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1. Introduction and outline of main results

The pentagram map, introduced by R. Schwartz in [28], is a discrete integrable system 
on the space of projective equivalence classes of planar polygons. The definition of this 
map is illustrated in Fig. 1: the image of the polygon P under the pentagram map is the 
polygon P ′ whose vertices are the intersection points of consecutive shortest diagonals 
of P (i.e., diagonals connecting second-nearest vertices). The pentagram map has been 
an especially popular subject in the last decade, mainly due to a combination of an 
elegant geometric definition and connections to such topics as cluster algebras, dimer 
models etc.

Integrability of the pentagram map was established, in different contexts, in [24,25,30]. 
Furthermore, it was shown that the pentagram map can be viewed as a particular case of 
several general constructions of integrable systems. In particular, it has an interpretation 
in terms of cluster algebras [11], networks of surfaces [9], T-systems [15], and Poisson-Lie 
groups [8]. In the present paper we suggest an alternative to [8] Poisson-Lie approach to 
the pentagram map. Namely, we show that the pentagram map can be seen as a refac-
torization in the Poisson-Lie group of pseudo-difference operators. The main advantage 
of our approach is that it is based on the geometric definition of the map and the explicit 
formulas are obtained as its corollaries. We thereby obtain all the ingredients needed to 
establish integrability, namely an invariant Poisson structure, Lax representation, and 
first integrals, directly from geometry. This can be compared with other frameworks, in 
particular, the ones based on cluster algebras [9] and Poisson-Lie groups [8], which lead 
to integrable maps shown to coincide with the pentagram map at the level of formulas.

By virtue of the geometric nature of our approach, it almost immediately general-
izes to pentagram-type maps in higher dimensions and enables us to treat all these 
maps on an equal footing. It turns out that our scheme covers all previously known 
higher-dimensional integrable cases, and also gives rise to a large number of new ones. 
Furthermore, for many of the previously known integrable maps our approach provides 
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Fig. 1. The pentagram map.

certain missing ingredients, in particular invariant Poisson structures for short-diagonal
and dented maps of [16,17]. Construction of such structures has been an open prob-
lem since the introduction of these maps. Furthermore, for these maps we get new Lax 
representations which are, in a sense, dual to the ones given in [16,17].

Recall that a refactorization is a mapping of the form AB �→ BA, where A and B
are elements of a non-Abelian group, e.g. matrices. The relation between such mappings 
and integrability was pointed out in [34,22] and put in the context of Poisson-Lie groups 
in [4]. Nowadays, refactorization in Poisson-Lie groups is viewed as one of the most 
universal mechanisms of integrability for discrete dynamical systems. In this paper we 
suggest such an interpretation for the pentagram map and its generalizations. Below we 
briefly describe the construction for the case of the classical pentagram map.

Let {vi ∈ RP2} be a planar n-gon, and let {Vi ∈ R3} be its arbitrary lift to R3 (here 
and in what follows we assume that the ground field is real numbers, although all the 
same constructions work over C). The sequence Vi can be encoded by writing down the 
relations between quadruples of consecutive vectors:

aiVi + biVi+1 + ciVi+2 + diVi+3 = 0,

where i ∈ Z, and a, b, c, d are n-periodic sequences of real numbers. This can be equiva-
lently written as DV = 0, where V is a bi-infinite sequence whose entries are the vectors 
Vi, and D is an n-periodic difference operator

D := a + bT + cT 2 + dT 3.

Here T is the left shift operator on bi-infinite sequences, (TV )i := Vi+1, while the se-
quences a, b, c, d of real numbers act on sequences of vectors by term-wise multiplication: 
(aV )i := aiVi. Thus, one can encode planar polygons by third order difference operators. 
There is, however, more than one operator corresponding to a given polygon in RP2. 
Namely, one can multiply D by scalar sequences from the left or right without changing 
the corresponding polygon. This means that, for any mapping of the space of polygons 
to itself, its lift to difference operators is not a map, but a correspondence (a multivalued 
map). To explicitly describe this correspondence for the case of the pentagram map, we 
split the difference operator D = a + bT + cT 2 + dT 3 into two parts:
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D+ := a + cT 2, D− := bT + dT 3.

Theorem 1.1. The pentagram map, written in terms of difference operators, is a multi-
valued map

D = D+ + D− �−→ D̃ = D̃+ + D̃−

determined by the relation

D̃+D− = D̃−D+. (1)

Proof sketch. Equation (1) can be viewed as a homogeneous linear system on 4n un-
known coefficients of the n-periodic operator D̃. Both sides of (1) are linear combinations 
of T , T 3, and T 5 with n-periodic coefficients, so the number of equations is 3n, which is 
less than the number of unknowns. Therefore, there always exists a non-trivial solution D̃
depending on D, and (1) indeed defines a multivalued map D �→ D̃. To identify the latter 
with the pentagram map, we need to rewrite it in terms of bi-infinite sequences V , Ṽ
annihilated by the operators D and D̃ respectively. Applying both sides of (1) to V , we 
get

D̃+D−V = D̃−D+V,

which, using that DV = 0 and thus D−V = −D+V , can be rewritten as

D̃ D+V = 0.

But the latter means that Ṽ = D+V , which is exactly the definition of the pentagram 
map. Indeed, by definition of D+, the vector (D+V )i belongs to the span 〈Vi, Vi+2〉 of 
Vi, Vi+2. At the same time, we have D+V = −D−V , so

(D+V )i = −(D−V )i ∈ 〈Vi+1, Vi+3〉.

Therefore, we have

(D+V )i ∈ 〈Vi, Vi+2〉 ∩ 〈Vi+1, Vi+3〉,

which means that the corresponding point in RP2 is the intersection of consecutive 
shortest diagonals 〈vi, vi+2〉 and 〈vi+1, vi+3〉, as desired. �
Corollary 1.2. The pentagram map, written in terms of difference operators, is a refac-
torization relation.



A. Izosimov / Advances in Mathematics 404 (2022) 108476 5
Proof. Relation (1) can be rewritten as

D̃−1
− D̃+ = D+D−1

− , (2)

where the inverses of difference operators are understood as pseudo-difference operators. 
To see that this formula defines a refactorization mapping, consider the operator L :=
D−1

− D+. Then (2) means that the dynamics of L under the pentagram map is given 
by L �→ L̃, where L̃ := D+D−1

− . Therefore, the pentagram map in terms of L is a 
refactorization map

D−1
− D+ �→ D+D−1

− . �
A crucial part of the proof of Theorem 1.1 is solvability of (1) with respect to D̃, which 

in turn is related to a very special choice of exponents of the shift operator T entering 
D− and D+. We refer to the set of integers that are the exponents of T entering a given 
difference operator D as the support of D. It is easy to see that (1) is solvable if and only 
if the supports J± ⊂ Z of the operators D± satisfy

|J+ + J−| < |J−| + |J+|,

where J+ + J− is the Minkowski sum. Furthermore, for sets J± with |J±| > 1 the lat-
ter inequality holds if and only if the J± are finite arithmetic progressions with the 
same common difference. Different choices of such pairs of progressions lead to different 
pentagram-type maps admitting a refactorization description. As we already saw, the 
choice {0, 2}, {1, 3} corresponds to the usual pentagram map. More generally, the choice 
{0, 2, 4, . . . }, {1, 3, 5, . . . } corresponds to short-diagonal maps of [16]. Similarly, {0, 1}, 
{2, 3} leads to the inverse pentagram map, while {0, 1, . . . , p}, {p + 1, p + 2, . . . , q} cor-
responds to the inverse dented map of [17]. Finally, the choice {0, d}, {1, d + 1} leads to 
the pentagram map on corrugated polygons in RPd studied in [9].

One can also consider relation (1) for difference operators D± with non-disjoint sup-
ports. Such maps still admit a refactorization description, but they do not have a 
pentagram-like interpretation. Indeed, in this case the pair D± is not equivalent to a 
single operator D+ + D−, and because of that the phase space cannot be interpreted as 
the space of polygons. The simplest case {0, 1}, {1, 2} corresponds to the leapfrog map 
defined in [9], while for other cases of non-disjoint supports the geometric interpretation 
is not known.

The structure of the paper is as follows. In Section 2 we define a general class of 
pentagram-type maps associated with pairs of disjoint arithmetic progressions with the 
same common difference. This class, in particular, includes all previously known inte-
grable pentagram-type maps. In Section 3 we discuss difference and pseudo-difference 
operators, along with Poisson structures on such operators. Section 4 contains main 
results of the paper, namely we show that pentagram maps of Section 2 fit into an 
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even bigger class of dynamical systems which are parametrized by pairs of not neces-
sarily disjoint progressions and admit a refactorization description. As a corollary, all 
such maps admit an invariant Poisson structure and a Lax representation with Poisson-
commuting spectral invariants. It is therefore very likely that all these maps are both 
Liouville and algebraically integrable. This integrability problem will be addressed in 
a separate publication. In addition to these results, in Section 4 we also discuss some 
applications, as well as relations to known constructions. In particular, in Section 4.2 we 
show how our approach yields the scaling invariance of pentagram-type maps, which was 
the central tool in the proof of integrability for the classical, as well as for short-diagonal 
and dented maps. Further, in Section 4.3 we explicitly compute Poisson brackets for 
the short-diagonal pentagram map in RP3. In contrast to previously known cases, those 
brackets turn out to be not quadratic but polynomial of degree four. After that, in Sec-
tion 4.4 we outline the connection between the approach of the present paper and the 
Y-meshes description of higher pentagram maps given in [12]. It turns out that Y-meshes 
are related to factorizations of difference operators. In addition to that, in Section 4.5 we 
show how our refactorization approach can be used to represent pentagram-type maps 
using moves in Postnikov networks, as in [9]. This also gives a cluster description of the 
pentagram map, and one may hope to use our approach to extend the cluster algebra 
formalism to multidimensional maps, which is still an open problem. Finally, Section 5
is devoted to open questions.
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2. Pentagram-type maps associated with pairs of arithmetic progressions

In this section we explain how to associate a pentagram-type map to any pair of 
finite disjoint arithmetic progressions J± ⊂ Z with the same common difference. As 
particular cases of this construction, one obtains all known integrable pentagram-type 
maps. Later on, in Section 4.1, we will show that these maps fit into a more general 
class of dynamical systems which are parametrized by pairs of not necessarily disjoint 
progressions and admit a refactorization description.

All pentagram-type maps operate on polygons, i.e. ordered sequences of points in 
the projective space. We will only consider polygons satisfying the following natural 
condition:
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Definition 2.1. A polygon in RPd is a bi-infinite sequence of points {vi ∈ RPd} such that 
any d + 1 consecutive points vi, . . . , vi+d+1 are in general position (i.e. do not belong to 
a subspace of dimension d − 1).

In contrast to the classical pentagram map, which is well-defined for all generic poly-
gons, some of the maps that we will study operate on a more restricted class of polygons 
whose vertices satisfy certain additional coplanarity conditions, described in the following 
definition:

Definition 2.2. Let J ⊂ Z, |J | ≥ 2 be a finite set of integers containing at least two 
elements, and let d := max(J) − min(J) − 1. Then a polygon {vi} in RPd is called 
J-corrugated if for any i ∈ Z the points {vi+j | j ∈ J} belong to a |J | − 2 dimensional 
plane (instead of a |J | − 1 dimensional plane, which is the generic case).

