 we mean a pentagon which is convex in a suitable affine chart). Thus, all
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polygons satisfying this ‘5-in-a-row’ condition are weakly convex. The geometric meaning of the
general weak convexity condition is not that clear. However, it turns out to be really convenient
for the purposes of the present paper.

The following is an exhaustive list of properties of weakly convex polygons needed for our
purposes.

Proposition 3.4. Assume that P is a closed or twisted weakly convex n-gon, where n ≥ 3 is
odd.

1. The corresponding third-order n-periodic difference operator (8) can be chosen in such a
way that for all k ∈ Z we have

ak, ck > 0, bk, dk < 0. (11)

2. For any difference operator (8) corresponding to P and satisfying (11), consider the operators
Dl := aT j + bT j+1,Dr := cT j+2 + dT j+3. Then the monodromies zl, zr of these operators
(which are real numbers because the operators are of first order) satisfy 0 < zl < zr. In
particular, we have KerDl ∩ KerDr = 0.

3. Any polygon obtained from P by means of rescaling (9) with s > 0 is weakly convex.
4. Any polygon obtained from P by means of rescaling (9) with s < 0 has monodromy with

distinct eigenvalues.

Proof. To prove the first statement, consider the corner invariants xk, yk > 0 of P , and let

D := T j − T j+1 + xk+j+2T
j+2 − xk+j+2yk+j+2xk+j+3T

j+3.

Then, by Proposition 2.10, the polygon associated with D is P . Furthermore, the signs of
coefficients of D satisfy (11), as needed.

To prove the second statement, consider an arbitrary operator (8) representing P and satis-
fying (11), along with the associated operators Dr,Dl. Then, by formula (6), the monodromies
of those operators are given by

zl = −
n∏

k=1

ak

bk
, zr = −

n∏
k=1

ck
dk
,

so zl, zr > 0 due to (11) and n being odd. Further, using formulas (10), we obtain

zl
zr

=
n∏

k=1

akdk

bkck
=

n∏
k=1

xkyk,

where xk, yk are the corner invariants of P . However, because P is weakly convex, we have
xkyk < 1 and, thus, zl < zr. This, in turn, implies KerDl ∩ KerDr = 0, because non-zero elements
of the kernel of Dl are sequences with monodromy zl, whereas non-zero elements of the kernel
of Dr are sequences with monodromy zr �= zl. Thus, the second statement is proved.

The third statement is obvious from the definitions of weak convexity and rescaling, so we
proceed to the fourth statement. Let Psd be a polygon obtained from P by means of rescaling
with s < 0. Then the corner invariants x̂k, ŷk of Psd satisfy x̂k, ŷk < 0, x̂kŷk < 1. To show that the
monodromy of such a polygon has distinct eigenvalues, we use a result from [Izo16, Appendix A]
which states that the monodromy of a twisted n-gon with corner invariants x̂k, ŷk is conjugate
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to the product L1 · · · · · Ln, where

Lk :=

⎛
⎝ 1 0 1

1 − x̂kŷk 0 1
0 −ŷk 0

⎞
⎠ .

Note that because ŷk < 0 and x̂kŷk < 1, the matrices Lk are non-negative. Furthermore, the
product of at least three such matrices is positive, so the matrix M := L1 · · · · · Ln is positive.
Therefore, by the Perron–Frobenius theorem, M has a real positive eigenvalue z1 such that its
any other eigenvalue z satisfies |z| < z1. Furthermore, because x̂k < 0 and n is odd, we have
detM = x̂1 · · · · · x̂n(ŷ1 · · · · · ŷn)2 < 0, so the product of two other eigenvalues z2, z3 of M is
negative, which means that they are real and distinct. The result follows. �

4. Polygons fixed by the pentagram map and commuting difference operators

In this section we show that a closed or twisted polygon P projectively equivalent to its penta-
gram image P ′ gives rise to commuting difference operators. This is the first step in the proof
of both Theorems A and B. In addition, in the self-dual case (i.e. in the setting of Theorem B)
we show that those commuting operators are negative duals of each other.

Let P = {vk} be a closed or twisted n-gon with odd n, and let P ′ = {v′k} be the image of P
under the pentagram map, labeled as in Figure 3. Then, as explained in § 2.2, one can encode
P ′ by means of a difference operator D of the form

D = aT (n−3)/2 + bT (n−1)/2 + cT (n+1)/2 + dT (n+3)/2. (12)

The coefficients of this operator are related to the polygon P ′ by means of the equation

akV
′
i+(n−3)/2 + bkV

′
k+(n−1)/2 + ckV

′
k+(n+1)/2 + dkV

′
k+(n+3)/2 = 0,

where V ′
k are lifts of the vertices v′k of P ′.

Proposition 4.1. The vector

Vk := akV
′
k+(n−3)/2 + bkV

′
k+(n−1)/2 = −ckV ′

k+(n+1)/2 − dkV
′
k+(n+3)/2

is the lift of the vertex vk of P .

Proof. Indeed, we have

Vk ∈ span(V ′
k+(n−3)/2, V

′
k+(n−1)/2) ∩ span(V ′

k+(n+1)/2, V
′
k+(n+3)/2),

which means that the projection of Vk to P2 is the intersection point of the lines
(v′k+(n−3)/2, v

′
k+(n−1)/2) and (v′k+(n+1)/2, v

′
k+(n+3)/2). By the definition of the pentagram map

with our labeling convention, this is exactly the vertex vk of P , as desired. �
Now, as in Proposition 3.4, consider the operators

Dl := aT (n−3)/2 + bT (n−1)/2, Dr := D −Dl = cT (n+1)/2 + dT (n+3)/2. (13)

By Proposition 4.1, these operators take the lifts V ′
k of the vertices of P ′ to the lifts ±Vk of the

vertices of P .

Proposition 4.2. Assume that a closed or twisted n-gon (where n ≥ 5 is arbitrary) P is
projectively equivalent to its pentagram image P ′.
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1. One can choose the n-periodic operator D of the form (12) associated with P in such a way
that the corresponding operators Dl,Dr given by (13) commute:

DlDr = DrDl. (14)

2. Furthermore, if P is weakly convex and n is odd, then D can be chosen to satisfy the
alternating signs condition (11).

3. If, on top of that, P is self-dual, then Dl, Dr may be chosen to be negative duals of each
other (up to multiplication by T−n):

D∗
l = −T−nDr.

Equivalently, the operator D = Dl + Dr can be chosen to be anti-self-dual (again, up to
multiplication by T−n):

D∗ = −T−nD.
Proof of Proposition 4.2. We begin with the first statement. Take an arbitrary n-periodic oper-
ator D̃ of the form (12) representing the polygon P . Then, because P ′ is projectively equivalent
to P , there is a fundamental solution V ′ of D̃ such that the projection of V ′

k to P2 is the kth
vertex of P ′. Consider the projective transformation taking P ′ to P . Any lift A ∈ GL3(R) of this
projective transformation will then take the sequence V ′ to a sequence of lifts of vertices of P .
On the other hand, by Proposition 4.1, lifts of vertices of P are given by the sequence D̃lV

′.
Thus, there is an n-periodic sequence μ of non-zero real numbers such that AV ′ = μD̃lV

′, where
A acts on sequences of vectors by term-wise multiplication. Let D := μD̃. Then the operator D
still satisfies DV ′ = 0 and, hence, represents the same polygons P and P ′. Furthermore, the cor-
responding operator Dl satisfies AV ′ = DlV

′. Applying the operator D to both sides, we obtain
DDlV

′ = 0. Also taking into account that DV ′ = 0, this can be rewritten as

(DDl −DlD)V ′ = 0. (15)

At the same time, we have

DDl −DlD = (Dl + Dr)Dl −Dl(Dl + Dr) = DrDl −DlDr = [Dr,Dl],

so (15) gives

[Dr,Dl]V ′ = 0. (16)

Now it remains to note that the commutator [Dr,Dl] is of the form αTn−1 + βTn + γTn+1, so (16)
is equivalent to αkV

′
k+n−1 + βkV

′
k+n + γkV

′
k+n+1 = 0, which, in view of the 3-in-a-row condition

for P ′ (which holds because it holds for P ), gives αk = βk = γk = 0 and, thus, [Dr,Dl] = 0, as
desired.

To prove the second statement, one repeats the same argument, with the only modifica-
tion that the initial operator D̃ should be chosen to satisfy (11), which can be done by the
first statement of Proposition 3.4. Then the coefficients a, b, c, d of the operator D = μD̃ satisfy
sgn (ak) = −sgn (bk) = sgn (ck) = −sgn (dk). Furthermore, we claim that ak are all of the same
sign. Indeed, using explicit formulas (13) for Dl and Dr and equating the coefficients of Tn−1 in
(14), we obtain

akck+(n−3)/2 = ckak+(n+1)/2. (17)

Furthermore, we have sgn cj = sgn aj for any j, so taking the signs of both sides of (17) we obtain

sgn ak+(n+1)/2 = sgn ck+(n−3)/2 = sgn ak+(n−3)/2,
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which means that the sequence sgn ak is 2-periodic. However, because the period n of the sequence
ak is an odd number, it follows that sgn ak = const. Now, multiplying D by −1 is necessary, we
can arrange that ak > 0 for all k, so that D has satisfies (11), as needed.

To prove the third statement, we consider the operator D constructed above and show that
if P is self-dual, then D can be replaced with another operator, which has all the properties of
D and is, in addition, anti-self-dual. To that end, observe that if P is self-dual, then the operators
D and D∗ represent the same polygon, so

D∗ = αT−nDβ−1 (18)

for certain sequences α, β of non-zero real numbers. Taking the duals, we obtain

D = β−1TnD∗α = αβ−1Dαβ−1,

which implies β = ±α. Further, because D satisfies (11), the corresponding coefficients of D∗

and T−nD are of opposite sign, so (18) implies sgn (αk) = −sgn (βk) = const, and we must have
β = −α. Therefore,

D∗ = −αT−nDα−1,

where sgn (αk) = const and without loss of generality we can assume αk > 0. Furthermore,
because both operators D∗, T−nD are n-periodic, the sequence α is quasi-periodic, that is,
αk+n = zαk for some z ∈ R∗ (actually, z ∈ R+). Now, let γk :=

√
αk. Then the sequence γ is also

quasi-periodic, so the operator D′ := γDγ−1 is n-periodic. Moreover, it has all the properties of
D and is anti-self-dual. Thus, the proposition is proved. �
Remark 4.3. It is easy to see from the proof that the converse of the first statement is also true: if
Dr and Dl commute, then P is projectively equivalent to P ′. For instance, consider the polygon
P from Remark 1.3. The vertices of that polygon can be lifted to vectors Vk := (λ2k, λ3k, 1),
where λ := exp(2πi/7). The sequence Vk is annihilated by a difference operator with constant
coefficients, namely by D := aT (n−3)/2 + bT (n−1)/2 + cT (n+1)/2 + dT (n+3)/2, where a, b, c, d ∈ C

are such that the roots of the corresponding characteristic equation a+ bx+ cx2 + dx3 = 0 are
λ2, λ3, and 1. Therefore, the associated operators Dr and Dl also have constant coefficients
and hence commute. Thus, the polygon P is indeed projectively equivalent to its pentagram
image P ′.

5. The spectral curve

The results of this section are central to the proof of Theorem B (and are also used to derive
Theorem A from Theorem B). Namely, in § 5.1 we consider the joint spectrum of the commuting
difference operators Dl, Dr constructed above (see § 4), the so-called spectral curve, and show
that the genus g of that curve is at most one. We note that this estimate on the genus is not
predicted by the general theory of commuting difference operators. It seems that the best bound
one can get from the general theory is g ≤ 2. Proving the g ≤ 1 estimate requires somewhat more
careful analysis of the field of meromorphic functions. Also note that even the g ≤ 1 result is
still insufficient to prove Theorem B. Another important ingredient of the proof is the so-called
eigenvector function, which encodes the joint eigenvectors of the commuting operators Dl, Dr.
We study that function in § 5.2 and, in particular, prove that it has very few poles.
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5.1 The spectral curve and a bound on its genus
In this section, we construct the spectral curve associated with commuting difference operators
Dl, Dr given by Proposition 7.1 and discuss its properties, in particular prove that its genus is
at most one.