Example 2.3. Assume that J consists of consecutive integers, J = {j, j+1, . . . , j+d +1}. 
Then a J-corrugated polygon is any polygon in RPd.

Example 2.4. Assume that J = {0, 1, d, d +1}. Then J-corrugated polygons are corrugated 
polygons in RPd in the sense of [9, Section 5.1.1].

Example 2.5. Assume that J = {0, 1, . . . , l} ∪ {m, m + 1, . . . , d + 1}, where l < m, is 
a union of two disjoint sets of consecutive integers. Then J-corrugated polygons are 
partially corrugated polygons in RPd in the sense of [17, Definition 6.3].

We now define an analogue of the pentagram map on the space of J-corrugated 
polygons. Such a map can be defined if J ⊂ Z can be partitioned as J = J+ �J−, where 
J± ⊂ Z are finite arithmetic progressions with the same common difference.

Definition 2.6. Let J± ⊂ Z be non-empty disjoint finite integral arithmetic progressions 
with the same common difference. Let also J := J+ ∪ J−. Then the pentagram map 
associated with the pair J± is the map from the space of J-corrugated n-gons to itself 
defined by

ṽi := 〈vi+j | j ∈ J+〉 ∩ 〈vi+j | j ∈ J−〉.

Here vi’s are the vertices of the initial polygon, ṽi’s are vertices of its image under the 
map, and the notation 〈vi〉 stands for the projective subspace spanned by the points 
{vi}.

Remark 2.7. This definition makes sense for arbitrary disjoint finite sets J± ⊂ Z, but 
for general J± the image of a J-corrugated polygon (where J := J+ ∪ J−) under the so 
defined map is not J-corrugated. This property, however, does hold if J± are arithmetic 
progressions with the same common difference, as shown by the following proposition.
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Table 1
Examples of pentagram maps associated with pairs of arithmetic progressions.

J+ J− The corresponding map
{0, 2} {1, 3} Classical pentagram map
{0, 1} {2, 3} Inverse pentagram map
{0, d} {1, d + 1} Pentagram map on corrugated polygons in RPd [9]
{0, 1} {d, d + 1} Inverse pentagram map on corrugated polygons in RPd

{0, . . . , k} {k + 1, . . . , d + 1} Inverse dented pentagram maps in RPd [17]
{0, 2, 4, . . . , 2k} {1, 3, 5, . . . , 2k + 1} Short-diagonal pentagram map in RP2k [16]
{0, 2, 4, . . . , 2k} {1, 3, 5, . . . , 2k − 1} Short-diagonal pentagram map in RP2k−1 [16]

Proposition 2.8. For any non-empty disjoint finite arithmetic progressions J± ⊂ Z with 
the same common difference, the corresponding pentagram map is a generically well-
defined mapping from the space of J-corrugated n-gons to itself.

Proof. For a generic J-corrugated polygon {vi ∈ RPd}, where d = max(J) −min(J) −1, 
the subspaces 〈vi+j | j ∈ J±〉 have complementary dimensions |J±| − 1 in the space 
〈vi+j | j ∈ J〉 of dimension |J | − 2. Therefore, their intersection indeed defines a point 
ṽi ∈ RPd. Furthermore, it is not hard to see that for generic vi’s any d + 1 consecutive 
points ṽi will be in general position, so {ṽi} is a polygon in the sense of Definition 2.1. 
Thus, it remains to show that the new polygon {ṽi} is J-corrugated. To that end, for any 
i ∈ Z, consider the subspace Li := 〈vi+j | j ∈ J+ +J−〉, where J+ +J− is the Minkowski 
sum of J+ and J−. Notice that for any i ∈ Z and any j ∈ J , we have ṽi+j ∈ Li. Indeed, 
by construction of the polygon {ṽi}, we have

ṽi+j = 〈vi+j+j′ | j′ ∈ J+〉 ∩ 〈vi+j+j′ | j′ ∈ J−〉.

Assume that j ∈ J+. Then 〈vi+j+j′ | j′ ∈ J−〉 is a subspace of Li, because j+j′ ∈ J++J−. 
Therefore, ṽi+j ∈ Li. Analogously, if j ∈ J−, then 〈vi+j+j′ | j′ ∈ J+〉 is a subspace of 
Li, and we still have ṽi+j ∈ Li. So, all the points {ṽi+j | j ∈ J} belong to Li. But the 
dimension of Li does not exceed

|J+ + J−| − 1 = |J+| + |J−| − 2 = |J | − 2,

where we use that for finite arithmetic progressions J± ⊂ Z with the same common 
difference one has |J++J−| = |J+| +|J−| −1. So, for every i ∈ Z, the points {ṽi+j | j ∈ J}
belong to at most |J | −2 dimensional subspace Li, which means the polygon {ṽi} is indeed 
J-corrugated, as desired. �
Example 2.9. Examples of pentagram maps associated with pairs of arithmetic progres-
sions are given in Table 1. Note that these examples cover all known integrable cases, so 
all such cases fit into the above construction.

Remark 2.10. The classical pentagram is usually defined by ṽi = 〈vi−1, vi+1〉 ∩ 〈vi, vi+2〉
(right labeling scheme), or by ṽi = 〈vi−2, vi〉 ∩ 〈vi−1, vi+1〉 (left labeling scheme). This 
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corresponds to progressions {−1, 1}, {0, 2} for the right scheme, and {−2, 0}, {−1, 1}
for the left scheme. Our choice {0, 2}, {1, 3} corresponds to the same map, but with a 
different labeling of vertices of the resulting polygon. More generally, shifting both J+

and J− by the same number results in the same map up to a shift of indices.

Remark 2.11. Note that except for the short-diagonal and inverse dented cases, our 
construction gives no maps which are defined on all generic polygons (with no additional 
coplanarity conditions). Indeed, such maps would correspond to sets J consisting of 
consecutive integers (cf. Example 2.3), and without loss of generality we can assume that 
J = {0, 1, . . . } (because we can always shift J , as in Remark 2.10). But the only ways 
to represent this set J as a disjoint union of two arithmetic progressions with the same 
common difference are {0, 1, . . . , k} � {k + 1, k + 2, . . . } and {0, 2, 4, . . . } � {1, 3, 5, . . . }, 
which corresponds to the inverse dented and short-diagonal maps respectively.

The space of J-corrugated polygons is infinite-dimensional for any J with |J | > 2. One 
can still study pentagram-type maps on such spaces, but to obtain integrable dynamics 
one should impose some kind of boundary conditions on the polygon {vi}. From the 
geometric perspective, the most natural condition is closedness, vi+n = vi. However, it 
turns out that the pentagram map, as well as similar maps studied in the present paper, 
have much better properties on a bigger space of polygons that are closed only up to a 
projective transformation. Such polygons as known as twisted:

Definition 2.12. A twisted n-gon is a polygon {vi ∈ RPd} such that vi+n = φ(vi) for every 
i and a fixed (not depending on i) projective transformation φ : RPd → RPd, called the 
monodromy.

It is clear that all pentagram maps defined above (as well as any other map on polygons 
which is defined using only projectively natural operations) take twisted polygons to 
twisted polygons and, moreover, preserve the monodromy. Throughout the paper, all 
pentagram-type maps are assumed to operate on twisted polygons.

3. Difference and pseudo-difference operators

3.1. Generalities on difference operators

In this section we recall some basic notions related to difference operators. Our ter-
minology mainly follows that of [33]. Let R∞ be the vector space of bi-infinite sequences 
of real numbers, and let J ⊂ Z be a finite collection of integers. A linear operator 
D : R∞ → R∞ is called a difference operator supported in J if it can be written as

(Dξ)i =
∑

aj,iξi+j , (3)

j∈J
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or, equivalently, if

D =
∑
j∈J

ajT
j ,

where T : R∞ → R∞ is the left shift operator (Tξ)i = ξi+1, and each coefficient aj is a bi-
infinite sequence {aj,i | i ∈ Z} of real numbers acting on R∞ by term-wise multiplication. 
Such sequences can per se be regarded as difference operators with J = {0}.

The order of difference operator (3) is the number ordD := M − m, where M :=
max J , m := min J . Difference operator (3) is called properly bounded if none of the 
elements of sequences am, aM vanish. Clearly, for a properly bounded difference operator 
D one has dim KerD = ordD. A difference operator D is n-periodic if all its coefficients 
aj are n-periodic sequences, which is equivalent to saying that D commutes with the n’th 
power of the shift operator: DTn = TnD. Clearly, if D is an n-periodic operator, then 
its kernel is invariant under the action of Tn. The finite-dimensional operator Tn|KerD
is called the monodromy of D. Eigenvectors of the monodromy operator Tn|KerD are 
exactly quasi-periodic solutions of the equation Dξ = 0, i.e. solutions which belong to 
the space of quasi-periodic sequences

{ξ ∈ R∞ | ξi+n = zξi} (4)

for certain z ∈ R∗.
We denote the space of n-periodic difference operators supported in J by DOn(J), 

while PBDOn(J) ⊂ DOn(J) stands for the (dense) subset of properly bounded operators. 
Let also DOn be the associative algebra of all n-periodic difference operators (with 
arbitrary finite support).

Remark 3.1. The algebra DOn of n-periodic difference operators is isomorphic to the 
algebra Matn ⊗ R[z, z−1] of Matn-valued Laurent polynomials in one variable z (here 
Matn stands for the associative algebra of n ×n matrices over the base field R). Indeed, 
consider the natural action of n-periodic difference operators on the space (4) of all 
n-quasi-periodic bi-infinite sequences of real numbers with monodromy z. This gives a 
1-parametric family ρz of n-dimensional representations of the algebra DOn. In each 
of the spaces (4), take a basis ξ1, . . . , ξn determined by the condition ξij = δij for 
i, j = 1, . . . , n (where δij is the Kronecker delta). Written in this basis, the representation 
ρz takes an n-periodic sequence a = {ai} (viewed as a zero order difference operator) 
to a diagonal matrix with entries a1, . . . , an, while the shift operator T becomes the 
matrix 

∑n−1
i=1 Ei,i+1 +zEn,1, where Ei,j is the matrix with a 1 at position (i, j) and zeros 

elsewhere. Therefore, since the algebra of difference operators is generated by sequences, 
T , and T−1, it follows that ρz can be viewed as a homomorphism of difference operators 
into Matn ⊗ R[z, z−1]. Furthermore, it is easy to verify that this homomorphism is a 
bijection, and hence an isomorphism.
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Proposition 3.2. Let D be a properly bounded difference operator supported in J , and let 
D(z) be the associated element of the loop algebra. Then detD(z) is a constant multi-
ple of the polynomial zmP (D, z), where m := min J , and P (D, z) is the characteristic 
polynomial of the monodromy of D.

Proof. If we multiply D by T k, where k ∈ Z, then the characteristic polynomial of 
its monodromy does not change, while the polynomial detD(z) gets multiplied by 
detT k(z) = (detT (z))k = zk. So, it suffices to consider the case min J = 0. Furthermore, 
it is sufficient to prove the statement for generic properly bounded operators supported 
in {0, . . . , d}, because within that set the coefficients of both polynomials detD(z) and 
P (D, z) are polynomial functions in terms of the coefficients of D. So, if one can show 
that these polynomials are proportional for generic operators, then it must be true for all 
operators. To establish the statement for generic D, observe that by definition of D(z)
the polynomial detD(z) vanishes for some z = 0 if and only if D has a kernel on the space 
(4), which is equivalent to saying that z is an eigenvalue of the monodromy of D. So, the 
roots of the polynomials detD(z) and P (D, z) are the same (as sets). Furthermore, for 
generic D all roots of P (D, z) are distinct. So, to prove that the polynomials detD(z)
and P (D, z) are proportional, it suffices to show that they have the same degree. In other 
words, we need to show that the degree of detD(z) is equal to the degree d of D. This 
can be checked by explicitly writing down the matrix D(z), or by using the following ar-
gument. First of all, one easily checks that the statement holds for operators of degree 1. 
But a generic operator D of degree d can be written as a product of operators of degree 1, 
so by multiplicativity for such operator we have deg detD(z) = d, as desired. �
3.2. Difference operators and J-corrugated polygons

There is a close relation between difference operators supported in J and J-
corrugated polygons. Denote by Pn(J) the space of twisted J-corrugated n-gons, and 
let Pn(J) / PGL be the quotient of that space by projective transformations. We will 
describe that space as a certain quotient of the space PBDOn(J) of properly bounded n-
periodic difference operators supported in J . Namely, let H be the group of non-vanishing 
n-quasi-periodic scalar sequences, i.e.

H := {α ∈ R∞ | ∀ i ∈ Z, αi = 0, and ∃ z ∈ R∗ s.t. ∀ i ∈ Z, αi+n = zαi}.

Further, let H ×̃H be the subgroup of H × H that consists of pairs of non-vanishing 
n-quasi-periodic scalar sequences with the same monodromy, i.e.

H ×̃H :={(α, β) ∈ R∞ ×R∞ | ∀ i ∈ Z, αi = 0, βi = 0,

and ∃ z ∈ R∗ s.t. ∀ i ∈ Z, αi+n = zαi, βi+n = zβi}.

This group acts on the space DOn(J) of n-periodic difference operators with given sup-
port by means of the left-right action
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D �→ αDβ−1. (5)

Proposition 3.3. For any finite subset J ⊂ Z with |J | ≥ 2, there is a one-to-one corre-
spondence (a homeomorphism) between the following spaces:

1. The space Pn(J) / PGL of twisted J-corrugated n-gons modulo projective transfor-
mations.

2. The space PBDOn(J) / H ×̃H of properly bounded n-periodic difference operators 
supported in J modulo the left-right action (5) of the group H ×̃H of pairs of non-
vanishing n-quasi-periodic scalar sequences with the same monodromy.

Proof. The proof is analogous to that of [14, Proposition 2.2]. Let us just briefly outline 
the construction. Given a projective equivalence class of generic twisted J-corrugated 
n-gons, consider an arbitrary representative {vi ∈ RPd} ∈ Pn(J) of that class (here 
d := max(J) − min(J) − 1). Lift the quasi-periodic sequence of points vi ∈ RPd to a 
quasi-periodic sequence of vectors Vi ∈ Rd+1. Then, from the J-corrugated condition it 
follows that for any i ∈ Z the vectors {Vi+j | j ∈ J} belong to a subspace of dimension 
|J | − 1 and, therefore, are linearly dependent:

∑
j∈J

aj,iVi+j = 0. (6)

This is equivalent to DV = 0, where V is the bi-infinite sequence of Vi’s, and the 
operator D is given by (3). Furthermore, since the sequence {Vi} is quasi-periodic, the 
so-obtained operator D is periodic, while from the genericity condition for {vi ∈ RPd}
it follows that D is properly bounded. Hence we obtain a properly bounded n-periodic 
difference operator supported in J . To complete the proof, it suffices to notice that from 
the possibility to rescale each of the Vi’s and also multiply each of the equations (6) by 
a scalar it follows that D is defined up to the left-right action (5). Details of the proof 
(in the case when J consists of four consecutive integers) can be found in [14]. �

As can be seen from this construction, one has the following relation between the mon-
odromy of a J-corrugated polygon and the monodromy of the corresponding difference 
operator:

Corollary 3.4. Let P ∈ Pn(J) be a twisted J-corrugated n-gon, and let D ∈ PBDOn(J)
be one of the corresponding difference operators. Then the monodromy of P is conjugate 
to the projectivization of the monodromy of D.

Proof. Assume that the monodromy of the polygon {vi} in the proof of Proposition 3.3 is 
given by the projective transformation φ. Then the sequence of Vi’s satisfies Vi+n = MVi, 
where M is a matrix of φ (i.e. φ is the projectivization of M). At the same time, the 
components of the vectors Vi form a basis in the space KerD, and the monodromy 
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matrix Tn|KerD written in that basis is the transpose of M (indeed, denoting the basis 
vectors by ξ1, . . . , ξd, we can rewrite Vi+n = MVi as (Tnξ1, . . . , Tnξd)t = M(ξ1, . . . , ξd)t, 
which means that the matrix of the transformation Tn in the basis ξ1, . . . , ξd is M t). So, 
the monodromy of the polygon {vi} is the projectivization of (Tn|KerD)t, and hence is 
conjugate to the projectivization of Tn|KerD. �

In particular, one has the following relation between the eigenvalues of the monodromy 
and the determinant of the corresponding loop algebra element:

Corollary 3.5. Let P ∈ Pn(J) be a twisted J-corrugated n-gon, and let D ∈ PBDOn(J)
be one of the corresponding difference operators. Then the eigenvalues of the monodromy 
of P coincide (with multiplicities) with non-zero roots of the polynomial detD(z), where 
D(z) is an element of the loop algebra corresponding to the difference operator D, as 
described in Remark 3.1.

Proof. This follows from Proposition 3.2. �
Remark 3.6. Note that the monodromy of a twisted polygon is a projective transfor-
mation, so its eigenvalues are defined up to simultaneous multiplication by the same 
constant. However, the same is true for the roots of detD(z), because taking α and β in 
(5) with non-trivial monodromy w leads to simultaneous rescaling of all the roots by a 
factor of w.

3.3. The Poisson-Lie group of pseudo-difference operators

We define an n-periodic pseudo-difference operator as a formal Laurent series in terms 
of the left shift operator T , whose coefficients are n-periodic sequences. In other words, 
every such operator is of the form

+∞∑
j=k

ajT
j , (7)

where k ∈ Z is an integer, T is the left shift operator on R∞, while each aj is an n-periodic 
bi-infinite sequence of real numbers. Such an expression can be regarded either as a formal 
sum, or as an actual operator acting on the space {ξ ∈ R∞ | ∃ j ∈ Z : ξi = 0 ∀ i > j} of 
eventually vanishing sequences.

We will denote the set of n-periodic pseudo-difference operators by ΨDOn. It is an 
associative algebra with respect to addition and multiplication (composition) of opera-
tors. Moreover, almost every pseudo-difference operator is invertible. In particular, (7)
is invertible if the coefficient ak of lowest power in T is a sequence none of whose ele-
ments vanish. We will denote the set of invertible n-periodic pseudo-difference operators 
by IΨDOn. This is a group with respect to multiplication. It can be regarded as an 
infinite-dimensional Lie group with Lie algebra ΨDOn.
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Remark 3.7. One can also consider (and apply for the purposes of the present paper) 
pseudo-difference operators which have infinitely many terms of negative degree in T , 
but only finitely many terms of positive degree. This leads to an isomorphic algebra.

Remark 3.8. The isomorphism DOn � Matn ⊗ R[z, z−1] described in Remark 3.1 nat-
urally extends to an isomorphism between the algebra of n-periodic pseudo-difference 
operators, and the algebra Matn ⊗ R((z)) of matrices over the field R((z)) of formal 
Laurent series with real coefficients and finitely many terms of negative degree. Under 
this isomorphism, the group IΨDOn of invertible pseudo-difference operators is identi-
fied with the group of matrices over Laurent series with non-vanishing determinant (this 
group is one of the versions of the loop group of GLn).

Proposition 3.9. There exists a natural Poisson structure π on the group IΨDOn of 
n-periodic invertible pseudo-difference operators. This structure has the following prop-
erties:

1. It is multiplicative, in the sense that the group multiplication is a Poisson map. In 
other words, the group IΨDOn, together with the structure π, is a Poisson-Lie group.

2. Assume that J ⊂ Z is a finite subset that consists of consecutive integers. Then 
the subset IDOn(J) := IΨDOn ∩ DOn(J) of invertible difference operators (that is, 
difference operators whose inverse is well-defined as a pseudo-difference operator) 
supported in J is a Poisson submanifold of IΨDOn.

3. If J is a one-point set, then the restriction of π to IDOn(J) is zero. In particular, the 
Poisson structure π vanishes on sequences (viewed as difference operators supported 
in {0}).

4. The Poisson structure π is invariant under the left-right action (5) of the group 
H ×̃H of pairs of non-vanishing n-quasi-periodic sequences with the same mon-
odromy.

5. Central functions on IΨDOn Poisson commute.

Remark 3.10. As explained in Remark 3.8, the group IΨDOn is isomorphic to a version 
of the loop group of GLn. In the loop group language, the Poisson structure π is well-
known: it is the one associated with the trigonometric r-matrix. Here we will provide a 
construction of this Poisson structure which does not appeal to the loop group formalism. 
In fact, the language of (pseudo)difference operators seems to be more natural when 
dealing with the trigonometric r-matrix. We will, however, use the loop group language 
in some of the computations, see in particular Section 3.6.

Our Poisson structure on pseudo-difference operators can also be viewed as a natural 
discrete analogue of the Poisson-Lie structure on pseudo-differential operators [18].

Remark 3.11. For periodic sequences α and β, the fourth statement of Proposition 3.9
follows from the third one combined with the first. Indeed, by the third statement the 
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Poisson structure π vanishes on sequences, so from multiplicativity we get that both 
left and right multiplications by sequences are Poisson maps. However, if the sequences 
α and β have non-trivial monodromy, then one cannot extract the fourth statement of 
the proposition from multiplicativity, because in that case α and β are not elements of 
IΨDOn.

Remark 3.12. Take a subset J ⊂ Z which consists of d + 2 consecutive integers. Then 
the J-corrugated condition is vacuous and, according to Proposition 3.3, the quotient 
of PBDOn(J) by the action (5) can be identified with the space of twisted polygons 
in RPd, considered up to projective equivalence. So, restricting the Poisson structure π
to PBDOn(J) (which is an open subset of IDOn(J) and hence a Poisson submanifold) 
and taking the quotient under the action (5) one gets a Poisson structure on the space 
of polygons. It seems, however, that this structure has nothing to do with pentagram 
maps. As will be explained below, Poisson structures invariant under pentagram maps 
arise from Poisson submanifolds of IΨDOn given by rational pseudo-difference operators, 
i.e. operators that can be written as a quotient of two difference operators.

We prove Proposition 3.9 in Section 3.5, after a brief general discussion of Poisson-Lie 
groups in Section 3.4.