Remark 5.1. Note that instead of defining the spectral curve using commuting difference oper-
ators, we could have done this using the Lax representation, as in [Sol13]. However, at the end
of the day these two definitions turn out to be equivalent to each other (see Remark 5.14).
Furthermore, even if we defined the spectral curve using the Lax representation, we would still
need commuting difference operators to establish the properties of the curve that we need. Thus,
all in all, these two approaches are equivalent, and our choice is just a matter of convenience.

Remark 5.2. A different notion of a spectral curve corresponding to a difference operator (and,
hence, a polygon) is defined in [Kri15]. In our terminology, it is the spectral curve corresponding
to commuting difference operators D̂, Tn where D̂ is a difference operator supported in [0, 3]
associated with a given polygon. As the operator D̂ does not, generally speaking, commute with
Dl and Dr, the corresponding spectral curve seems to have no relation to ours.

Assume that P is a weakly convex twisted n-gon, self-dual, and projectively equivalent to its
pentagram image. Then, by Proposition 4.2, we have an n-periodic operator Dl = aT (n−3)/2 +
bT (n−1)/2 which commutes with its dual. For notational convenience, we define

D+ := Dl, D− := D∗
l = −T−nDr.

Periodicity of these operators means that they also commute with Tn. Therefore, we have a whole
algebra A of commuting operators, generated by D+, D−, and Tn (to preserve the left–right
symmetry, it is natural to include T−n in A too, so that A = C[D+,D−, T±n]). To such an
algebra A, one can always associate an algebraic curve. This curve may be constructed using
any two generic elements of A. As such elements, we pick the operators Tn and the product
D+D− = D−D+. This choice is motivated by a particularly simple form of the operator D+D−.
Namely, that operator is self-dual and supported in [−1, 1]:

D+D− = T−1α+ β + αT, (19)

where α, β are n-periodic sequences, and αk �= 0 for any k.

Definition 5.3. The affine spectral curve Γa is the joint spectrum of Tn and D+D−:

Γa := {(z, w) ∈ C∗ × C | ∃ ξ ∈ R∞ : ξ �= 0, Tnξ = zξ,D+D−ξ = wξ}.

In other words, a point (z, w) ∈ C∗ × C is in Γa if and only if w is an eigenvalue of the restriction
of D+D− to the space Qn(z) defined by (5).

To obtain an explicit equation of the affine spectral curve Γa, take a basis e1, . . . , en in Qn(z)
determined by the condition ejk = δj

k for k = 1, . . . , n. In this basis, the matrix of the operator
D+D− is almost tridiagonal, with two additional elements in the upper-right and bottom-left
corners: ⎛

⎜⎜⎜⎜⎜⎜⎝

β1 α1 αnz
−1

α1 β2 α2

. . . . . . . . .
αn−2 βn−1 αn−1

αnz αn−1 βn

⎞
⎟⎟⎟⎟⎟⎟⎠
. (20)
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The affine spectral curve Γa is the zero locus of the characteristic polynomial of (20), which,
up to the factor α1 . . . αn, reads

p(z, w) = z−1 + q(w) + z (21)

for a certain polynomial q(w) of degree n. In particular, the spectral curve is algebraic, as
predicted by the general theory of commuting difference operators.

Proposition 5.4. The affine spectral curve Γa is irreducible.

Proof. This curve is the zero locus of the polynomial (21), which is irreducible whenever q(w) is
non-constant. �

We now define the spectral curve Γ as the Riemann surface corresponding to the affine curve
Γa. In other words, Γ is the unique Riemann surface biholomorphic to Γa away from a finite
number of points. The existence of such a Riemann surface is guaranteed by Riemann’s theorem.
It can be obtained from Γa by means of normalization (which we actually explicitly construct
in Remark 5.23), followed by compactification. As Γa is irreducible (Proposition 5.4), it follows
that Γ is connected. Furthermore, the Riemann surface Γ comes equipped with:

• two meromorphic functions z and w, obtained from coordinate functions on Γa, and satisfying
the equation p(z, w) = 0, with p given by (21);

• a holomorphic involution σ : Γ → Γ, coming from the involution (z, w) �→ (z−1, w) on Γa, and
satisfying σ∗w = w and σ∗z = z−1.

Proposition 5.5. The degrees of the functions w and z on Γ are equal to 2 and n, respectively.

Proof. As the polynomial q(w) in (21) has degree n, the equation p(z, w) = 0 has n solutions in
terms of w for generic z. Thus, the degree of z on Γ is n. Likewise, the number of solutions of
p(z, w) = 0 in terms of z is 2 for generic w, so the degree of w is 2. �

As w is a function of degree 2, and σ is a non-trivial involution preserving w, it follows
that σ interchanges the two points in any level set of w. In particular, the fixed points set of σ
coincides with the set of branch points of w, that is, points where dw = 0. At the end of this
section we show that the number of such branch points is at most four, which implies, by the
Riemann–Hurwitz formula, that the genus of Γ is at most one. However, first we need to discuss
in detail the analytic properties of the functions z and w, as well as of some other functions on
Γ which we introduce in the following.

Proposition 5.6. The Riemann surface Γ is obtained from the normalization of Γa by adding
two points Z±, interchanged by the involution σ. The point Z+ is a zero of order n for the
function z, whereas Z− is its pole of order n. Both points are simple poles of the function w.

Proof. Let Γn ⊂ Γ be the normalization of Γa. This set can be described as the preimage of
Γa under the map (z, w) : Γ → P1 × P1. Also note that the image of Γ under the latter map is
precisely the closure of Γa in P1 × P1, which consists of Γa and the points (0,∞) and (∞,∞).
Thus, the image of Γ\Γn under the map (z, w) is two points (0,∞) and (∞,∞). This means,
first, that any point in Γ\Γn is a pole of w, and second, that there are at least two such points.
However, because w has degree 2 (Proposition 5.5), it follows that Γ\Γn consists of exactly two
points, and that these points are simple poles of w. Furthermore, at one of these points, which we
denote by Z+, we have z = 0, whereas at the other, which we call Z−, we have z = ∞. Finally,
note that because all points of Γ except Z± belong to Γn, it follows that z does not have zeros
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Table 1. The orders of the functions z, w, s, μ± at the points Z±, S± ∈ Γ. The order of these
functions at any other point of Γ is zero.

Function Degree Order at Z+ Order at Z− Order at S+ Order at S−

z n n −n 0 0
w 2 −1 −1 1 1
s 3 −2 2 1 −1
μ+ (n− 1)/2 (n− 3)/2 −(n− 1)/2 1 0
μ− (n− 1)/2 −(n− 1)/2 (n− 3)/2 0 1

or poles except for Z±. Thus, Z+ is a zero of z of order n, whereas Z− is a pole of order n, as
desired. �

Denote also by S± the two zeros of the function w on Γ. A priori, these two points may
coincide, but later we show that they are distinct (see the proof of Proposition 5.18). Table 1
summarizes information about the orders of the functions z and w at the points Z±, S± (recall
that the order of a meromorphic function f at a point X is equal to m if f has a zero of order
m at X, −m if f has a pole of order m at X, and zero otherwise). Also note that the order
of z and w at any other point of Γ is equal to zero. The table also contains information about
functions s and μ±, which we introduce in the following.

Proposition 5.7. The pair D+D−, Tn of commuting difference operators is of rank one, which
means that the generic common eigenspace of these operators is one-dimensional.

Proof. As follows from the explicit form (21) for the characteristic polynomial of the matrix (20),
for generic z that matrix has distinct eigenvalues and, hence, one-dimensional eigenspaces. �

For a generic point (z, w) ∈ Γa, let ξ ∈ R∞ be the corresponding common eigenvector of
D+D− and Tn, normalized by the condition ξ0 = 1.

Proposition 5.8. The components ξk of ξ extend to meromorphic functions on Γ. The
corresponding vector-function ξ on Γ satisfies the equations

Tnξ = zξ, D+D−ξ = wξ. (22)

Proof. For (z, w) ∈ Γa, let η = (η1, . . . , ηn) be the first row of the comatrix of L− wId, where
L is given by (20). Extend η to a bi-infinite sequence by the rule ηk+n = zηk. Then η is a
common eigenvector of Tn and D+D−: Tnη = zη, D+D−η = wη. Furthermore, the components
of η are, by construction, rational functions of z and w. Thus, to obtain the desired function ξ,
it remains to normalize η: ξk = ηk/η0. Note that η0 = z−1ηn does not vanish identically on Γa,
because ηn is a polynomial in z, w which is linear in z and, hence, cannot be divisible by the
defining polynomial of Γa. Thus, ξ is a well-defined rational vector-function of z, w and, hence,
a meromorphic function on Γ. �

We call the vector-function ξ the eigenvector function. Its analytic properties are studied in
detail in § 5.2.

Remark 5.9. Note that at every point X ∈ Γ\{Z±}, the vector-function ξ is meromorphic in the
following strong sense: there exists a local holomorphic function f such that fξ is holomorphic at
X. Moreover, the function f can chosen in such a way that (fξ)(X) does not vanish. Therefore,
the value of the function ξ at any point X ∈ Γ\{Z±} determines a direction in the infinite-
dimensional projective space P∞, regardless of whether the components of ξ are finite or infinite
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(note also that this direction does not change if we replace our particular normalization ξ0 = 1
by any other normalization). This is not true, however, at the points Z±. At those points, the
components ξk of ξ are still meromorphic, but the order of the pole of ξk is an unbounded function
of k (see Proposition 5.21), so there exists no f such that fξ is holomorphic. In particular, the
value of ξ at Z± does not determine any direction.

We now show that every operator L from the commutative algebra A = 〈D+,D−, T±n〉 gives
rise to a meromorphic function fL on Γ, which is holomorphic everywhere except possibly the
points Z± and satisfies Lξ = fLξ. In particular, the assignment L �→ fL is a homomorphism
from A to the algebra of meromorphic functions on Γ which are holomorphic in Γ\{Z±}. We
already have fT±n = z±1 and fD+D− = w, so it remains to construct the functions fD+ and fD−
(of course, one of them determines the other, because their product must be equal to w). We
denote these functions by μ+ and μ−.

Proposition 5.10. There exist meromorphic functions μ+, μ− on Γ which are holomorphic in
Γ\{Z±} and satisfy D±ξ = μ±ξ. Furthermore, we have μ+μ− = w.

Proof. By Proposition 5.7, a generic common eigenspace of D+D− and Tn is one-dimensional,
and is therefore generated by the vector ξ, evaluated at the corresponding point of the Riemann
surface Γ. For this reason, because the operator D+ commutes with D+D− and Tn, at generic
points of Γ we must have

D±ξ = μ±ξ (23)

for certain numbers μ± ∈ C depending on the point of Γ. Furthermore, because the left-hand
side of (23) is a meromorphic vector-function on Γ, and so is ξ, it follows that the func-
tions μ± also extend to meromorphic functions on the whole of Γ. Moreover, given a point
X ∈ Γ\{Z±}, renormalizing ξ if necessary, we can assume that ξ(X) is finite and non-zero (see
Remark 5.9). However, then (23) implies that the functions μ± are holomorphic at X. Finally,
the equation μ+μ− = w follows directly from (23) and the second of (22). �
Proposition 5.11. We have σ∗μ+ = μ−.