3.4. Generalities on Poisson-Lie groups

This section is a brief introduction to the theory of Poisson-Lie groups. Our terminol-
ogy follows that of [27]. Recall that a Lie group G endowed with a Poisson structure π
is called a Poisson-Lie group if π is multiplicative, i.e. if the multiplication G ×G → G

is a Poisson map (it also follows from this that the inversion map i : G → G is anti-
Poisson, i.e. i∗π = −π). Assume that G is a Poisson-Lie group, and let G be its Lie 
algebra. Then, by considering the left trivialization of the tangent bundle of G, one can 
identify the bivector field π with a map G → G ∧ G. Furthermore, one can show that 
multiplicativity of π is equivalent to that map being a cocycle on G with respect to the 
adjoint representation of G on G ∧G. If that cocycle is a coboundary, then G is called a 
coboundary Poisson-Lie group. A Poisson-Lie group G is coboundary if and only if there 
exists an element r̂ ∈ G ∧G, called the classical r-matrix, such that the Poisson tensor 
π at every point g ∈ G is given by

πg = 1
2

(
(λg)∗r̂ − (ρg)∗r̂

)
, (8)

where λg and ρg are, respectively, the left and right translations by g. Note that although 
the bivector (8) is automatically multiplicative (since any coboundary is a cocycle), it 
does not need to satisfy the Jacobi identity. The necessary and sufficient condition for 
(8) to satisfy the Jacobi identity is a rather complicated equation in terms of r̂ which 
is usually replaced by simpler sufficient conditions, such as the modified Yang-Baxter 
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equation. We will state this condition under the assumption that the Lie algebra G is 
endowed with an invariant (under the adjoint action of G) inner product, in which case 
one can identify the bivector r̂ ∈ G ∧ G with a skew-symmetric operator r : G → G

(which is also called the r-matrix). In terms of that operator, the modified Yang-Baxter 
equation reads

[rx, ry] − r[rx, y] − r[x, ry] = −[x, y] ∀x, y ∈ G. (9)

It is well-known that this equation implies the Jacobi identity for (8). If the Lie algebra of 
a coboundary Poisson-Lie group G is endowed with an invariant inner product, and the 
corresponding r-matrix satisfies the modified Yang-Baxter equation (9), then G is called 
factorizable. In what follows, we will be interested in one particular type of r-matrices 
satisfying the modified Yang-Baxter equation:

Proposition 3.13. Let G be a Lie algebra endowed with an invariant inner product. As-
sume also that G, as a vector space, can be written as a direct sum of three subalgebras 
G>0, G0, and G<0, such that [G0, G>0] ⊂ G>0, [G0, G<0] ⊂ G<0, the subalgebras G>0, 
G<0 are isotropic, and G0 is orthogonal to both G>0 and G<0. Then r := p>0 − p<0, 
where p>0, p<0 are projectors G → G>0, G → G<0 respectively, satisfies the modified 
Yang-Baxter equation, thus turning the group G of the Lie algebra G into a factorizable 
Poisson-Lie group.

Proof. Direct verification of (9). �
Remark 3.14. Formula (8) for the coboundary Poisson-Lie bracket can be written in a 
more explicit form when the Lie group G can be embedded, as an open subset, into 
an associative algebra A (in a typical situation G coincides with the group of invertible 
elements in A, e.g. the group of invertible matrices inside the algebra of all n ×nmatrices). 
In this case, the Lie algebra of G and, more generally, the tangent space to G at any point 
can be naturally identified with A. Assume also that A is endowed with an invariant inner 
product, which in the context of associative algebras means that 〈xy, z〉 = 〈x, yz〉 for 
any x, y, z ∈ A (in particular, this inner product is invariant with respect to the adjoint 
action of G ⊂ A on A). In that case the r-matrix can be thought of as a skew-symmetric 
operator r : A → A, and identifying the cotangent space T ∗

gG with the tangent space 
TgG = A by means of the invariant inner product, one can rewrite formula (8) for the 
corresponding Poisson tensor on G as

πg(x, y) = 1
2

(
〈r(xg), yg〉 − 〈r(gx), gy〉

)
∀ g ∈ G, x, y ∈ A. (10)

The corresponding Poisson bracket is given by
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{f1, f2}(g) = 1
2

(
〈r(grad f1(g) · g), grad f2(g) · g〉

− 〈r(g · grad f1(g)), g · grad f2(g)〉
)
,

(11)

where the gradients are defined using the invariant inner product. Notice that the right-
hand side of this formula is actually defined for every g ∈ A, i.e. invertibility of g is not 
necessary. Therefore, this formula may be used to define a Poisson bracket on the whole 
of A. This bracket is known as the second Gelfand-Dickey bracket on the associative 
algebra A.

In what follows we will need the following standard facts about coboundary Poisson-
Lie groups:

Proposition 3.15. Let G be a Lie group endowed with a coboundary Poisson structure π
defined by r-matrix r̂, and let g ∈ G. Then the Poisson structure π vanishes at g if and 
only if (Adg)∗r̂ = r̂.

Proof. We have (Adg)∗r̂ = (ρ−1
g )∗(λg)∗r̂, so (Adg)∗r̂ = r̂ if and only if (λg)∗r̂ = (ρg)∗r̂, 

i.e. πg = 0. �
Proposition 3.16. Let σ : G → G be an automorphism of a coboundary Poisson-Lie group. 
Assume that the differential of σ at the identity preserves the r-matrix r̂. Then σ is a 
Poisson map.

Proof. Since σ is an automorphism, we have λσ(g) = σλgσ
−1 and ρσ(g) = σρgσ

−1, so

πσ(g) = 1
2

(
(λσ(g))∗r̂ − (ρσ(g))∗r̂

)
= 1

2

(
σ∗(λg)∗(σ−1)∗r̂ − σ∗(ρg)∗(σ−1)∗r̂

)
.

Since σ preserves the r-matrix, the latter expression can be rewritten as

1
2

(
σ∗(λg)∗r̂ − σ∗(ρg)∗r̂

)
= σ∗πg.

So, πσ(g) = σ∗πg, which means that σ is a Poisson map. �
Proposition 3.17. Central functions on a coboundary Poisson-Lie group Poisson com-
mute.

Proof. Formula (8) is equivalent to

{f1, f2}(g) = 1
2

(
r̂(λ∗

gdf1(g), λ∗
gdf2(g)) − r̂(ρ∗gdf1(g), ρ∗gdf2(g))

)

∀ f1, f2 ∈ C∞(G), g ∈ G.
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But for central functions f1, f2 we have fi ◦ λg = fi ◦ ρg ⇒ λ∗
gdfi(g) = ρ∗gdfi(g) ⇒

{f1, f2} = 0. �
3.5. Existence and properties of the Poisson structure

In this section we prove Proposition 3.9 describing the Poisson structure on the group 
IΨDOn of n-periodic invertible pseudo-difference operators. To define that structure, 
we will use the construction described in Proposition 3.13. The Lie algebra of the group 
IΨDOn is the space ΨDOn of all n-periodic pseudo-difference operators. That is actually 
an associative algebra in which IΨDOn is embedded as the set of invertible elements. 
That algebra has an invariant inner product defined by

〈D1,D2〉 = TrD1D2 ∀D1,D2 ∈ ΨDOn, (12)

where the trace of an n-periodic pseudo-difference operator D is given by

Tr

⎛
⎝ ∞∑

j=k

ajT
i

⎞
⎠ :=

n∑
i=1

a0,i.

The product (12) is clearly non-degenerate and invariant in the associative algebra sense, 
i.e. 〈D1, D2D3〉 = 〈D1D2, D3〉. Furthermore, one can explicitly verify that TrD1D2 =
TrD2D1, so the inner product (12) is symmetric. Alternatively, this can be showed by 
using the isomorphism of ΨDOn and the algebra Matn ⊗R((z)) of matrices over formal 
Laurent series (see Remark 3.1). In the matrix language, the trace of an operator can 
be written as TrD = Resz=0

(
z−1Tr D(z)

)
, where D(z) is a matrix with coefficients in 

R((z)) associated to the operator D.

Proof of Proposition 3.9. Represent the algebra ΨDOn of n-periodic pseudo-difference 
operators as the sum of three subalgebras G<0, G0, G>0 as follows. Let ΨDOn(J) be 
the vector space of pseudo-difference operators supported in J ⊂ Z. By definition, an 
operator of the form (7) is supported in J if aj ≡ 0 for all j /∈ J . Define

G<0 := ΨDOn(Z<0) = DOn(Z<0), G0 := ΨDOn({0}) = DOn({0}),
G>0 := ΨDOn(Z>0),

where Z>0 stands for positive integers and Z<0 for negative ones. This decomposition 
clearly satisfies all the requirements of Proposition 3.13, so we get an r-matrix r :=
p>0 − p<0 and hence a factorizable Poisson-Lie structure on IΨDOn. This proves the 
first statement of Proposition 3.9. To prove the second statement (invertible difference 
operators supported in a subset J ⊂ Z consisting of consecutive integers form a Poisson 
submanifold), we use formula (10). From that formula it follows that, when viewed as 
map ΨDOn → ΨDOn, the Poisson tensor πD (where D ∈ IΨDOn) reads
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πD(Q) = Dr(QD) − r(DQ)D. (13)

To show that the set IDOn(J) ⊂ IΨDOn of invertible difference operators supported in 
J is a Poisson submanifold, one needs to prove that for D ∈ IDOn(J) the image of the 
Poisson tensor (13) belongs to the tangent space to IDOn(J) at D. The latter is the 
space DOn(J) of all n-periodic difference operators supported in J , so we need to show 
that the operator (13) is supported in J whenever D is supported in J . To that end, 
notice that the right-hand side of (13) stays the same if r is replaced by r± Id. But the 
image of r + Id = 2p>0 + p0 (where p0 is the projector to G0) is the space G0 + G>0 of 
operators which only have terms of non-negative power in T , so, rewriting (13) in terms 
of r + Id, we get that

min suppπD(Q) ≥ min suppD = min J.

Analogously, rewriting (13) in terms of r − Id, we get max suppπD(Q) ≤ max J . All in 
all, we have suppπD(Q) ⊂ [min J, max J ] = J , as desired.

To prove the third statement (if J is one-point set, then the Poisson structure vanishes 
on operators supported in J), notice that if D is supported in a one-point set, then 
conjugation by D preserves the subalgebras G± and G0, as well as the inner product on 
ΨDOn. Therefore, it preserves the r-matrix, and π(D) = 0 by Proposition 3.15.

To prove the fourth statement (the left-right action is Poisson), we represent the left-
right action (5) as a superposition of two actions: one is of the same form, but with 
periodic α and β, while the other one is conjugation action D �→ γDγ−1, with quasi-
periodic γ. Then the former action is Poisson because the Poisson structure vanishes on 
sequences, while the latter is Poisson because conjugation by sequences preserves G>0, 
G<0, and G0, as well as the inner product, and hence is Poisson by Proposition 3.16. So, 
the left-right action (5) is also Poisson.

Finally, the last statement of Proposition 3.9 (central functions Poisson commute) 
directly follows from Proposition 3.17. So, Proposition 3.9 is proved. �
Remark 3.18. As central functions on IΨDOn, one can take expressions of the form 
fij(D) := TrT inDj , where i ∈ Z, j ∈ Z>0. An alternative way to get the same functions 
is to consider the matrix-valued Laurent series D(z) corresponding to the operator D
(cf. Remark 3.8), and then take coefficients in z of the spectral invariants of D(z).

3.6. Relation to the GLn bracket

One can compute Poisson brackets of coordinate functions on IΨDOn using formula 
(11). The resulting expressions are quite complicated and involve infinite series. However, 
only finitely many terms of those series are non-zero for every concrete pseudo-difference 
operator. Moreover, for a difference operator whose support is small compared to the 
period these series simplify to just one term. Below we explain how to compute the 
brackets in this case by using the standard Poisson-Lie structure on GLn.
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Recall that the standard Poisson structure on GLn is defined using the construction 
of Proposition 3.13 with G<0, G>0, G0 being the lower nilpotent, upper nilpotent, and 
the Cartan subalgebra respectively, see e.g. [10]. Explicitly, the brackets of the matrix 
elements are given by

{xij , xkl} = 1
2(sgn(k − i) + sgn(l − j))xilxkj ,

where sgn(t) is +1 if t > 0, −1 if t > 0, and 0 if t = 0. In other words, for any matrix 
entries a, b, c, d located at vertices of a rectangle as shown below:

a . . . . . . b
...

...
c . . . . . . d

we have

{a, b} = 1
2ab, {a, c} = 1

2ac, {a, d} = bc, {b, c} = 0.

Since the relative position of b and d is the same as of a and c, while the relative position 
of c and d is the same as of a and b, we also have that

{b, d} = 1
2bd, {c, d} = 1

2cd.

We now explain the relation between the bracket on difference operators and the GLn

bracket. Consider the algebra ΨDOn(Z≥0), where Z≥0 := Z>0 ∪ {0}, of n-periodic 
upper-triangular pseudo-difference operators. Any such operator D =

∑+∞
j=0 ajT

j can be 
represented by a bi-infinite upper-triangular matrix

a0,i−1 a1,i−1 . . .

a0,i a1,i . . .

a0,i+1 a1,i+1 . . .

.

Let Φi(D) be the n ×n submatrix of this matrix which has the element a0,i in its upper 
left corner.

Proposition 3.19. Each of the mappings Φi : ΨDOn(Z≥0) → Matn takes the Poisson 
structure π on ΨDOn(Z≥0) to the standard Poisson structure on Matn.

Remark 3.20. Technically, we have defined Poisson structures only on invertible pseudo-
difference operators and invertible matrices. However, since both pseudo-difference op-
erators and matrices form associative algebras, the Poisson structures in fact extend to 
non-invertible elements (see Remark 3.14).
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Remark 3.21. This proposition is saying that one can compute Poisson brackets of dif-
ference operator coefficients by sliding an n ×n window through the operator matrix. If 
the support of the operator is not too big compared to the period, then the size of the 
window is big enough to fit any pair of the coefficients, so all Poisson brackets can be 
computed in this way.

Example 3.22. Consider the space of operators of the form a + bT . This corresponds to 
bi-infinite bi-diagonal matrices

. . . . . .
ai bi

ai+1 bi+1
. . . . . .

.

If n = 1, then we cannot use the n × n window to compute all the brackets. For n ≥ 2, 
Proposition 3.19 gives

{ai, bi} = 1
2aibi, {bi, ai+1} = 1

2biai+1, (14)

while all other brackets are either obtained from these by shift of indices or vanish.

Example 3.23. Consider the space of operators of the form a + bT + cT 2. The matrix of 
such an operator is

. . . . . . . . .
ai bi ci

ai+1 bi+1 ci+1
ai+2 bi+2 ci+2

. . . . . . . . .

For n ≥ 3, Proposition 3.19 gives

{ai,bi} = 1
2aibi, {ai, ci} = 1

2aici, {bi, ci} = 1
2bici, {bi, ai+1} = 1

2biai+1,

{bi, bi+1} = ai+1ci, {ci, bi+1} = 1
2cibi+1, {ci, ai+2} = 1

2ciai+2.

The proof of Proposition 3.19 is based on the following lemma.

Lemma 3.24. Consider the space Matn ⊗ R[[z]] of formal matrix power series endowed 
with the trigonometric r-bracket, and the space Matn endowed with the standard bracket. 
Then the mapping
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Φ: Matn ⊗R[[z]] → Matn, Φ
( ∞∑

i=0
Aiz

i

)
:= A0,

taking a matrix power series to its constant term is a Poisson map.

Remark 3.25. The trigonometric r-bracket on the space Matn ⊗R((z)) of formal matrix 
Laurent series is defined using the construction of Proposition 3.13, where G>0 consists 
of matrix power series with nilpotent upper-triangular constant term, G<0 consists of 
matrix polynomials in z−1 with nilpotent lower-triangular constant term, while G0 is 
the space of constant diagonal matrices. The invariant inner product on Matn ⊗R((z))
is defined by

〈A(z), B(z)〉 := Resz=0

(
1
z
Tr A(z)B(z)

)
.

Proof of Lemma 3.24. The mapping Φ is well-defined on the whole space Matn⊗R((z))
and maps both the r-matrix and the inner product on the latter space to the corre-
sponding objects on Matn. Also notice that for any function f ∈ C∞(Matn), we have 
grad Φ∗f ∈ Matn ⊗R[[z]]. Indeed, the function Φ∗f is constant on the subspace

Ker Φ =
{ ∞∑

i=1
Aiz

i

}
,

so gradΦ∗f ∈ (Ker Φ)⊥ = Matn ⊗ R[[z]]. Furthermore, since Φ preserves the inner 
product, we have Φ(grad (Φ∗f)(A)) = grad f(Φ(A)). Now, take two functions f1, f2 ∈
C∞(Matn). Then the Poisson bracket of their Φ-pullbacks at a point A = A(z) ∈ Matn⊗
R[[z]] is given by formula (11):

{Φ∗f1,Φ∗f2}(A) = 1
2

(
〈r(grad Φ∗f1(A) ·A), gradΦ∗f2(A) ·A〉

− 〈r(A · grad Φ∗f1(A)), A · gradΦ∗f2(A)〉
)
.

Using that both A and the gradients of f1, f2 belong to Matn⊗R[[z]], while the restriction 
of Φ to Matn ⊗ R[[z]] is a homomorphism of associative algebras preserving the inner 
product and the r-matrix, this can be rewritten as

{Φ∗f1,Φ∗f2}(A) = 1
2

(
〈r(grad f1(Φ(A)) · Φ(A)), grad f2(Φ(A)) · Φ(A)〉

− 〈r(Φ(A) · grad f1(Φ(A))), φ(A) · grad f2(Φ(A))〉
)
,

which is exactly the Matn bracket of the functions f1, f2 at the point Φ(A). Thus, the 
mapping Φ is indeed Poisson, as claimed. �
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Proof of Proposition 3.19. In the loop algebra language, the space ΨDOn(Z≥0) of upper-
triangular n-periodic pseudo-difference operators is the space of formal matrix power 
series of the form A(z) =

∑∞
i=0 Aiz

i, where A0 is upper-triangular. The infinite matrix 
corresponding to such power series is

A0 A1 . . .

A0 A1 . . .

with upper-left corners of A0 blocks located at positions (jn + 1, jn + 1), j ∈ Z. Thus, 
the mapping Φ1 takes A(z) to A0 and is, therefore, a restriction of the mapping Φ from 
Lemma 3.24. So, Φ1 is a Poisson map. Furthermore, we have Φi+1 = Φi ◦ AdT , where 
AdT (D) := TDT−1. Therefore, since AdT is also a Poisson map (by Proposition 3.9, 
item 3), it follows that all Φi’s are Poisson, as desired. �
3.7. The subgroup of sparse operators

We say that a pseudo-difference operator is k-sparse if its support is an arithmetic 
progression with step k. For example, the operator T−1 + T + T 3 + T 5 + . . . is 2-sparse. 
Denote the set of invertible k-sparse pseudo-difference operators by IΨDOn(kZ + ∗). 
This is a Lie subgroup of IΨDOn, whose Lie algebra is the space ΨDOn(kZ) of pseudo-
difference operators supported in kZ. It is not, however, a Poisson submanifold and 
hence not a Poisson-Lie subgroup IΨDOn. One can, however, define a different Poisson 
structure on IΨDOn(kZ + ∗), which has all the same properties as the Poisson structure 
on IΨDOn described above. More precisely, we have the following:

Proposition 3.26. There exists a natural Poisson structure π(k) on the group IΨDOn(kZ +
∗) of invertible k-sparse pseudo-difference operators. It has all the same properties as the 
Poisson structure π described in Proposition 3.9, except for the second property which is 
replaced by the following: if J ⊂ Z is an arithmetic progression with common difference k, 
then IDOn(J) is a Poisson submanifold of IΨDOn(kZ + ∗).

Proof. This Poisson structure is given by the following decomposition of the Lie algebra 
ΨDOn(kZ):

G<0 := ΨDOn(kZ<0), G0 := ΨDOn({0}), G>0 := ΨDOn(kZ>0).

All necessary properties are established in the same way as in the proof of Proposi-
tion 3.9. �
Remark 3.27. A more constructive way to describe the Poisson structure π(k) is as follows. 
When n and k are coprime, there is a group isomorphism IΨDOn(kZ) � IΨDOn given 
by the action of IΨDOn(kZ) on eventually vanishing sequences whose non-zero entries 
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are contained in an arithmetic progression with common difference k. Explicitly, this 
isomorphism is given by ∑

akjT
kj �→

∑
ãjT

j , (15)

where ãj,i = akj,ki (note that this is only an isomorphism when n and k are coprime; 
otherwise, this map is neither injective nor surjective). The Poisson structure π(k) can 
be defined as the pull-back of the structure π by this isomorphism. Furthermore, π(k)

uniquely extends to the whole group IΨDOn(kZ + ∗) if we require that the resulting 
structure is invariant under multiplication by T . This gives a structure which coincides 
with the one described in the proof of Proposition 3.26. Furthermore, this construction 
can also be applied when n and k are not coprime, in which case IΨDOn(kZ) is iso-
morphic to a product of m := gcd(n, k) copies of IΨDOn/m. The corresponding m maps 
IΨDOn(kZ) → IΨDOn/m are given by (15) with ãj,i = akj,ki+l, where l = 0, . . . , m − 1.

Example 3.28. Consider sparse operators of the form a + bT 2. The Poisson bracket π(2)

on such operators may be obtained from the bracket π on operators of the form a + bT

using the following mnemonic rule (justified by Remark 3.27): take the formulas (14) for 
brackets on a + bT and replace all indices of the form i + j with i + 2j. This gives

{ai, bi} = 1
2aibi, {bi, ai+2} = 1

2biai+2.

4. General refactorization maps associated with pairs of arithmetic progressions

4.1. The main theorem

In this section we describe a class of maps parametrized by pairs of finite arithmetic 
progressions J± ⊂ Z with the same common difference. For disjoint J± these maps 
coincide with pentagram maps on J-corrugated polygons described in Section 2. All 
these maps, regardless of whether J± are disjoint, admit a refactorization description in 
terms of the group IΨDOn of periodic pseudo-difference operators. As a corollary, all 
such maps admit an invariant Poisson structure and a Lax representation with Poisson-
commuting spectral invariants. Therefore, one should expect that all these maps are 
both Liouville and algebraically integrable. In order to actually prove that, one needs to 
accurately verify certain technical conditions, which is beyond the scope of the present 
paper.