Remark 5.12. The existence of the involution σ on Γ is due to the invariance of the algebra
A = 〈D+,D−, T±n〉 under operator duality: A = A∗ := {L∗ | L ∈ A}. Thus, because D∗

+ = D−,
it is only natural that σ∗μ+ = μ−.

Proof of Proposition 5.11. It suffices to show that μ+(X+) = μ−(X−), where X± is a generic
pair of points interchanged by σ. As the points X± are generic, one can assume that the vectors
ξ(X±) are finite. Under this assumption, we have D±ξ(X±) = μ±(X±)ξ(X±). Furthermore, we
have ξ(X±) ∈ Qn(z±1

+ ), where z+ := z(X+) = z(X−)−1. Thus, using the pairing (7) between
Qn(z+) and Qn(z−1

+ ), we obtain

μ+(X+) 〈ξ(X+), ξ(X−)〉 = 〈D+ξ(X+), ξ(X−)〉 = 〈ξ(X+),D−ξ(X−)〉 = μ−(X−) 〈ξ(X+), ξ(X−)〉 .

Thus, to complete the proof, it suffices to show that 〈ξ(X+), ξ(X−)〉 �= 0. To that end, observe
that ξ(X+) belongs to the kernel of the operator (D+D− − w0)|Qn(z+), where w0 := w(X±), and,
in the generic case, spans that kernel. Thus, the orthogonal complement to ξ(X+) with respect
to the pairing (7) is the image of the dual operator

((D+D− − w0)|Qn(z+))
∗ =

(
D+D− − w0

)
|Qn(z−1

+ ).
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However, for generic z+ the operator D+D− has simple spectrum on Qn(z−1
+ ) and is, therefore,

diagonalizable, which in particular implies

Im (D+D− − w0)|Qn(z−1
+ ) ∩ Ker (D+D− − w0)|Qn(z−1

+ ) = 0.

Therefore, we have 〈ξ(X+), ξ(X−)〉 �= 0, as desired. �
Now, define a meromorphic function s on Γ by the formula

s :=
μ+

zμ−
. (24)

This function does not correspond to any difference operator L ∈ A = C[D+,D−, T±n] but can
be thought of as corresponding to a pseudo-difference operator T−nD+D−1

− . Accordingly, the
function s satisfies the equation

(D+ − sTnD−)ξ = 0. (25)

Recall that the operator on the left-hand side encodes the family of polygons obtained from
P by means of rescaling (9).

Proposition 5.13. The function s has degree 3. There exist three distinct points on Γ at which
s = −1. The function z takes three distinct values at those points.

Proof. We first show that deg s ≤ 3. Let X1, . . . , Xm ∈ Γ belong to the level set s = s0. Then,
for generic s0 ∈ C, these points correspond to distinct points on the affine spectral curve Γa.
This, in particular, means that the vectors ξ(X1), . . . , ξ(Xm) ∈ Ker (D+ − s0T

nD−) are linearly
independent (as joint eigenvectors of Tn and D+D− corresponding to distinct eigenvalues).
However,

dim Ker (D+ − s0T
nD−) = ord (D+ − s0T

nD−) = 3,

so m ≤ 3, and the degree of s is at most 3, as desired.
We now show that there exist three distinct points on Γ at which s = −1, which, in turn,

implies that the degree of s is exactly 3. As the polygon P , given by the operator D+ − TnD−,
is weakly convex, it follows from the fourth statement of Proposition 3.4 that the monodromy of
D+ + TnD− has simple spectrum. This means that there exist three distinct numbers z1, z2, z3
such that the operator D+ + TnD− has non-trivial (and, hence, one-dimensional) kernel on
Qn(zk). Let ξk be the generator of that kernel. Then, because the operator D+D− commutes
with D+ + TnD− and Tn, it follows that ξk is also an eigenvector of D+D−, corresponding
to some eigenvalue wk. Then the three points (zk, wk) belong to the affine spectral curve Γa

and, thus, give rise to at least three points X1, X2, X3 ∈ Γ\{Z±} with z(Xk) = zk, w(Xk) = wk.
We now claim that s(X1) = s(X2) = s(X3) = −1. Indeed, the vector ξk spans the (zk, wk) joint
eigenspace of Tn and D+D−. Therefore, at each of the points Xk, we have ξ(Xk) = ckξ

k, where
ck ∈ C (here we assume here that the vectors ξ(Xk) are finite, which can be always arranged by
multiplying ξ by an appropriate meromorphic function, see Remark 5.9). Thus, by construction
of the vectors ξk, we have

(D+ + TnD−)ξ(Xk) = ck(D+ + TnD−)ξi = 0.

On the other hand,
(D+ + TnD−)ξ(Xk) = (μ+ + zμ−)|Xk

ξ(Xk),

so
(μ+ + zμ−)|Xk

= 0. (26)
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Note also that Xk cannot be a common zero of μ+ and μ−, because that would imply ξ(Xk) ∈
KerD+ ∩ KerD−, which is not possible by the second statement of Proposition 3.4 (the latter
applies to D± because D+ = Dl, D− = −T−nDr). Furthermore, μ± cannot have a pole at Xk by
Proposition 5.10. However, then (26) implies s(Xk) = −1, as desired. �
Remark 5.14. It follows from Proposition 5.13 that the function s has the following meaning.
Fix some generic s0 ∈ C. Then there are three points X1, X2, X3 in Γ with s = s0. Furthermore,
the vectors ξ(Xk) ∈ Qn(z(Xk)) belong to Ker (D+ − s0T

nD−). Thus, z(X1), z(X2), z(X3) is the
spectrum of the monodromy of D+ − s0T

nD−. In other words, if we consider a meromorphic
mapping Γ → C2 given by the functions (z, s), then its image belongs to the algebraic curve

Γ′
a := {(z, s) ∈ C∗ × C | z is an eigenvalue of the monodromy of D+ − sTnD−}.

Using also that deg z = n and deg s = 3, it is easy to show that the mapping Γ → Γ′
a is generically

biholomorphic. Thus, Γ′
a is just another affine model of the spectral curve Γ. This model can be

thought of as the joint spectrum of the operators Tn and T−nD+D−1
− (the latter is well-defined

on a generic eigenspace of Tn). Furthermore, because the operator D+ − sTnD− corresponds to
the polygon Rs(P), where Rs is the rescaling action (9), it follows that Γ′

a can be regarded as
the graph of the spectrum for the monodromy of Rs(P). As explained in [Izo16], this definition
of the spectral curve coincides with the one used in [Sol13] to prove algebraic integrability of the
pentagram map. Thus, as a Riemann surface, our spectral curve is isomorphic to that of [Sol13].

We are now in a position to prove the main result of this section.

Proposition 5.15. The genus g of Γ satisfies g ≤ 1.

Proof. The function w on Γ is a 2-fold ramified covering of the Riemann sphere whose branch
points coincide with fixed points of the involution σ. To estimate the number of such fixed
points, note that from Proposition 5.11 and formula (24) it follows that σ∗s = s−1. Thus, at
each fixed point of σ we must have s = ±1. Furthermore, by Proposition 5.13, the function
z takes three distinct values at points of Γ where s = −1, and because the set s = −1 is invariant
under the involution σ which takes z to z−1, it follows that those values must be of the form
±1, z0, z0−1, where z0 �= ±1. Thus, σ must have exactly one fixed point at the level set s = −1.
In addition, it may have up to three fixed points at the level set s = 1, which is up to four fixed
points in total. Now, the desired inequality for the genus follows from the Riemann–Hurwitz
formula. �
Remark 5.16. In fact, because the values of z at points where s = −1 are the eigenvalues of the
monodromy of D+ + TnD−, it follows from formula (6) that they are of the form −1, z0, z−1

0 .
Another way to see this is to notice that by Proposition 5.11 at fixed points of σ we must have
μ+ = μ− and thus z = s−1 (here we use that the functions μ± do not have common zeros and
also do not have poles in Γ\{Z±}). This also implies that if Γ has genus 1, then z = 1 at points
where s = 1. In other words, all eigenvalues of the monodromy of the polygon P are equal to
one. Later on, we show that this monodromy is, in fact, the identity. In other words, if the
spectral curve is elliptic, then in the setting of Theorem B the polygon P must be closed (see
Remark 6.9).

Remark 5.17. Note that without weak convexity (used to prove Proposition 5.13) we would not
be able to say that there is just one fixed point of the involution σ at the level s = −1. In that
case, nothing seems to prevent σ from having six fixed points, which means that Γ may be a
genus-2 curve. Thus, it should be possible to construct a counterexample to Theorems A and B
in the non-weakly-convex case using genus-2 curves and their associated genus-2 theta functions.
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Another way to obtain the estimate g ≤ 2 is to use the existence on Γ of meromorphic
functions of degree 2 and 3 (namely, w and s). However, this does not guarantee the g ≤ 1
estimate obtained above.

We finish this section with two additional results on the spectral curve which are useful
later on.

Proposition 5.18. The degrees of the functions μ±, s and their orders at points Z±, S± are as
listed in Table 1.

Proof. As for any λ ∈ C∗ the degree of operators D± − λ is (n− 1)/2, an argument analogous to
that we used to show that deg s ≤ 3 (see the proof of Proposition 5.13) gives deg μ± ≤ (n− 1)/2.
Further, let d± := ord Z+μ±. Then, because ord Z+w = −1 (see Table 1), the equation μ+μ− = w
implies

d+ + d− = −1. (27)

Furthermore, using that ord Z+z = n and (24), we obtain

d+ − d− = n+ ord Z+s, (28)

so

d− = −1
2(n+ 1) − 1

2ord Z+s, (29)

and because degμ− ≤ (n− 1)/2, we must have d− ≥ −(n− 1)/2, which implies ord Z+s ≤ −2.
On the other hand, we know that deg s = 3, and from (29) it follows that ord Z+s is even. Thus,
we must have ord Z+s = −2, which, along with (29) implies ord Z+μ− = d− = −(n− 1)/2 and
thus degμ− = (n− 1)/2. Similarly, adding up (27) and (28), we get ord Z+μ+ = d+ = (n− 3)/2.
Analogously, replacing the point Z+ with Z−, we find the orders of μ± and s at Z−, as well as
the degree of μ+ (one can also use that σ∗μ+ = μ− and σ(Z+) = Z−).

It now remains to find the orders of the functions μ± and s at the points S±. To that end,
we first show that S+ �= S−. Assume, for the sake of contradiction, that S+ = S− = S. Then
S is a double zero of the function w. Furthermore, we have μ+μ− = w, and both μ+ and μ− are
holomorphic and have at worst a simple zero at S (indeed, these functions have degree (n− 1)/2
and zeros of order (n− 3)/2 at the points Z+ and Z−, respectively). Thus, both μ+ and μ−
must have a simple zero at S. However, then, from the definition (24) of the function s, it follows
that it does not have a zero at S. Furthermore, s cannot have zeros at other points of Γ\{Z±},
because the only zero of μ+ in that domain is the point S, but this means that s has just two
zeros counting with multiplicities, which is impossible because deg s = 3. Therefore, we must
have that S+ �= S−.

Now, the relation μ+μ− = w implies that at both points S± one of the functions μ±
has a simple zero, whereas the second does not have a zero or a pole. Without loss of
generality, assume that μ+(S+) = 0 and, thus, ord S+μ+ = 1. Then ord S+μ− = 0, and by for-
mula (24) we obtain ord S+s = 1. Furthermore, from σ∗μ+ = μ− and σ(S+) = S− it follows that
ord S−μ+ = 0, ord S−μ− = 1, and ord S+s = −1. Finally, note that the functions μ± and s do not
have zeros or poles other than the points Z±, S±, because for each of them the total number of
zeros and poles at those points (counting with multiplicities) coincides with the degree. Thus,
the proposition is proved. �
Proposition 5.19. The affine spectral curve Γa is a nodal curve (i.e. all its singularities are
double points).
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Proof. The affine spectral curve Γa is the zero locus of the characteristic polynomial p(z, w) =
z + z−1 + q(w) of the matrix (20). Computing the differential of that polynomial, we get that
(z0, w0) ∈ Γa is singular if and only if z0 = ±1 and w0 is a multiple root of p(z0, w). Furthermore,
computing the Hessian, we get that a singular point (z0, w0) ∈ Γa is a double point if and only if
w0 is a double root of p(z0, w). However, for z0 = ±1 the matrix (20) is symmetric (equivalently,
the restriction of the operator D+D− to Qn(±1) is self-adjoint), so the multiplicity of the root
w0 of its characteristic polynomial is equal to the dimension of the corresponding eigenspace,
which is

dim Ker (D+D− − w0)|Qn(±1) ≤ ord (D+D− − w0) = 2.