Recall that the pentagram maps defined in Section 2 act on the space Pn(J) / PGL of 
twisted J-corrugated n-gons modulo projective transformations, where J := J+ � J− is 
the union of two disjoint finite arithmetic progressions J± with the same common differ-
ence. By Proposition 3.3, that space can be identified with the space PBDOn(J) / H ×̃H

of properly bounded n-periodic difference operators supported in J modulo the left-
right action (5) of the group H ×̃H of pairs of non-vanishing n-quasi-periodic se-
quences with the same monodromy. Furthermore, decomposing a difference operator 
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D ∈ PBDOn(J) into a sum D+ + D−, where D± ∈ DOn(J±) are difference operators 
supported in J±, one can identify a dense subset in the quotient PBDOn(J) / H ×̃H

with PBDOn(J+) × PBDOn(J−) / H ×̃H, where H ×̃H acts on both factors by the 
simultaneous left-right action (this identification is only possible for a dense subset of 
PBDOn(J) / H ×̃H because the operators D± may not be properly bounded even if D is). 
Thus, our pentagram maps, considered on sufficiently generic polygons, can be thought of 
as transformations defined on the left-right quotient PBDOn(J+) ×PBDOn(J−) / H ×̃H, 
with J± being disjoint. Note, however, that the latter quotient is well-defined regardless 
of whether the sets J± are disjoint. Below we describe certain dynamics on that quotient 
which in the disjoint case coincides with the pentagram dynamics.

An alternative way to think of the space PBDOn(J+) × PBDOn(J−) / H ×̃H

is to identify it with the quotient PBDOn(J−)−1PBDOn(J+) / AdH, where
PBDOn(J−)−1PBDOn(J+) is the space of rational pseudo-difference operators of the 
form D−1

− D+ with D± ∈ PBDOn(J±), and AdH stands for the conjugation action of 
the group H of n-periodic non-vanishing scalar sequences. The identification between 
the two spaces is done via the map D± �→ D−1

− D+, which we will show to be almost 
everywhere bijective.

One last ingredient that we need to state the main result is a Poisson structure on our 
phase space PBDOn(J+) ×PBDOn(J−) / H ×̃H (which, in the disjoint case, is the space 
of polygons). That structure is constructed as follows. Let k be the common difference 
of J±. Define a Poisson structure on PBDOn(J+) as the restriction of the structure 
π(k) on k-sparse operators (see Proposition 3.26). If k = 1, that is just the standard 
structure on pseudo-difference operators (see Proposition 3.9). Further, on PBDOn(J−), 
take the restriction of the same Poisson structure, but with an opposite sign. This endows 
PBDOn(J+) ×PBDOn(J−) with a product Poisson structure. Furthermore, the quotient 
PBDOn(J+) ×PBDOn(J−) / H ×̃H inherits the Poisson structure because the left-right 
action is Poisson.

The following theorem is the main result of the paper.

Theorem 4.1. Let J± ⊂ Z be a pair of non-empty finite arithmetic progressions with 
the same common difference. Consider the space PBDOn(J+) × PBDOn(J−) of pairs 
(D+, D−) of n-periodic properly bounded difference operators supported in J+, J− respec-
tively. Consider also the multivalued map of that space to itself that assigns to D± new 
difference operators D̃± defined by the equation

D̃+D− = D̃−D+. (1’)

Then the following is true.

1. This map D± �→ D̃± descends to a generically defined single-valued transformation 
ΨJ± of the quotient PBDOn(J+) ×PBDOn(J−) / H ×̃H, where H ×̃H is the group 
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of pairs of non-vanishing n-quasi-periodic sequences with the same monodromy acting 
by the simultaneous left-right action (5).

2. If the progressions J± are disjoint, then the so-obtained map ΨJ± coincides with the 
pentagram map associated with J±.

3. The mapping

PBDOn(J+) × PBDOn(J−) /H ×̃H → PBDOn(J−)−1PBDOn(J+) /AdH (16)

taking the left-right orbit of a pair D± to the H-conjugacy class of the pseudo-
difference operator D−1

− D+ is generically a bijection. This bijection identifies the 
map ΨJ± with the following refactorization dynamics on conjugacy classes:

L := D−1
− D+ �→ L̃ := D+D−1

− . (17)

In other words, the mapping ΨJ± has a Lax representation

L �→ D+LD−1
+ . (18)

4. The mapping ΨJ± is Poisson.
5. Suitably normalized central functions on the space of Lax operators L are Poisson 

commuting first integrals of ΨJ± .

Remark 4.2. Here is what we mean by normalization of central functions. Recall that as 
central functions on the group IΨDOn of n-periodic pseudo-difference operators one can 
take functions of the form fij(L) := TrT inLj , where i ∈ Z, j ∈ Z>0 (see Remark 3.18). 
Upon conjugation of L by a quasi-periodic sequence α ∈ H with monodromy z, the 
function fij transforms as

fij(αLα−1) = TrT inαLjα−1 = ziTrαT inLjα−1 = zifij(L).

Thus, the functions fij do not descend to the quotient of Lax operators by the conjugation 
action of H. One can, however, consider Laurent monomials of those functions that are 
invariant under the H-action and hence descend to the quotient.

Remark 4.3. As explained in Remark 3.8, periodic pseudo-difference operators can be 
identified with matrices over the field R((z)) of formal Laurent series. Thus, (18) can be 
viewed as a Lax representation valued in Matn ⊗ R((z)), i.e. a Lax representation with 
spectral parameter (in fact, since L is defined as a quotient of two difference operators, the 
corresponding matrix L(z) is not just a formal Laurent series but a rational function of z). 
Note, however, that since L is only defined up to conjugation by quasi-periodic sequences 
α ∈ H, the corresponding z-dependent matrix L(z) is not uniquely defined. Namely, 
conjugation by periodic sequences translates to conjugation by z-independent diagonal 
matrices, while conjugation by a quasi-periodic sequence αt defined by αt,i := t�(i−1)/n	
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(where � � is the floor function) becomes the action L(z) �→ L(tz). Since H is the direct 
product of periodic operators and the subgroup {αt | t ∈ R∗}, it follows that the Lax 
matrix L(z) is defined up to transformations of the form L(z) �→ AL(tz)A−1, where A
is a constant invertible diagonal matrix.

Example 4.4. For the classical pentagram map, the matrix Lax representation is given 
by

D+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 c1
. . . . . . . . .

. . . . . . . . .
an−2 0 cn−2

cn−1z an−1 0
0 cnz an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b1 0 d1
. . . . . . . . . . . .

0 bn−3 0 dn−3
dn−2z 0 bn−2 0

0 dn−1z 0 bn−1
bnz 0 dnz 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L := D−1
− D+, L̃ = D+LD−1

+ ,

where L is determined by a polygon up to conjugation by constant diagonal matrices 
and rescaling z �→ tz, and D± are determined by L up to simultaneous left multiplication 
by diagonal matrices.

One can also characterize first integrals of the maps ΨJ± provided by Theorem 4.1 as 
follows:

Corollary 4.5. The characteristic polynomial P (D++wD−, z) of the monodromy of D++
wD−, defined up to transformations of the form z �→ tz and a constant factor, is invariant 
under the map ΨJ± .

Proof of Corollary 4.5. Let D±(z), L(z) be the loop group elements corresponding to 
the operators D± and L respectively. Then, by Theorem 4.1, the map ΨJ± preserves the 
central function

det(L(z) + wId) = det(D−1
− (z)D+(z) + wId) = det(D+(z) + wD−(z))

detD−(z)

defined up to transformations of the form z �→ tz, cf. Remark 4.3. Using Proposition 3.2, 
we can further rewrite this as
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det(L(z) + wId) = zk
P (D+ + wD−, z)

P (D−, z)
, k := min(J− ∪ J+) − min J−.

The fraction in the right-hand side is generically irreducible, so both its numerator and 
denominator must be preserved by ΨJ± , up to a constant factor. �
Remark 4.6. In Section 4.2 we use Corollary 4.5 to show that in the known cases of inte-
grability our first integrals coincide with the known ones. Furthermore, one can show that 
our Poisson structures also coincide with the familiar ones in those cases where a Poisson 
structure was previously known, namely for the classical pentagram map, leapfrog map 
(see Remark 4.7 below), as well as for pentagram maps on corrugated polygons. For 
short-diagonal and dented maps no invariant Poisson structures were previously known. 
In Section 4.3 we derive, as an example, explicit formulas for the Poisson structure of 
the short-diagonal map in 3D.

Remark 4.7. For J+∩J− = ∅, the geometric meaning of the maps ΨJ± is not known. The 
only case which we were able to identify with a familiar integrable system is J+ = {−1, 0}, 
J− = {0, 1} (and, more generally, J+ = {k − 1, k}, J− = {k, k + 1} which correspond 
to the same map up to a shift indices). In that case, the map ΨJ± is the leapfrog map 
of [9], also known as the discrete relativistic Toda lattice [31]. The phase space of the 
leapfrog map is, by definition, the space of pairs of twisted n-gons in RP1 with the same 
monodromy, considered up to simultaneous projective transformations. One can lift such 
two polygons to two bi-infinite sequences V −

i , Vi of vectors in R2, and then construct 
two operators D− and D+ supported in J+ = {−1, 0} and J− = {0, 1} respectively such 
that (D− + D+)V − = 0 and D−V

− = V . This identifies the space of pairs of twisted 
n-gons in RP1 with the same monodromy, considered up to simultaneous projective 
transformations, with the left-right quotient PBDOn(J+) ×PBDOn(J−) / H ×̃H, while 
the leapfrog map gets identified with the map ΨJ± . The only proof of this we were able 
to find consists of expressing both maps in coordinates. However, we do believe that it 
should be possible to directly identify equation (1’) with the geometric “leapfrogging” 
definition, similarly to how we identify it with pentagram-type dynamics in the case of 
disjoint J±.

To prove Theorem 4.1 we essentially repeat the argument we used to prove Theo-
rem 1.1, filling in technical details. We begin with a few lemmas.

Lemma 4.8. Let D, D′ be n-periodic difference operators with the same support, and let D
be properly bounded. Assume that KerD′ ⊃ KerD. Then there is an n-periodic sequence 
α such that D′ = αD.

Proof. Without loss of generality, assume that D and D′ are supported in {0, . . . , d}. 
Let α be the leading coefficient of D′ divided by the leading coefficient of D. Then the 
difference operator R := D′ − αD is supported in {0, . . . , d − 1} and annihilates the 
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kernel of D. Let us show that such an operator must be zero. Assume R = 0. Then 
there is ξ ∈ R∞ and i ∈ Z such that (Rξ)i = 0. Further, since D is properly bounded of 
degree d, there is ξ̂ ∈ KerD such that ξ̂j = ξj for all j ∈ {i, . . . , i + d − 1}. Then, on one 
hand, since KerR ⊃ KerD, we have Rξ̂ = 0. On the other hand, since ξ̂j = ξj for all 
j ∈ {i, . . . , i +d −1} and R is supported in {0, . . . , d −1}, we have that (Rξ̂)i = (Rξ)i = 0. 
So we indeed must have R = 0 and D′ = αD, as desired. �
Lemma 4.9. Let D± ∈ PBDOn(J±) be operators with trivially intersecting kernels. As-
sume also that D̃± ∈ PBDOn(J±) are properly bounded operators satisfying (1’). Then, 
for any other operators D̃′

± ∈ DOn(J±) satisfying (1’), there exists an n-periodic sequence 
α such that D̃′

± = αD̃±.