Thus, indeed all singular points of Γa are double points. �
Remark 5.20. It is easy to see that the genus of the normalization Γ of Γa is equal to n− d− 1
where d is the number of double points of Γa. Furthermore, as can be seen from the proof of
Proposition 5.19, double points of Γa correspond to double roots of the polynomials q(w) ± 2. The
polynomial q is of degree n, so each of those polynomials may have at most (n− 1)/2 double roots.
Therefore, Γ is rational when each of the polynomials q(w) ± 2 has precisely (n− 1)/2 double
roots (and, in addition, one simple root). Likewise, Γ is elliptic when one of the polynomial
q(w) ± 2 has (n− 1)/2 double roots, whereas the second has (n− 3)/2 double roots. Using
Remark 5.16 one can show that it is the polynomial q(w) + 2 that has (n− 3)/2 double roots.

5.2 The eigenvector function
In this section, we study in detail the analytic properties of the meromorphic vector-function
ξ constructed in Proposition 5.8. This will allow us to obtain analytic formulas for coordinates
of vertices of the polygon P (see § 6.1 for the rational case and § 6.2 for the elliptic case). We
keep all the notation of § 5.1.

Proposition 5.21. We have ordZ±ξk = ±k.
Proof. Let dk := ordZ+ξk − k. We need to show that dk = 0 for every k ∈ Z. Note that d0 = 0
because ξ0 = 1. Thus, it suffices to show that dk is a constant sequence. Also note that because
ξk+n = zξk and z has a zero of order n at Z+ (see Table 1), the sequence dk is n-periodic. Thus,
if it is not constant, then there must exist k ∈ Z such that dk−1 > dk ≤ dk+1. However, because
ξ is the eigenvector of the operator (19) with eigenvalue w, we have

αk−1ξk−1 + αkξk+1 = (w − βk)ξk. (30)

As α is a non-vanishing sequence, the order of the left-hand side at Z+ can be bounded as

ordZ+(αk−1ξk−1 + αkξk+1) ≥ min(ordZ+ξk−1, ordZ+ξk+1)

= min(dk−1 + k − 1, dk+1 + k + 1) ≥ dk + k.

On the other hand, because ordZ+w = −1, the order of the right-hand side of (30) is
dk + k − 1. Thus, dk must be a constant sequence, as desired. �

We now proceed to describe the behavior of ξ away from the points Z±. We begin with the
following preliminary lemma.

Lemma 5.22. Assume that X± ∈ Γ\{Z±} are distinct points such that w(X+) = w(X−) (equiv-
alently, σ(X+) = X−). Then the directions (i.e. points in P∞, see Remark 5.9) determined by
the values of ξ at X± are distinct from each other.
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Proof. Without loss of generality, assume that the vectors ξ(X±) are finite and non-zero
(if not, we multiply ξ by an appropriate meromorphic function, see Remark 5.9). One then
needs to show that these vectors are linearly independent. To that end, recall that Tnξ(X±) =
z(X±)ξ(X±). Thus, if z(X+) �= z(X−), then the vectors ξ(X±) are independent as eigenvec-
tors of Tn corresponding to distinct eigenvalues. Therefore, it suffices to consider the case
z(X+) = z(X−). In that case, we have

z(X+) = z(X−) = z(σ(X−))−1 = z(X+)−1,

so z(X±) = ±1. Suppose for the sake of contradiction that the corresponding vectors ξ(X±)
are linearly dependent. Then, without loss of generality, we can assume that ξ(X+) = ξ(X−)
(this can be always arranged by multiplying ξ by an appropriate meromorphic function). We use
the notation ξ0 := ξ(X±), z0 := z(X±) = ±1, w0 := w(X±). Note that because w(X+) = w(X−),
the differential of w does not vanish at X±, so w can be taken as a local parameter near those
points. Then, differentiating the relation (Tn − z)ξ = 0 with respect to w at X±, we obtain

(Tn − z0)ξ′(X+) = z′(X+)ξ0, (Tn − z0)ξ′(X−) = z′(X−)ξ0.

Taking a linear combination of these equations, we obtain (Tn − z0)ξ̂ = 0, where ξ̂ :=
z′(X+)ξ′(X−) − z′(X−)ξ′(X+). In other words, we have ξ̂ ∈ Qn(z0). Similarly, using the equation
(D+D− − w)ξ = 0, we obtain

(D+D− − w0)ξ̂ = λξ0, (31)

where λ := z′(X+) − z′(X−). Note also that λ �= 0. Indeed, λ = 0 would mean that the two
branches of the curve Γa given by the functions z(w) near X± are tangent to each other. This is,
however, not possible, because Γa is a nodal curve (Proposition 5.19). Thus, because λ �= 0 and
ξ̂ ∈ Qn(z0), it follows from (31) that the operator (D+D−)|Qn(z0) has a non-trivial Jordan block.
This is, however, not possible, because z0 = ±1, and thus D+D− is self-adjoint on Qn(z0). Thus,
it must be that the vectors ξ(X±) are linearly independent, as desired. �
Remark 5.23. In the elliptic case (i.e. when the genus of Γ is 1), one can also prove Lemma 5.22
as follows. The vectors ξ(X±) are common eigenvectors of the operators D+, D−, Tn, with the
corresponding eigenvalues given by the values of the function μ+, μ−, z at the points X±. Thus,
it follows that ξ(X±) are independent as long as at least one of the functions μ+, μ−, z sepa-
rates X+ from X−. Assume that this is not the case, which means that μ±(X+) = μ±(X−) and
z(X+) = z(X−). Then we have

μ−(X+) = μ+(σ(X+)) = μ+(X−) = μ+(X+).

Along with z(X±) = ±1, this gives s(X±) = ±1. However, in the elliptic case four of the six
points where s = ±1 are fixed by σ (which would force X+ = X−), whereas the remaining two
points are separated by the function z (by Proposition 5.15). Thus, the functions μ±, z indeed
separate any pair of points on Γ, which proves Lemma 5.22. As a byproduct, we also obtain
the following result: the functions μ±, z define an embedding Γ\{Z±} ↪→ C3. In other words,
if we view μ± and z as rational functions on Γa, then these functions provide a resolution of
singularities.

Lemma 5.22 also admits an infinitesimal version, corresponding to the case when X+ = X− =
X is a branch point of w (equivalently, a fixed point of σ). In this case, the role of ξ(X±) is played
by the vectors ξ(X), ξ′(X), where the derivative is taken with respect to a local parameter near
X. Note that upon renormalization of ξ, its derivative changes as ξ′ �→ fξ′ + f ′ξ, so the direction
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of ξ′ is well-defined modulo the direction of ξ. In particular, linear independence of ξ and ξ′ is
well-defined.

Lemma 5.24. Assume that X ∈ Γ is a branch point of w (equivalently, a fixed point of σ). Then
the directions determined by the values of ξ and ξ′ at X are distinct from each other.

Proof. Renormalizing ξ if necessary, we can assume that its value at X is finite and non-zero.
Then, differentiating the equation (Tn − z)ξ = 0 with respect to a local parameter near X, we
obtain

(Tn − z(X))ξ′(X) = z′(X)ξ(X). (32)
Also note that because Γa is a nodal curve, it follows that the mapping (z, w) : Γ\{Z±} → C2 is
an immersion, so at a branch point of w me must have z′ �= 0. However, then (32) implies that
the vectors ξ(X) and ξ′(X) are linearly independent, as desired. �
Remark 5.25. Differentiating (D+D− − w)ξ = 0 at X and using that w′(X) = 0, we obtain
(D+D− − w(X))ξ′(X) = 0. Thus, Lemma 5.24 means that ξ(X) and ξ′(X) form a basis of
solutions for the equation (D+D− − w(X))ξ = 0.

Proposition 5.26. The function ξ1 has g poles in Γ\{Z±}, where g ∈ {0, 1} is the genus of Γ.

Proof. Let u ∈ C̄, and let X± be the two preimages of u under the function w : Γ → C̄. Recall
that the trace of a meromorphic function f on Γ under w is a meromorphic function on C̄ is
defined by (trwf)(u) := f(X+) + f(X−). Let

ζ(u) :=
∣∣∣∣ξ0(X+) ξ1(X+)
ξ0(X−) ξ1(X−)

∣∣∣∣
2

.

Note that ξ0 ≡ 1 by the definition of the eigenvector function ξ, so ζ(u) = (ξ1(X+) − ξ1(X−))2.
This means that ζ := 2trw(ξ21) − (trwξ1)2, so in particular ζ is meromorphic (i.e. rational). To
understand the behavior of that function, fix a point u0 ∈ C̄. Let Σ := w({X ∈ Γ | dw(X) =
0}) ⊂ C̄ be the set of critical values of w (this set contains two or four points depending on the
genus of Γ). Then the following cases are possible.

Case 1: u0 /∈ Σ is finite, and ξ1 is finite at both preimages X± of u0 under w. In this case, ζ(u0)
is the squared Wronskian of the solutions ξ(X±) of equation D+D−η = u0η. By Lemma 5.22,
these solutions are independent, so ζ(u0) is finite and non-zero.

Case 2: u0 /∈ Σ is finite, ξ1 has a pole of order d at one of the preimages X± of u0 (say, X+),
and is finite at the other preimage. In this case, the function (u− u0)2dζ(u) is finite at u0 and
is equal to the squared Wronskian of linearly independent solutions ((w − u0)dξ)(X+), ξ(X−) of
D+D−η = u0η. Thus, ζ has a pole of order 2d at u0.

Case 3: u0 /∈ Σ is finite, and ξ1 has poles at both preimages X± of u0. This is not possible, since
after renormalizing ξ we would obtain(

ξ0(X+) ξ1(X+)
ξ0(X−) ξ1(X−)

)
=

(
0 1
0 1

)
,

which would mean that the Wronskian of ξ(X±) vanishes.

Case 4: u0 = ∞ (in which case we also have u /∈ Σ). In this case X± = Z±, so ζ has a pole of
order 2 at u0 by Proposition 5.21.

All in all, the function ζ does not vanish in C̄\Σ, whereas the number of its poles in that
domain is twice the number of poles of ξ1 in {X ∈ Γ | dw(X) �= 0} (counting with multiplicities).
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Now, consider u0 ∈ Σ, and let X ∈ Γ be the unique point such that w(X) = u0. Then there exists
a parameter t near X such that the function w can be locally written as t �→ u0 + t2. So ζ(u)
near u0 can be written as

ζ(u) =
∣∣∣∣ ξ0(t) ξ1(t)
ξ0(−t) ξ1(−t)

∣∣∣∣
2

,

where t =
√
u− u0. Then at t = 0 we have

ζ(u) ∼ t2
∣∣∣∣ξ

′
0(0) ξ′1(0)
ξ0(0) ξ1(0)

∣∣∣∣
2

, (33)

up to a constant factor and higher-order terms. Thus, when u0 ∈ Σ, we have the following two
cases.

Case 5: u0 ∈ Σ, and ξ1 is finite at the preimage X of u0. In this case, in view of Remark 5.25,
the determinant in (33) is the Wronskian of two independent solutions of D+D−η = u0η, so
ζ(u) ∼ t2 = u− u0 and, thus, has a simple zero at u0.

Case 6: u0 ∈ Σ, and ξ1 has a pole of order d at the preimage X of u0. In this case, renormalizing
ξ as in Case 2, we obtain that ζ has a pole of order 2d− 1 at u0.

In the latter case, one can regard a pole of order 2d− 1 as a pole of order 2d that collided
with a simple zero. With this understanding, the number of zeros of ζ is equal to the number
of branch points of w, whereas the number of poles of ζ is twice the number of poles of ξ1
(with some zeros and poles possibly cancelling each other out). In addition, because the number
of zeros of ζ is equal to the number of its poles, it follows that the number of poles of ξ1 is half
the number of branch points of w, which is 2g + 2. Furthermore, because Z+ is not a pole of ξ1,
whereas Z− is its pole of order 1 (see Proposition 5.21), it follows that the number of poles of ξ1
in Γ\{Z±} is exactly g, as desired. �
Corollary 5.27. In the rational case, all functions ξk are holomorphic in Γ\{Z±}, whereas in
the elliptic case all of them have at worst a simple pole at one and the same point Xp, and no
other poles.

Proof. First note that ξ0 ≡ 1 by construction. Furthermore, in the rational case ξ1 is holomorphic
in Γ\{Z±} by Proposition 5.26. Thus, both ξ0 and ξ1 are holomorphic in that domain. At the
same time, by (30) we have

ξk+1 =
1
αk

((w − βk)ξk − αk−1ξk−1),

and because w is holomorphic in Γ\{Z±} (Table 1), it follows by induction that so are all ξk
with k ≥ 0. Analogously, using (30) to express ξk−1, we get that ξk with k < 0 are holomorphic
in Γ\{Z±} too. This proves the corollary in the rational case.

In the elliptic case, the argument is similar, but now Proposition 5.26 implies that ξ1 has
a single pole in Γ\{Z±}. Denoting that pole by Xp, we obtain by induction that all ξk are
holomorphic in Γ\{Z±, Xp}, as desired. �

6. Proof of Theorem B: a self-dual polygon fixed by the pentagram map
is Poncelet

In this section, we prove Theorem B: any weakly convex self-dual twisted odd-gon P projectively
equivalent to its pentagram image P ′ is Poncelet. To that end, we use the results of § 5 to obtain
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explicit formulas for coordinates of vertices of P (see § 6.1 for the case g = 0 and § 6.2 for the
case g = 1) and, hence, show that P is a Poncelet polygon.

6.1 The rational case: degenerate Poncelet polygons
In this section, we prove Theorem B in the case when the genus of Γ is zero, that is, when Γ is a
rational curve. In that case, we show that P is a degenerate Poncelet polygon in the sense that
the corresponding inscribed and circumscribed conics are not in general position. We keep the
notation of the previous two sections.

Proposition 6.1. The set s−1(1) := {X ∈ Γ | s(X) = 1} consists of either one or three points.

Proof. This set is invariant under the involution σ and contains exactly one fixed point of that
involution (see the proof of Proposition 5.15). Thus, it must contain odd number of points, and
because deg s = 3, it follows that |s−1(1)| = 1 or |s−1(1)| = 3. �

We consider the cases |s−1(1)| = 1 and |s−1(1)| = 3 separately. First, assume that
|s−1(1)| = 3. Denote points in s−1(1) by A,B,C, where A and B are switched by σ, whereas C
is fixed by σ.

Proposition 6.2. The vectors ξ(A), ξ(B), ξ(C) form a basis of Ker (D+ − TnD−).

Remark 6.3. Note that the vectors ξ(A), ξ(B), ξ(C) are finite because, by Corollary 5.27, the
vector-function ξ is holomorphic in Γ\{Z±}, and A,B,C �= Z± because s(Z+) = ∞ and s(Z−)=0
(Table 1).

Proof of Proposition 6.2. We have ξ(A), ξ(B), ξ(C) ∈ Ker (D+ − TnD−) by (25), so it suffices to
show that these vectors are linearly independent. To that end, recall that they are eigenvectors
of the operator D+D−. Furthermore, the eigenvalue w(C) corresponding to ξ(C) is distinct from
the eigenvalue w(A) = w(B) corresponding to the other two vectors. Thus, it suffices to prove
the independence of ξ(A) and ξ(B). However, that follows from Lemma 5.22. �

Now recall that the polygon corresponding to the operator D+ − TnD− is P . Thus, by
Proposition 6.2, the vertices of P (defined up to a projective transformation) are given by (ξk(A) :
ξk(B) : ξk(C)) ∈ P2. To explicitly compute the coordinates of vertices, we identify Γ with C̄. Note
that because automorphisms of C̄ act transitively on triples of points, the map u : Γ → C̄ may
be chosen in such a way that u(Z+) = 0, u(Z−) = ∞, and u(C) = 1. Then the involution σ,
written in terms of u, is u �→ u−1, whereas the points A,B are identified with r and r−1, where
r ∈ C∗\{±1}. Furthermore, from Proposition 5.21 and Corollary 5.27 we obtain ξk(u) = cku

k,
where ck �= 0 is a constant. Therefore, the vertices of P are given by

vk = (rk : r−k : 1). (34)

Thus, the polygon P is inscribed in a conic with homogeneous equation

x1x2 = x2
3. (35)

Furthermore, because P is self-dual, it is also circumscribed and, hence, Poncelet. Thus, the
proof of Theorem B in the case when the spectral curve is rational and |s−1(1)| = 3 is complete.

Remark 6.4. A direct calculation shows that the conic inscribed in the polygon (34) is

x1x2 = (1
2 + 1

4(r + r−1))x2
3. (36)

The conics (35) and (36) are tangent to each other at two points (1 : 0 : 0) and (0 : 1 : 0). In
particular, they are not in general position (instead of four intersections we have two intersections
of multiplicity 2).
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We now consider the case |s−1(1)| = 1. To begin with, notice that this case can be thought of
as a limit of the case |s−1(1)| = 3, with the points A, B, C colliding and forming a single point
D ∈ s−1(1). This observation leads to the following version of Proposition 6.2.

Proposition 6.5. The vectors ξ(D), ξ′(D), ξ′′(D) form a basis of Ker (D+ − TnD−), where the
derivatives are taken with respect to any local parameter near D.

Proof. First, note that because the set s−1(1) consists of a single point D, the latter must be
an order 2 branch point of the function s. In other words, we have s′(D) = s′′(D) = 0. Thus,
differentiating the equation (D+ − sTnD−)ξ = 0 at the point D twice, we obtain

(D+ − TnD−)ξ′(D) = (D+ − TnD−)ξ′′(D) = 0.

Thus, we have ξ(D), ξ′(D), ξ′′(D) ∈ Ker (D+ − TnD−), and it suffices to show that these vectors
are linearly independent. To that end, we differentiate the equation (D+D− − w)ξ = 0 twice
at D. Using that D is a branch point of w and, thus, w′(D) = 0, we obtain

(D+D− − w(D))ξ′(D) = 0, (D+D− − w(D))ξ′′(D) = w′′(D)ξ(D).

Furthermore, because the degree of the function w is 2, D is an order 1 branch point for w,
so w′′(D) �= 0, which means that ξ(D), ξ′(D) are eigenvectors of D+D−, whereas ξ′′(D) is not.
Furthermore, the vectors ξ(D) and ξ′(D) are linearly independent by Lemma 5.24. Thus, ξ(D),
ξ′(D), ξ′′(D) are indeed independent, as desired. �

We now find the vertices of the polygon P in the same fashion as in the case |s−1(1)| = 3.
Namely, choose an identification u : Γ → P1 in such a way that u(Z+) = 0, u(Z−) = ∞, and
u(D) = 1. Then, as in the case |s−1(1)| = 3, we obtain ξk(u) = cku

k, where ck �= 0 is a constant.
In particular, at the point D we obtain ξk = ck, ξ′k = kck, ξ′′k = k(k − 1)ck, so up to a projective
transformation the vertices of P are given by

vk = (k : k2 : 1). (37)

These points belong to a conic

x2x3 = x2
1, (38)

so P is inscribed and, hence, Poncelet. Thus, the proof of Theorem B in the rational case is
complete.

Remark 6.6. A direct calculation shows that the conic inscribed in the polygon (37) is

x2x3 = x2
1 + 1

4x
2
3. (39)

This is an even more degenerate case: the conics (38) and (39) intersect each other at one single
point (0 : 1 : 0), of multiplicity 4.

Remark 6.7. Degenerate Poncelet polygons (34) and (37) correspond to degenerations of an ellip-
tic curve to Abelian groups C∗ and C, respectively. Indeed, removing the tangency points with
the inscribed conic (36) from the circumscribed conic (35) we obtain an affine curve (a hyperbola)
which is naturally isomorphic to C∗. The vertices of the Poncelet polygon (34) are uniformly
spaced on that hyperbola with respect to the C∗ group structure. This should be compared
with the case of genuine Poncelet polygons which are images of uniformly spaced points on an
elliptic curve under a double covering map from the elliptic curve to the circumscribed conic.
Thus, degenerate Poncelet polygons (34) correspond to degenerations of an elliptic curve to C∗.
Likewise, removing from (38) the tangency point with (39) we obtain a parabola which identifies
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with C, and points (37) are again uniformly spaced. Thus, degenerate Poncelet polygons (37)
correspond to degenerations of an elliptic curve to C.

6.2 The elliptic case: genuine Poncelet polygons
In this section, we complete the proof of Theorem B in the case when the spectral curve Γ
has genus one, that is, is elliptic. The argument is similar to the rational case, but instead of
elementary expressions (34) and (37), we obtain formulas for vertices of P in terms of theta
functions.

Recall that in the elliptic case the involution σ on Γ has four fixed points, at three of which
we have s = 1, whereas at the fourth we have s = −1 (see the proof of Proposition 5.15). Denote
those points by A,B,C,D, where s(D) = −1, and s(A) = s(B) = s(C) = 1.

Proposition 6.8. The directions in P∞ determined by the values of the vector-function ξ at
the points A, B, C (see Remark 5.9) are linearly independent.

Proof. They are eigendirections of the operator D+D− corresponding to distinct eigenvalues
w(A), w(B), w(C). �

As in the rational case, it follows that the vectors ξ(A), ξ(B), ξ(C) form a basis of Ker (D+ −
TnD−) (as usual, one may need to renormalize these vectors to ensure that they are finite, see
Remark 5.9). Therefore, the vertices of the corresponding polygon P (defined up to projective
transformation) are given by (ξk(A) : ξk(B) : ξk(C)) ∈ P2.

Remark 6.9. As z(A) = z(B) = z(C) = 1 (see Remark 5.16), it follows that the infinite vectors
ξ(A), ξ(B), ξ(C) are n-periodic, so the polygon P is closed.

To explicitly compute the coordinates of vertices of P , we identify Γ with C/Λ, where Λ ⊂ C

is a lattice. Without loss of generality, assume that Λ is spanned by 1 and τ , where τ is in the
upper half-plane. Furthermore, one can choose an identification between Γ and C/Λ in such a
way that the point D ∈ Γ is identified with d := (1 + τ)/2. Then σ, understood as an involution
in C/Λ, is simply u �→ −u. Thus, A,B,C must coincide with the remaining order 2 points in C/Λ,
namely 0, 1/2, τ/2. Without loss of generality, assume that A = 0, B = 1/2, C = τ/2.

We express the vertices of P using theta functions. Recall (see, e.g., [Mum83]) that the theta
function corresponding to the lattice Λ = 〈1, τ〉 is defined by

θ(u) :=
∑
k∈Z

exp(πi(2ku+ k2τ))

where i =
√
−1, and the dependence of θ on τ is suppressed for notational convenience. We also

need theta functions with (half-integer) characteristics, defined by

θ00(u) := θ(u), θ01(u) := θ(u+ 1/2), θ10(u) := exp(πi(u+ τ/4))θ(u+ τ/2),

θ11(u) := exp(πi(u+ τ/4 + 1/2))θ(u+ (1 + τ)/2).