Proof. First assume that D̃± ∈ DOn(J±) is any solution of (1’). Then, applying both 
sides of (1’) to any ξ ∈ KerD+ we get D̃+D−ξ = 0, meaning that

Ker D̃+ ⊃ D−(KerD+). (19)

Now assume that D̃+ is properly bounded. Then dim Ker D̃+ = dim KerD+. At the same 
time, since KerD+ ∩ KerD− = 0, it follows that dimD−(KerD+) = dim KerD+. So, 
the dimensions of both sides of (19) are the same. Thus, for any solution of (1’) we have 
inclusion (19) while for properly bounded solutions the inclusion becomes an equality. 
That means that if D̃± is a properly bounded solution, and D̃′

± is any other solution, then 
Ker D̃′

+ ⊃ Ker D̃+. So, by Lemma 4.8 we have D̃′
+ = αD̃+ for some periodic sequence α. 

But then, using that both pairs D̃±, D̃′
± solve (1’), we get

D̃′
− = D̃′

+D−D−1
+ = αD̃+D−D−1

+ = αD̃−.

So, D̃′
± = αD̃±, as desired. �

Lemma 4.10. There exists a Zariski open and dense subset A(J±) ⊂ PBDOn(J+) ×
PBDOn(J−) such that for any (D+, D−) ∈ A(J±) equation (1’) admits a solution 
(D̃+, D̃−) ∈ PBDOn(J+) × PBDOn(J−). Moreover, this solution is unique up to multi-
plying both D̃+ and D̃− by the same periodic sequence on the left.

Proof. Let A′ ⊂ PBDOn(J+) × PBDOn(J−) be the set of pairs D± such that (1’) has 
a unique solution (D̃+, D̃−) ∈ DOn(J+) × DOn(J−) with monic D̃+ (which means that 
the leading coefficient of D̃+ is equal to 1). This set is Zariski open. Indeed, solving (1’)
for D̃± with D̃+ monic is equivalent to a linear system. The number of indeterminates in 
that system is the number of unknown coefficients of D̃± multiplied by the period, that is 
n (|J+| + |J−| − 1). At the same time, since both sides of (1’) are operators supported in 
the Minkowski sum J++J−, the number of equations is n|J++J−|, which, for two arith-
metic progressions with the same common difference is also equal to n (|J+| + |J−| − 1). 
So, we have a linear system where the number of unknowns is the same as the number 
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of equations, and uniqueness of the solution is equivalent to non-vanishing of the deter-
minant. That determinant is a polynomial in coefficients of D±, so the set A′ is Zariski 
open.

Now, define A ⊂ A′ as the set of those pairs D± that belong to A′ and have 
the property that the unique solution (D̃+, D̃−) of (1’) with monic D̃+ belongs to 
PBDOn(J+) × PBDOn(J−). This set is also Zariski open. Indeed, as we just saw, the 
unique solution of (1’) with monic D̃+ comes from an m × m linear system with co-
efficients being polynomials in D±. So, the solution is properly bounded when certain 
rational functions do not vanish, which means A is Zariski open in A′ and hence in 
PBDOn(J+) × PBDOn(J−).

We now show that the set A is not empty. To that end, assume that D± ∈ PBDOn(J±)
are operators with constant coefficients such that KerD+ ∩ KerD− = 0 and D+ is 
monic. Then, since D± have constant coefficients, they commute with each other, which 
is equivalent to saying that D̃± := D± solve (1’). That solution has monic D̃+ and, 
moreover, there are no other monic solutions. Indeed, by Lemma 4.9 any other solution 
must be of the form D̃± = αD±, so if D̃+ is monic then α = 1 and D̃± = D±. Therefore, 
for D± as described, equation (1’) admits a unique solution with D+ is monic, and that 
solution is properly bounded. But that means (D+, D−) ∈ A, as desired.

So, the set A is Zariski open and non-empty, hence open and dense. Now, to complete 
the proof, it suffices to show that for any (D+, D−) ∈ A(J±) the solution (D̃+, D̃−) ∈
PBDOn(J+) ×PBDOn(J−) of equation (1’) is unique up to multiplying both D̃± by the 
same periodic sequence on the left. Indeed, if there were two solutions not related in 
this way, then dividing them by the leading term of D̃+ we would obtain two different 
solutions with monic D̃+. But that is not possible by construction of A. Thus, the set 
A(J±) := A satisfies our requirements. �
Lemma 4.11. There exists a Zariski open and dense subset B(J±) ⊂ PBDOn(J+) ×
PBDOn(J−) such that for any (D+, D−) ∈ B(J±) the pseudo-difference operator D−1

− D+
has a unique representation as a left quotient of operators supported in J±, up to multi-
plying both D+ and D− by a periodic sequence on the left.

Proof. Recall that duality D �→ D∗ is an anti-automorphism of the algebra of difference 
operators that is uniquely determined by requiring that a scalar sequence is self-dual, 
and T ∗ = T−1. In other words, the dual of an operator D =

∑
aiT

i is

D∗ =
∑

T−iai =
∑

ãiT
−i, ãi,j = ai,j−i.

This corresponds to transposition of the operator matrix and can be thought of as 
operator duality with respect to the formal L2 inner product on R∞. Also note that the 
dual of a properly bounded operator supported in J ⊂ Z is a properly bounded operator 
supported in −J := {−j | j ∈ J}.

Let � : PBDOn(J+) × PBDOn(J−) → PBDOn(−J+) × PBDOn(−J−) be the map 
that takes (D+, D−) to (D∗

+, D∗
−). Let also ψJ± : A(J±) → PBDOn(J+) × PBDOn(J−)
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be the map which takes a pair (D+, D−) to the unique monic properly bounded solution 
(D̃+, D̃−) of equation (1’). As we saw in the proof of Lemma 4.10, that is a rational map. 
Consider now the map

ψ∗
J± := � ◦ ψ−J± ◦ � : A(−J±)∗ → PBDOn(J+) × PBDOn(J−),

where A(−J±)∗ := �(A(−J±)), and let B := (ψ∗
J±

)−1(AJ±). Then B is Zariski open 
as the preimage of a Zariski open set under a rational map. Furthermore, B is non-
empty. Indeed, let D± ∈ PBDOn(−J±) be operators with constant coefficients such that 
KerD+ ∩ KerD− = 0 and D+ is monic. Then (D+, D−) ∈ A(−J±), so (D∗

+, D∗
−) ∈

A(−J±)∗. Furthermore, we have

ψ∗
J±(D∗

+,D∗
−) = (D∗

+,D∗
−),

so (D∗
+, D∗

−) ∈ B. Thus, the set B(J±) := B is Zariski open and non-empty, and to 
complete the proof it suffices to show it satisfies the unique factorization requirement. 
To that end, assume that (D+, D−) ∈ B, and D−1

− D+ = (D′
−)−1D′

+ for some operators 
D′

± ∈ PBDOn(J±). Since (D+, D−) ∈ B, we have that (D∗
+, D∗

−) ∈ A(−J±), meaning 
there exists a unique pair of operators D̃± ∈ PBDOn(−J±) with D̃+ monic such that

D̃+D∗
− = D̃−D∗

+. (20)

Moreover, by definition of B we have (D̃∗
+, D̃∗

−) ∈ A(J±). Now, taking the dual of (20)
we get

D−D̃∗
+ = D+D̃∗

− ⇒ D̃∗
+(D̃∗

−)−1 = D−1
− D+ = (D′

−)−1D′
+ ⇒ D′

−D̃∗
+ = D′

+D̃∗
−.

So, since (D̃∗
+, D̃∗

−) ∈ A(J±), by Lemma 4.10 we have D′
± = αD± for some periodic 

sequence α, as required. �
Proof of Theorem 4.1. We begin with the first statement of the theorem (equation 
(1’) defines a generically single-valued map ΨJ± of the left-right quotient to itself). 
By Lemma 4.10, for generic D± ∈ PBDOn(J±) equation (1’) has a solution D̃± ∈
PBDOn(J±) which is unique up to multiplying both D̃± on the left by some n-periodic 
sequence α. Thus, that equation defines a generically defined and generically single-
valued map from the space PBDOn(J+) ×PBDOn(J−) to its left quotient by the group 
H0 := IDOn({0}) ⊂ H of non-vanishing n-periodic sequences. To show that this map 
descends to the left-right quotient, it suffices to check that if the preimages are in the 
same left-right orbit, then so are the images (note that the left-right action is still defined 
on the left quotient by H0, although it is not faithful). Assume that (1’) takes a pair D±
to the H0-orbit of D̃±. Take another element of the left-right orbit of D±. That has the 
form αD±β

−1 for some quasi-periodic sequences α, β with the same monodromy. Then 
(1’) has a solution given by βD̃±α−1. So, indeed elements of the same left-right orbit 
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are mapped to elements of the same left-right orbit, proving the first statement of the 
theorem.

The proof of the second statement (for disjoint J± the maps ΨJ± coincide with 
pentagram maps on J-corrugated polygons) repeats, word for word, the proof of the 
corresponding part of Theorem 1.1, so we proceed to the third statement (the map ΨJ±

can be identified with refactorization dynamics on rational operators). First, we need to 
show that the map (16) given by D± �→ D−1

− D+ is generically a bijection. It is clearly 
surjective by definition of the codomain, so it suffices to prove injectivity. That is, we 
need to show that if D−1

− D+ is H-conjugate to (D′
−)−1D′

+, then for generic D± the pairs 
D± and D′

± are in the same left-right orbit. To that end, assume that

D−1
− D+ = α−1(D′

−)−1D′
+α = (D′

−α)−1D′
+α

for some periodic sequence α ∈ H. Then, for generic D±, by Lemma 4.11 we have 
D′

±α = βD±. But that precisely means that the pairs D± and D′
± are in the same 

left-right orbit, as desired.
Now that we know that (16) is a bijection, we show that it identifies ΨJ± with refac-

torization dynamics. Indeed, (1’) is equivalent to

D̃−1
− D̃+ = D+D−1

− , (2’)

which precisely means that the operator L̃ := D̃−1
− D̃+ associated with D̃± is obtained 

from the operator L := D−1
− D+ associated with D± by means of refactorization (17).

To prove the fourth statement (the mapping ΨJ± is Poisson), depict (2’) as the fol-
lowing commutative diagram:

PBDOn(J+) × PBDOn(J−) /H ×̃H PBDOn(J+) × PBDOn(J−) /H ×̃H

PBDOn(J−)−1PBDOn(J+) /AdH

D+D−1
−

ΨJ±

D−1
− D+

Note that the left diagonal arrow is well-defined because by Lemma 4.10 almost every 
right quotient D+D−1

− can be rewritten as a left quotient D̃−1
− D̃+, so

PBDOn(J+)PBDOn(J−)−1 = PBDOn(J−)−1PBDOn(J+),

up to Zariski closed subsets (Lemma 4.10 is only one containment direction, while 
the opposite one can be proved by applying the lemma to dual operators, as in 
Lemma 4.11). Furthermore, the diagonal arrows are Poisson, since multiplication in 
IΨDOn is Poisson, inversion is anti-Poisson, and the Poisson structure on the space 
PBDOn(J+) ×PBDOn(J−) of pairs of operators is defined by reversing the structure on 
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the factor corresponding to D−. Also notice that by item 3 the right diagonal arrow is 
generically invertible. So, ΨJ± is a composition of Poisson maps and hence Poisson, as 
stated.