Choose complex numbers xp, z± ∈ C whose images in C /Λ are the points Xp, Z± ∈ Γ (see
Corollary 5.27 for the definition of Xp). Note that the points Z± are interchanged by the
involution σ, so z+ + z− = 0 modulo Λ. Therefore, without loss of generality one can assume
that z+ + z− = 1 + τ . Fix z± satisfying the latter condition, and let δ := z+ − z−.

Proposition 6.10. Up to a projective transformation, the vertices of the polygon P are
given by

vk = (θ00(kδ + d− xp) : θ01(kδ + d− xp) : θ10(kδ + d− xp)). (40)
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Before proving this proposition, we recall standard properties of the theta function θ(u). It
is easily seen from its definition that the theta function is holomorphic in C, even, periodic with
period one, and quasi-periodic with period τ :

θ(−u) = θ(u), θ(u+ 1) = θ(u), θ(u+ τ) = exp(−πi(2u+ τ))θ(u).

In addition, one can show using the argument principle that the theta function has a unique
simple zero at the point d = (1 + τ)/2, and no other zeros in the fundamental parallelogram
spanned by 1 and τ . These properties allow one to express any meromorphic function on C/Λ in
terms of the theta function. The construction is based on the following well-known result: there
exists a meromorphic function with zeros at p1, . . . , pm ∈ C/Λ and poles at q1, . . . , qm ∈ C /Λ if
and only if

∑
pk =

∑
qk. Thus, assume that we are given a collection of points with this property.

Then the expression

f(u) :=
∏m

k=1 θ(u− pk + d)∏m
k=1 θ(u− qk + d)

(41)

defines a meromorphic function on C which can be easily seen to be periodic with respect to
both 1 and τ (here we regard pk and qk as points in C and assume that they are chosen in such a
way that

∑
pk =

∑
qk exactly, and not just modulo Λ). Therefore, this function can be viewed

as a meromorphic function on C/Λ. Furthermore, the only zeros of f(u) in C/Λ are pk, whereas its
only poles are qk. As zeros and poles determine a meromorphic function up to a constant factor,
it follows that any meromorphic function on C/Λ with zeros at p1, . . . , pm and poles q1, . . . , qm
can be written as (41) times a constant.

Proof of Proposition 6.10. Using Proposition 5.21 and Corollary 5.27, we obtain

ξk(u) = ck
(θ(u− z+ + d))k θ(u− xp + kδ + d)

(θ(u− z− + d))k θ(u− xp + d)
, (42)

where ck is a non-zero constant, and the term containing δ is found by equating the sum of zeros
with the sum of poles. Note that because we are only interested in the direction of the vector ξ,
we may multiply all ξk by θ(u− xp + d), which results in

ξ̃k(u) = ck
(θ(u− z+ + d))k

(θ(u− z− + d))k
θ(u− xp + kδ + d).

These are no longer meromorphic functions on C/Λ, but still meromorphic functions on C.
Furthermore, in contrast to ξk, the functions ξ̃k are always finite at the points 0, 1/2, τ/2 ∈ C

corresponding to A,B,C ∈ Γ, so the vertices of P are given by (ξ̃k(0) : ξ̃k(1/2) : ξ̃k(τ/2)). Also
note that the values of the constants ck do not affect the latter expression, so one can assume
that ck = 1. Under this assumption, we obtain

ξ̃k(0) =
(θ(d− z+))k

(θ(d− z−))k
θ(kδ + d− xp) = θ(kδ + d− xp),

where the last equality follows from d− z− = −(d− z+) and θ(−u) = θ(u). Similarly, we have

ξ̃k (1/2) =
(θ(1/2 + d− z+))k

(θ(1/2 + d− z−))k
θ(1/2 + kδ + d− xp)

=
(θ(−1/2 + d− z+))k

(θ(1/2 + d− z−))k
θ(1/2 + kδ + d− xp) = θ(1/2 + kδ + d− xp),
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where the second last equality follows from 1-periodicity of θ, and the last equality follows from
d− z− = −(d− z+) and θ(−u) = θ(u). Finally,

ξ̃k (τ/2) =
(θ(τ/2 + d− z+))k

(θ(τ/2 + d− z−))k
θ(τ/2 + kδ + d− xp) =

(θ(1/2 + τ − z+))k

(θ(1/2 + τ − z−))k
θ(τ/2 + kδ + d− xp)

= exp(πki(2z+ − 1 − τ))
(θ(1/2 − z+))k

(θ(1/2 + τ − z−))k
θ(τ/2 + kδ + d− xp)

= exp(πkiδ)θ(τ/2 + kδ + d− xp),

where the second equality uses the definition d = (1 + τ)/2, the third uses the formula for
θ(u+ τ), whereas the last uses that θ is even along with the relation δ = 2z+ − 1 − τ .

Now, to complete the proof it remains to rewrite the obtained formulas using theta func-
tions with characteristics. We have ξ̃k(0) = θ00(kδ + d− xp), ξ̃k(1/2) = θ01(kδ + d− xp), whereas
ξ̃k(τ/2) = θ10(kδ + d− xp) up to a factor not depending on k. As the latter factor does not affect
the projective equivalence class of P, one obtains the desired formulas for vertices. �
Remark 6.11. Note that the functions ξk may, but not necessarily do, have poles at Xp (see
Corollary 5.27). However, formula (42) is valid anyway. Indeed, if ξk does not have a pole at Xp,
then its only pole is the point Z− (which is of order k), whereas its only zero is the point Z+

(which is also of order k). Thus, we must have kz+ = kz− modulo Λ, that is, kδ ∈ Λ. However,
then the factor θ(u− xp + kδ + d)/θ(u− xp + d) in (42) is a non-vanishing holomorphic function,
so the analytic properties (i.e. zeros and poles) of the right-hand side of (42) are the same as for
the left-hand side, which means that these functions coincide for a suitable value of ck.

Now, to prove that P is Poncelet it suffices to establish the following.

Proposition 6.12. The image of the map Φ: C → CP2 given by

Φ(u) := (θ00(u) : θ01(u) : θ10(u)) (43)

is a conic.

Proof. First, note that the functions θ00, θ01, θ10 have no common zeros, so the mapping Φ is
well-defined. Further, following [Mum83], define the following operators S, T on holomorphic
functions on C:

(Sf)(u) := f(u+ 1), (T f)(u) = exp(πi(2u+ τ))f(u+ τ).

Then
Sθjk = (−1)jθjk, T θjk = (−1)kθjk. (44)

In particular, we have S2θjk = θjk, T 2θjk = θjk, which means that

θjk(u+ 2) = θjk(u), θjk(u+ 2τ) = exp(−4πi(u+ τ))θjk(u). (45)

From the latter it follows that Φ descends to a holomorphic mapping C/2Λ → CP2, so the image
of Φ is an algebraic curve. To find the degree of that curve, one needs to find the number of its
intersections with a generic line. Clearly, that number can be found as m/deg Φ, where m is the
number of zeros of a generic linear combination of θ00, θ01, θ10 in the fundamental parallelogram
of the lattice 2L, whereas deg Φ is the degree of Φ, when the latter is regarded as a mapping
C/2Λ → CP2. The number m can be easily computed using quasi-periodicity relations (45) and
the argument principle. That number is equal to four. Further, note that the functions θ00, θ01,
θ10 are even, so Φ(−x) = Φ(x), which means that deg Φ ≥ 2. Therefore, the degree of the image
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of Φ is either two or one, that is, the image of Φ is a conic or a straight line. However, it cannot
be a straight line, because the functions θk,j are linearly independent by (44). This, the image
of Φ is a conic. �

Thus, we conclude that the vertices (40) of the polygon P lie on a conic. As P is self-dual, it
is also circumscribed about a conic and, hence, Poncelet. Thus, Theorem B is proved.

Remark 6.13. One can also explicitly describe the image of the mapping (43) and, hence, the
conic circumscribed about P using Riemann’s relation∑

j,k∈{0,1}
θjk(α1)θjk(α2)θjk(α3)θjk(α4) = 2 θ00(β1)θ00(β2)θ00(β3)θ00(β4),

where β1 := (α1 + α2 + α3 + α4)/2, β2 := (α1 + α2 − α3 − α4)/2, β3 := (α1 − α2 + α3 − α4)/2,
β4 := (α1 − α2 − α3 + α4)/2. Taking α1 = 0, α2 = u, α3 = v, α4 = u+ v, we obtain the identity

− θ00(0)θ00(u)θ00(v)θ00(u+ v) + θ01(0)θ01(u)θ01(v)θ01(u+ v)

+ θ10(0)θ10(u)θ10(v)θ01(u+ v) = 0, (46)

which, after a further substitution v = 0, becomes

− θ2
00(0)θ2

00(u) + θ2
01(0)θ2

01(u) + θ2
10(0)θ2

10(u) = 0. (47)

Thus, the conic circumscribed about P is given by

− θ2
00(0)x2

1 + θ2
01(0)x2

2 + θ2
10(0)x2

3 = 0. (48)

Similarly, the conic inscribed in P is

− θ2
00(δ/2)x2

1 + θ2
01(δ/2)x2

2 + θ2
10(δ/2)x2

3 = 0. (49)

Indeed, let tk := kδ + d− xp, m := k + 1/2, and t′m := (tk + tk+1)/2. Then, as follows from (47),
the point

v′m :=
(
θ00(0)θ00(t′m)
θ00(δ/2)

:
θ01(0)θ01(t′m)
θ01(δ/2)

:
θ10(0)θ10(t′m)
θ10(δ/2)

)

belongs to the conic (49). Furthermore, the tangent line to (49) at v′m passes through the vertices
vk and vk+1 of P . Indeed, that is equivalent to the relation

− θ00(0)θ00(δ/2)θ00(t′m)θ00(tm±1/2) + θ01(0)θ01(δ/2)θ01(t′m)θ01(tm±1/2)

+ θ10(0)θ10(δ/2)θ10(t′m)θ10(tm±1/2) = 0,

which is a particular case of (46) corresponding to u = tm±1/2, v = ∓δ/2. Thus, indeed, the
polygon P is circumscribed about the conic (49).

Remark 6.14. Note that formula (40) describes a family of polygons, parametrized by xp. Our
argument shows that all these polygons are inscribed in one and the same conic (48) and circum-
scribed about one and the same conic (49). Thus, polygons (40) form what is called a Poncelet
family, that is, a family of polygons inscribed in the same conic and circumscribed about the
same conic (recall that every Poncelet polygon is a member of such a family by Poncelet’s
porism). Also note that the expression (40) is periodic in xp with the periods given by the lattice
2Λ. Thus, the Poncelet family containing our polygon P is parametrized by the elliptic curve
C/2Λ, which is a four-to-one covering of the spectral curve Γ = C/Λ. As a corollary, the Poncelet
family containing P contains four polygons projectively equivalent to P : one of those polygons
is P , whereas the other three can be obtained from P by replacing xp in formula (40) with
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xp + 1, xp + τ , and xp + 1 + τ . This quadruple of polygons admits a geometric description when
the circumscribed conic C1 and inscribed one C2 are confocal. In this case, these polygons
can be obtained from P by means of reflection with respect to the common symmetry axes of
C1, C2.

This argument also shows that the spectral curve is the same for all polygons in a Poncelet
family. Using a different approach, this was earlier proved in [Sch15]. Formulas for Poncelet
families similar to (40) are given in [Ves88].

Remark 6.15. Note that because the polygon P is closed (Remark 6.9), the expression (40) must
be n-periodic in k. Therefore, we must have nδ ∈ 2Λ. Another way to see this is to consider the
function (s− 1)μ− on Γ. Using Table 1 and the fact that s(A) = s(B) = s(C) = 1, we conclude
that this function has simple zeros at A, B, C, a zero of order (n− 3)/2 at Z−, and a pole of
order (n+ 3)/2 at Z+. Thus, we have 0 + 1/2 + τ/2 + (n− 3)/2 · z− = (n+ 3)/2 · z+ (mod Λ),
which implies n/2 · δ = n/2 · (z+ − z−) = 1/2 + τ/2 − 3/2 · (z+ + z−) = −2d = 0 (mod Λ), and
thus nδ ∈ 2Λ, as desired.

Also note that formula (40) still defines a Poncelet polygon if nδ ∈ Λ\2Λ. It is then a twisted
n-gon, which can also be viewed as a closed 2n-gon. Such twisted Poncelet polygons do not arise
in our setting, because they are not fixed points of the pentagram map.

7. Proof of Theorem A: a closed polygon fixed by the pentagram map is Poncelet

In this section, we derive Theorem A from Theorem B. To that end, we first show, in § 7.1, that
the self-duality assumption of Theorem B is not very restrictive. Namely, any polygon satisfying
all the assumptions of the theorem except for possibly self-duality, can be transformed, by means
of rescaling (9) with s > 0, into a self-dual polygon. From that we conclude that a polygon as
in Theorem A (i.e. weakly convex, closed, and projectively equivalent to its pentagram image)
must be Poncelet up to rescaling (9) with s > 0. Thus, to show that the polygon is actually
Poncelet, we need to prove that the rescaling is trivial, that is, corresponds to s = 1. To that
end, we show that if a weakly convex Poncelet polygon is rescaled in a non-trivial way, then
the resulting polygon cannot be closed. This is done separately in the rational (see § 7.2) and
elliptic (see § 7.3) cases. In the rational case we have a very simple explicit description of the
corresponding degenerate Poncelet polygons (see § 6.1), so in that case the proof is completely
elementary. As for the elliptic situation, in that case the proof relies on the study of the real part
of the corresponding elliptic curve and location of various special points within that real part.

7.1 Self-duality up to rescaling
Proposition 7.1. Assume that a closed or twisted weakly convex polygon P is projectively
equivalent to its pentagram image P ′. Then one can choose the n-periodic operator D of the
form (12) associated with P in such a way that the corresponding commuting operators Dl,Dr

given by (13) satisfy

Dr = −s0TnD∗
l (50)

for certain s0 ∈ R+.

Proof. Let D be an n-periodic operator corresponding to P such that the corresponding operators
Dl,Dr commute, and, moreover, the coefficients of D satisfy the alternating signs condition (11)
(such D exists by Proposition 4.2). Then the operator T−nDlDr has the form

T−nDlDr = αT−1 + β + γT. (51)
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Moreover, from the alternating signs condition we have αk, γk > 0 for all k ∈ Z. Therefore, the
operator (51) can be symmetrized. Namely, there exists a positive quasi-periodic sequence λ
such that the operator λT−nDlDrλ

−1 is self-dual. That sequence can be found from the equation
λk+1/λk =

√
γk/αk+1. Thus, conjugating D by λ if needed, we may assume that the operator

(51) is self-dual, meaning that
T−nDlDr = TnD∗

rD∗
l . (52)

We now show that under that assumption we must have (50). Let zl, zr be the monodromies
of Dl, Dr respectively. Then, by the second statement of Proposition 3.4, we have 0 < zl < zr.
Furthermore, because Dl and Dr commute, it follows that the kernels of both of them are
contained in KerDlDr. Thus, the spectrum of the monodromy of DlDr is {zl, zr}. Moreover, we
have

Ker (DlDr)|Qn(zl) = KerDl, Ker (DlDr)|Qn(zr) = KerDr.

Similarly, using that the monodromy of D∗
l and D∗

r is given by z−1
l and z−1

r , respectively, we
conclude that the monodromy of D∗

rD∗
l is {z−1

l , z−1
r }, which, in view of (52) and the inequality

0 < zl < zr implies zl = z−1
r . Furthermore, we have

KerD∗
l = Ker (D∗

rD∗
l )|Qn(z−1

l ) = Ker (DlDr)|Qn(z−1
l ) = Ker (DlDr)|Qn(zr) = KerDr,

thus,
D∗

l = T−nμDr (53)

for a certain n-periodic sequence μ of non-zero real numbers. Taking the dual of both sides, we
also obtain D∗

r = T−nDlμ
−1, so

D∗
l D∗

r = T−2nμDrDlμ
−1 = T−2nμDlDrμ

−1.

At the same time, we have
D∗

l D∗
r = D∗

rD∗
l = T−2nDlDr,

so μ commutes with DlDr. However, that is only possible if μ is a constant sequence
μk = c. Thus, (53) implies (50), with s0 = −c−1. Furthermore, because the coefficient of the
highest degree term in Dr is a sequence of negative numbers, whereas the coefficient of the
coefficient of the highest degree term in D∗

l is a sequence of positive numbers, (50) can only be
satisfied for s0 > 0, as desired. �
Corollary 7.2. Assume that a closed or twisted weakly convex polygon P is projectively
equivalent to its pentagram image P ′. Then there exists a polygon Psd with the same properties
which is, in addition, self-dual (and, hence, Poncelet by Theorem B), such that P = Rs0(Psd)
where Rs0 is the rescaling (9) with s = s0 > 0.

Proof. Take the operator D provided by Proposition 7.1. It has the form D = Dl − s0T
nD∗

l ,
where s0 ∈ R+. Consider also the operator Dsd = Dl − TnD∗

l , and the associated polygon Psd.
Then, by Corollary 2.11, we have P = Rs0(Psd). In particular, Psd is projectively equivalent to
its pentagram image (because the pentagram map commutes with rescaling) and weakly convex
(by the third statement of Proposition 3.4). Furthermore, we have D∗

sd = −T−nDsd, so Psd is
self-dual, as desired. �

7.2 End of proof in the rational case
Let P be a weakly convex closed polygon projectively equivalent to its pentagram image P ′, as in
Theorem A. Then, by Corollary 7.2, there exists a generally speaking twisted polygon Psd such
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that P = Rs0(Psd) for some s0 > 0, and Psd is self-dual. Consider the spectral curve associated
with Psd, constructed in the proof of Theorem B. In this section, we prove Theorem A in the
case when the genus of Γ is zero, that is, when Γ is rational. To that end, we show that s0 = 1,
so P = Psd and, hence, Poncelet.

As we know from § 6.1, in the rational case the vertices of Psd are given by (34) or (37). In
the case (34), the associated difference operator reads

Dsd = T (n−3)/2 − aT (n−1)/2 + aT (n+1)/2 − T (n+3)/2, (54)

where a is such that the roots of the corresponding characteristic polynomial 1 − ax+ ax2 − x3

are r, r−1, and 1 (note that since the polygon Psd is real, a must be real too, so we must have
|r| = 1). Indeed, the kernel of such an operator is spanned by the sequences rk, r−k, and a
constant sequence, so the associated polygon is precisely (34). Likewise, in the case (37), the
associated difference operator is also of the form (54), with a = 3. Thus, because the polygon
Psd is defined by the operator (54), the polygon P = Rs0(Psd) is defined by

D = T (n−3)/2 − aT (n−1)/2 + s0(aT (n+1)/2 − T (n+3)/2).

The kernel of this operator is spanned by the sequences xk
1, x

k
2, x

k
3, where x1, x2, x3 are the roots of

the characteristic polynomial h(x) := 1 − ax+ s0(ax2 − x3) (note that we do not need to consider
the case of multiple roots, because in that case the monodromy of D is not diagonalizable, and
the polygon P cannot be closed). Moreover, because P is closed, we must have xn

1 = xn
2 = xn

3 , so
|x1| = |x2| = |x3| = λ, where λ > 0 is a real number. Thus, the roots of the polynomial h(λx) =
1 − aλx+ s0(aλ2x2 − λ3x3) must all have absolute value 1. Also taking into account that this
polynomial is real, and that s0λ3 > 0, we conclude that the roots of h(λx) are of the form 1, α, ᾱ,
where |α| = 1. However, this yields s0λ3 = 1 and s0λ2 = λ, so s0 = 1. Therefore, the polygon P
coincides with Psd and, hence, Poncelet. Thus, the proof of Theorem A in the rational case is
complete.

Remark 7.3. One can also give a more concrete description of P , as follows. As the vertices of P
are given by (34) (with (37) being impossible due to closedness of P ), and P is a closed n-gon, it
follows that rn = 1. Thus, applying a linear transformation to (34), we obtain a polygon whose
vertices have affine coordinates cos(2πmk/n), sin(2πmk/n), where 2πm/n = arg r. In particular,
if m = 1, then P is a regular n-gon.

7.3 End of proof in the elliptic case
In this section, we prove Theorem A in the case when the genus of Γ is one, that is, when Γ is
elliptic. As in the rational case, we show that s0 = 1, so P = Psd and, hence, Poncelet. We keep
the notation of §§ 5.1 and 6.2.

Recall that a real structure on a Riemann surface Γ is an anti-holomorphic involution
ρ : Γ → Γ. The real part ΓR of Γ (with respect to the real structure ρ) is then defined as the set
of fixed points of ρ: ΓR := {X ∈ Γ | ρ(X) = X}. A meromorphic function f on Γ is called a real
function if ρ∗f = f̄ . Real functions take real values at real points (i.e. points in ΓR).

In our case, the spectral curve Γ is endowed with a real structure ρ : Γ → Γ induced by the
involution (z, w) �→ (z̄, w̄) on the affine spectral curve Γa.

Proposition 7.4. The functions z, w, μ±, s, and ξ on Γ are real (see § 5.1 for the definition of
those functions).

Proof. The functions z, w are real by construction of the real structure ρ. To prove that the
vector-function ξ is real, note that it is defined by (22) up to a scalar factor. Taking the complex
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conjugate of those equations and then applying ρ∗, we get that ρ∗ξ̄ = fξ for a certain mero-
morphic function f . However, then the normalization condition ξ1 = 1 implies f = 1, as desired.
Now, the reality of the functions μ± follows from (23), whereas the reality of s follows from its
definition (24). �
Corollary 7.5. The points Z±, S±, A,B,C,D ∈ Γ are real (see § 5.1 for the definition of
Z±, S± and § 6.2 for the definition of A,B,C,D).

Proof. As z is a real function (Proposition 7.4), the involution ρ takes zeros of z to zeros of z.
However, the only zero of z is Z+ (Table 1), so the latter must be real. Analogously, Z− is real
as the only pole of z, S+ is real as the only simple zero of s, S− is real as the only simple pole
of s, whereas D is real as the only point where both s and z are equal to −1 (see Remark 5.16).
To show that A,B,C are real, observe that they constitute the set of points where s = 1, so
ρ takes the set {A,B,C} to itself. Further, note that the values of the function w at A,B,C
are eigenvalues of a self-adjoint operator (D+D−)|Qn(1) and, hence, real. Furthermore, those
values are distinct, because A,B,C are branch points of w, whereas degw = 2. However, if, say,
ρ(A) = B, then we must have w(B) = w̄(A), which is not possible because w(A), w(B) are real
and distinct. Thus, ρ cannot permute {A,B,C} and, thus, preserves each of them. �
Corollary 7.6. The real part ΓR of Γ consists of two disjoint circles.

Proof. The real part of any Riemann surface consists a finite number of disjoint circles (ovals).
Furthermore, because the genus of Γ is one, the number of connected components of ΓR is at most
two by Harnack’s theorem. At the same time, the number of connected components is non-zero
because the real part ΓR of Γ is not empty (by Corollary 7.5). Thus, it remains to determine
whether the number of connected components is one or two. These cases can be distinguished
by counting the number of real points of order 2 on Γ. Namely, if Γ is identified with C/Λ in such
a way that 0 is a real point, then ΓR is a subgroup of Γ isomorphic to S1 if ΓR is connected, and
S1 × Z2 if ΓR has two components. Thus, the number of real order 2 points in ΓR is 2m, where
m is the number of components of Γ. Identifying Γ with C/L as in § 6.2, we see that the order 2
points are A,B,C,D, which are all real. Thus, m = 2. �

This argument also shows that one of the components of ΓR contains the point D and one of
the points {A,B,C}, whereas the second component of ΓR contains the remaining two points.
Without loss of generality, assume that C and D are located in the same component. Denote
that component by Γ0

R
.

Proposition 7.7. We have Z±, S± ∈ Γ0
R
.

Proof. The function z is real-valued on Γ0
R

and satisfies z(C) = 1, z(D) = −1. Thus, there must
be at least two points on Γ0

R
where z changes sign. But the only points which have this property

are Z± (Table 1). Similarly, s(C) = 1, s(D) = −1, so the function s should also change sign at
two points. Moreover, these cannot be the points Z±, because at those points s has a zero and
a pole of order 2. Thus, we must have S± ∈ Γ0

R
, as desired. �

Proposition 7.8. The cyclic order of the points C,D,Z±, S± on Γ0
R

is as shown in Figure 6.

The proof is based on the following two lemmas.

Lemma 7.9. We have z(S+) ∈ (0, 1).

Proof. Without loss of generality, assume that the vector ξ(S+) is finite and non-zero (see
Remark 5.9). Then, using the definition of the function μ+ and the fact that μ+(S+) = 0
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C

D

S+ S–

Z+ Z–

Figure 6. Location of the points C,D,Z±, S± in the component Γ0
R

of the real part of the
spectral curve.

(a) (b) (c)

Figure 7. Impossible locations of the points C,D,Z±, S± on Γ0
R
.

(Table 1), we obtain D+ξ(S+) = μ+(S+)ξ(S+) = 0. Therefore, ξ(S+) spans the kernel of the
operator D+, whereas z(S+) is the monodromy of that operator. Thus, by the second statement
of Proposition 3.4, the number z(S+) is positive and is less than the monodromy of Dr = −TnD∗

+,
but the monodromy of the latter operator is the same as the monodromy of D∗

+, which is z(S+)−1.
Thus, we obtain 0 < z(S+) < z(S+)−1, and the result follows. �
Lemma 7.10. The only point in Γ0

R
where z = 1 is the point C.

Proof. Assume that X ∈ Γ0
R

and z(X) = 1. Then the latter condition, in particular, implies
X �= Z±. Therefore, without loss of generality, we may assume that the vector ξ(X) is finite
and non-zero (if not, we renormalize ξ, see Remark 5.9). Under this assumption, using the inner
product (7) on Qn(±1), we obtain

μ+(X) 〈ξ(X), ξ(X)〉 = 〈D+ξ(X), ξ(X)〉 = 〈ξ(X),D−ξ(X)〉 = μ−(X) 〈ξ(X), ξ(X)〉 .

Furthermore, because the vector ξ(X) is real, it follows that 〈ξ(X), ξ(X)〉 > 0 and, thus, μ+(X) =
μ−(X). Thus, using formula (24) for the function s, we obtain s(X) = z(X)−1 = 1 (here we use
that the value μ+(X) = μ−(X) is finite and non-zero, which is true because the functions μ± do
not have common zeros or poles; Table 1). Furthermore, recall that the set of points where s = 1
consists of the point C, plus points A and B which do not belong to Γ0

R
. The result follows. �

Proof of Proposition 7.8. The restriction of the involution σ to Γ0
R

preserves the points C,D,
interchanges Z+ with Z−, and interchanges S+ with S−. For this reason, the only possible
locations of those points on Γ0

R
are those depicted in Figure 6, as well as those depicted in

Figure 7. Assume that C,D,Z±, S± are located as in Figure 7(a). Then, because z(S+) ∈ (0, 1)
by Lemma 7.9, whereas Z− is a pole of z, there must be a point X in the open arc (S+, Z−)
such that z(X) = 1 or z(X) = 0 (here and in the following (X,Y ) denotes an open arc going
from X to Y in counter-clockwise direction). However, the former is impossible by Lemma 7.10,
whereas the latter is impossible because the only zero of z is the point Z+. Thus, the points
cannot be located as in Figure 7(a). Further, because z(D) = −1, whereas the only points where
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z changes sign are Z±, in Figures 7(b) and 7(c) we must have z(S+) < 0, which is impossible by
Lemma 7.9. Thus, the points C,D,Z±, S± are located as in Figure 6. �

Now recall that the elliptic curve Γ is associated with a Poncelet n-gon Psd and we have a
closed n-gon P = Rs0(Psd), where s0 > 0. Our aim is to show that s0 = 1.

Proposition 7.11. There is a point X0 ∈ Γ0
R

such that s(X0) = s0 and z(X0) = s
−n/3
0 .

Proof. The function s has one simple pole and one double pole in Γ0
R

(Table 1). Therefore,
the degree of the mapping s : Γ0

R
→ RP1 is equal to ±1 (depending on the orientations). In

particular, this mapping is surjective, so there exists X0 ∈ Γ0
R

such that s(X0) = s0. To show
that z(X0) = s

−n/3
0 , recall that the polygon P associated with the operator D+ − s0T

nD− is
closed. Therefore, the monodromy of that operator has the form λId. At the same time, because
D− = D∗

+, the explicit form of that operator is

D+ − s0T
nD− = aT (n−3)/2 + bT (n−1)/2 − s0b̃T

(n+1)/2 − s0ãT
(n+3)/2,

where the sequences ã, b̃ coincide with a, b up to a shift of indices. Thus, by formula (6), the
determinant of the monodromy of this operator is s−n

0 . Thus, we have λ = s
−n/3
0 , and the result

follows. �
We now show that X0 = C, which implies s0 = 1 and, thus, proves Theorem A. To that end,

note that because s(X0) = s0 is finite and positive, X0 must be located in the open arc (S−, S+)
(see Figure 6). At the same time, because the function s is equal to one at C, has a pole at
S−, and does not take values 0, 1,∞ in (S−, C), it follows that s > 1 in (S−, C). Furthermore,
the same argument applied to the function z shows that z > 1 in (Z−, C) and, in particular,
in (S−, C). However, then X0 cannot belong to (S−, C), because it is not possible that both
s(X0) = s0 and z(X0) = s

−n/3
0 are greater than 1. Analogously, s and z are both less than 1

in (C, S+), so X0 cannot belong there either. Therefore, we must have X0 = C, which implies
s0 = 1, but this means that the polygon P is the same as the polygon Psd and, hence, Poncelet.
Thus, Theorem A is proved.
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Appendix A. Duality of difference operators and polygons

The goal of this appendix is to prove that polygons corresponding to dual difference opera-
tors are dual to each other. This seems to be a well-known result, and it explicitly appears as
Proposition 4.4.3 in [MOST14]. Here we give a different proof, based on interpretation of
difference operators as infinite matrices.

Proposition A.1. Let D be a properly bounded difference operator supported in [m−,m+],
and let P = {vk} be the corresponding polygon in Pd−1, where d = m+ −m− is the order of D.
Then the dual operator D∗ corresponds to a polygon P ∗ = {v∗k} in the dual space (Pd−1)∗ whose
kth vertex v∗k is the hyperplane in Pd−1 spanned by the vertices vk+m−+1, . . . , vk+m+−1 of P .

Proof. Let D =
∑m+

j=m− a
jT j . Then one can interpret D as a finite-band matrix (2) whose non-

zero diagonals have labels m−, . . . ,m+. (Here and in what follows, the kth diagonal of an infinite
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matrix is the collection of its entries aij such that j − i = k. In other words, the diagonals are
labeled from southwest to northeast, with the main diagonal labeled by 0.) Note that even though
infinite matrices do not form an algebra, any infinite matrix can be multiplied by a finite band
matrix.

Lemma A.2. There exists an infinite matrix L such that:

1. DL = LD = 0;
2. the diagonals of L with labels −m+ + 1, . . . ,−m− − 1 vanish;
3. none of the entries of L on the diagonals with labels −m+ and −m− vanish.

Remark A.3. One can think of infinite matrices as formal Laurent series in terms of the shift
operator T , with coefficients given by sequences. In this language, Lemma A.2 states the existence
of L of the form

∑−m+

j=−∞ bjT j +
∑+∞

j=−m− b
jT j , where b−m+

k �= 0, b−m−
k �= 0 for any k ∈ Z.

Proof of Lemma A.2. The infinite matrix D can be regarded as an element of two groups: the
group GL+

∞ of invertible infinite matrices with finitely many non-zero diagonals below the main
diagonal, and the group GL−

∞ of invertible infinite matrices with finitely many non-zero diagonals
above the main diagonal. Denote by D̂−1, Ď−1 the inverses of D in these two groups, and set
L := D̂−1 − Ď−1. Then we clearly have DL = LD = 0. To see that L is of desired form, write D
as am−Tm−(1 + · · · ), where the dots denote terms of higher order in T . Then the inverse of
(1 + · · · ) in GL+

∞ can be computed using the Taylor series (1 + x)−1 = 1 − x+ · · · . Thus,
the inverse of D in GL+

∞ reads D̂−1 = (1 + · · · )−1T−m−(am−)−1 and, hence, is of the form∑+∞
j=−m− b

jT j with b
−m−
k �= 0. Likewise, Ď−1 is of the form

∑−m+

j=−∞ bjT j with b
−m+

k �= 0. The
result follows. �

We now finish the proof of Proposition A.1. Let V = {Vk ∈ Rd} be a sequence of lifts of
vertices vk of P such that DV = 0. Then any scalar sequence ξ ∈ KerD can be obtained from
V by means of term-wise application of a linear functional. In particular, because DL = 0,
this applies to columns of the matrix L. Thus, the jth column of L is of the form Wj(Vk)
for a certain linear functional Wj ∈ (Rd)∗. Furthermore, because the diagonals of L with labels
−m+ + 1, . . . ,−m− − 1 vanish, it follows that Wj annihilates Vj+m−+1, . . . , Vj+m+−1. Moreover,
because L has a non-vanishing diagonal, we have Wj �= 0. Therefore, the projection of Wj to
(Pd−1)∗ = P(Rd)∗ is exactly the hyperplane spanned by the vertices vj+m−+1, . . . , vj+m+−1 of P .
Thus, to complete the proof, it suffices to show that the sequence of Wj is annihilated by D∗. To
that end, note that because LD = 0, the rows of L are annihilated by D∗. However, those rows
are of the form Wj(Vk), and because Vk span Rd, it follows that the sequence Wj is annihilated
by D∗, as desired. �
Remark A.4. It is also easy to see that the matrix L provided by Lemma A.2 is unique up
to a constant factor. It takes a particularly simple form when the polygon P is closed. To
show that, assume for simplicity that m− = 0, so that the operator D is supported in [0, d].
Furthermore, assume that D is n-periodic and has trivial monodromy (in particular, the polygon
P corresponding to D is closed). Then, as shown in [Kri15], there exists an n-periodic operator
R supported in [0, n− d] such that RD = DR = 1 − Tn (the operator R is closely related to the
so-called Gale dual of D). Using that, one can find the inverses of D in GL±

∞ as

D̂−1 = R(1̂ − Tn)−1 = R(1 + Tn + T 2n + · · · ),

Ď−1 = R( ̌1 − Tn)−1 = −RT−n( ̌1 − T−n)−1 = −RT−n(1 + T−n + T−2n + · · · )
= −R(T−n + T−2n + · · · ).
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As a result, one obtains

L = D̂−1 − Ď−1 = R
+∞∑

j=−∞
T jn.
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