Finally, we prove the fifth statement (central functions of L are Poisson-commuting 
first integrals of the map ΨJ±). Central functions on IΨDOn applied to L are preserved 
by the map ΨJ± due to representation (18) so it suffices to prove that they commute. 
More precisely, we need to establish Poisson commutativity for the pull-backs of central 
functions on IΨDOn by the map (16). But that follows from commutativity of central 
functions on IΨDOn along with the fact that (16) is a Poisson map (proved in item 4). 
So, Theorem 4.1 is proved. �
4.2. Scaling invariance

Most of the known constructions of first integrals and Lax representations for 
pentagram-type maps are based on scaling symmetries. A scaling symmetry is a 1-
parametric group of transformations of the polygon space which commutes with the 
pentagram map. In most cases such symmetries were guessed by studying explicit for-
mulas for the corresponding map, and their geometric meaning is not known. The aim 
of this section is to show that the scaling symmetry is an immediate corollary of our 
construction.

Proposition 4.12. The map ΨJ± , described in Theorem 4.1, commutes with a 1-
parametric group Rw of transformations which is defined, in terms of difference op-
erators, as

D+,D− �→ D+, wD−. (21)

In terms of the Lax operator, this transformation is simply rescaling:

L(z) �→ w−1L(z). (22)

Remark 4.13. Transformation (21) commutes with the left-right H ×̃H action (5) (while 
(22) commutes with the conjugation action) and hence can be viewed as a map from the 
space PBDOn(J+) × PBDOn(J−) / H ×̃H (which is where the map ΨJ± is defined) to 
itself.

Proof of Proposition 4.12. Indeed, the defining equation (1’) of the map ΨJ± is invariant 
under the transformation D− �→ wD−, D̃− �→ wD̃−, while the Lax form (18) is invariant 
under rescaling. �
Proposition 4.14. In the case of the classical pentagram map, as well as in short-diagonal 
and dented cases, transformations Rw defined in Proposition 4.12 coincide with scaling 
transformations introduced for these maps in [29,16,17].
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Proof. The proof is achieved by introducing coordinates on the polygon space and 
rewriting the scaling symmetry in those coordinates. As an example, let us consider 
short-diagonal maps in RP2k (the proof in other cases is analogous). This corresponds 
to J+ = {0, 2, 4, . . . , 2k}, J− = {1, 3, 5, . . . , 2k + 1} (see Table 1). The phase space 
of the associated short-diagonal map is the space Pn(J) / PGL, with J = J+ � J− =
{0, . . . , 2k + 1}, of arbitrary (twisted) polygons in RP2k, modulo projective equivalence. 
In terms of difference operators, it is the space of operators supported in J and consid-
ered modulo the left-right action (5) of H ×̃H. As can be seen from [16, Section 3.2], as 
well as from [21, Section 8.2], if gcd(2k+1, n) = 1, then every orbit of the H ×̃H action 
has a unique representative of the form

D = 1 +
2k∑
j=1

ajT
j − T 2k+1. (23)

Thus, one can take entries of the sequences aj , j = 1, . . . , 2k, as coordinates on the 
polygon space. To write our scaling transformation Rw in these coordinates, we need to 
apply it to operator (23), which gives

D′ = 1 +
2k−1∑
j=1

wajT
j +

2k∑
j=2

ajT
j − wT 2k+1, (24)

and then normalize, i.e. find an operator D̃ of the form (23) which belongs to the same 
orbit of the H ×̃H action as (24). Note that since the constant term of D′ is already 
of necessary form, it remains to normalize the coefficient of T 2k+1, which can be done 
using only the conjugation action of H. The condition for αD′α−1, where α ∈ H, to have 
coefficient of T 2k+1 equal to −1 is αi+2k+1α

−1
i = w. This has a quasi-periodic solution 

αi = λi, where λ is such that λ2k+1 = w. Computing D̃ = αD′α−1 with such α, we find 
that its coefficients ãk are given by

ãj = wλ−jaj = λ2k+1−jaj

when j is odd, and

ãj = λ−jaj

when j is even. Upon a parameter change s = λ−2 = w− 2
2k+1 , this coincides with formulas 

for the scaling given in [16, Section 9]. �
Remark 4.15. In [16], the invariance of short-diagonal maps under scaling was only estab-
lished in dimensions ≤ 6, while the general case was proved in [19]. With our definition, 
the invariance of pentagram maps under scaling is immediate.
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Corollary 4.16. For the classical, as well as short-diagonal and dented maps, first integrals 
obtained from our construction coincide with the ones obtained in [24,16,17].

Proof. Indeed, according to Corollary 4.5, our integrals can be interpreted as spectral 
invariants of the monodromy for polygons obtained from the initial one by means of 
scaling Rw. But this is exactly the definition of first integrals in [24,16,17]. �
Remark 4.17. For corrugated maps of [9] our first integrals also coincide with the known 
ones. In fact, one can show more: for these maps, our refactorization description (17) is 
equivalent to the one given in [9, Proposition 4.10]. The refactorization description of 
[9] looks more complicated because it is given in terms of actual loop group elements 
(equivalently, pseudo-difference operators) A1(z), A2(z), as opposed to elements of the 
quotient by the H ×̃H action. Rewriting refactorization on the quotient as operator 
refactorization involves choosing a section of the action, which complicates the resulting 
formulas.

4.3. Poisson brackets for the short-diagonal map in 3D

In this section we derive explicit formulas for Poisson brackets preserved by the short-
diagonal pentagram map in 3D. The corresponding sets J± are J+ = {−2, 0, 2}, J− =
{−1, 1} (the choice J+ = {0, 2, 4}, J− = {1, 3} indicated in Table 1 leads to the same 
map up to the shift of indices and hence gives rise to the same Poisson bracket). The 
phase space of the associated map is the space of all twisted n-gons in RP3 modulo 
projective equivalence. We coordinatize that space as in [16, Section 5.2], namely we 
assign to a twisted n-gon {vi ∈ RP3} three periodic n-sequences xi, yi, zi defined as the 
following negative cross-ratios:

xi := −[vi+4, vi+5, 〈vi, vi+1, vi+2〉 ∩ 〈vi+4, vi+5〉, 〈vi+1, vi+2, vi+3〉 ∩ 〈vi+4, vi+5〉],

yi := −[vi, vi+1, 〈vi+2, vi+3, vi+4〉 ∩ 〈vi, vi+1〉, 〈vi+2, vi+4, vi+5〉 ∩ 〈vi, vi+1〉],

zi := −[vi+4, vi+5, 〈vi, vi+1, vi+3〉 ∩ 〈vi+4, vi+5〉, 〈vi+1, vi+2, vi+3〉 ∩ 〈vi+4, vi+5〉].

Proposition 4.18. In these coordinates, the Poisson structure for the short-diagonal pen-
tagram map in RP3 takes the following form:

{xi, xi+1} = xixi+1, {xi, xi+2} = xixi+2wi+1, {yi, yi+2} = yiyi+2wi+1, {zi, zi+2} = zizi+2wi

{xi, yi−2} = xiyi−2wi−1, {xi, yi+2} = −xiyi+2wi+1,

{xi, zi−1} = xizi−1(wi−1 − 1), {xi, zi+1} = xizi+1, {xi, zi+3} = −xizi+3wi+1,

{yi, zi−1} = yizi−1(1 − wi−1), {yi, zi+1} = −yizi+1, {yi, zi+3} = yizi+3wi+1,

where wi := yi+1zi.
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Proof. A direct computation shows that for any difference operator D = aT−2 + bT−1 +
c + dT + eT 2 representing the polygon {vi}, the coordinates xi, yi, zi can be expressed 
in terms of coefficients of D as follows:

xi−2 = − ci+1ei
didi+1

, yi−2 = −ai+1di
bici+1

, zi−2 = − bi+1ei
cidi+1

. (25)

The Poisson bracket between coefficients of D is, by construction, the product bracket 
corresponding to the decomposition D = D+ + D−, where D+ = aT−2 + c + eT 2, 
D− = bT−1 + cT . The bracket on operators D+ is defined as the restriction of the 
bracket π(2) on 2-sparse operators, while the D− part is endowed with the negative of 
that bracket. Similarly to Example 3.28, we get

{ai, ci} = 1
2aici, {ai, ei} = 1

2aiei, {ci, ei} = 1
2ciei, {ci, ai+2} = 1

2ciai+2,

{ci, ci+2} = ai+2ei, {ei, ci+2} = 1
2eici+2, {ei, ai+4} = 1

2eiai+4

and

{bi, di} = −1
2bidi, {di, bi+2} = −1

2biai+2.

It now remains to compute the brackets of functions (25) using these formulas. This is 
done by a straightforward calculation. �
Remark 4.19. As shown in [16, Theorem 5.6], the short-diagonal map in xyz-coordinates 
reads

x̃i = xi+1
αi

βi
, ỹi = xi−1yi−2zi

xizi−1

βi−1βi+2

αiβi+1
, z̃i = xi+1zi

xi

βi−1βi+2

αi−1βi
,

where

αi := 1 + yi−1 + zi+2 + yi−1zi+2 − yi+1zi, βi := 1 + yi−1 + zi.

It follows from our construction that this map preserves the above bracket. This can of 
course be verified with a computer algebra system.

4.4. Refactorization and Y-meshes

In this section we outline the connection between the refactorization description of 
higher pentagram maps and the description in terms of Y-meshes given in [12]. Although 
we only consider the example of a short-diagonal pentagram map in RP3, it is quite likely 
that all the same arguments work for more general maps in any dimension.



A. Izosimov / Advances in Mathematics 404 (2022) 108476 37
Fig. 2. A Y-pin corresponding to the short-diagonal map in 3D.

Let us briefly recall the Y-mesh description of the short-diagonal map from [12]. A Y-
pin S is four distinct points S = {a, b, c, d ∈ Z2}, satisfying certain technical conditions. 
Given a Y-pin S = {a, b, c, d}, a Y-mesh of type S and dimension d is a map v : Z2 → Pd

such that the points v(r + a), v(r + b), v(r + c), v(r + d) are collinear for any r ∈ Z2. 
One can view any Y-mesh as a polygon depending on a discrete time variable t ∈ Z. By 
definition, the i’th vertex of the polygon at time t is given by v(i, t). In what follows, 
we will only consider Y-meshes such that v(i + n, t) = φ(v(i, t)) for a fixed projective 
transformation φ. In other words, we assume that all the polygons defined by the Y-mesh 
are twisted n-gons with the same monodromy.

The collinearity assumption on v(r + a), v(r + b), v(r + c), v(r + d) defines a relation 
between the polygon v(∗, t) and the polygons corresponding to several previous time 
instances. Thus, Y-meshes can be regarded as dynamical systems. Since the polygon 
v(∗, t) may be expressed in terms of polygons corresponding to several previous values of 
time, such a dynamical system is, generally speaking, defined on the space of k-tuples of 
polygons (as opposed to pentagram maps which are defined on polygons). Furthermore, 
those polygons need to satisfy certain additional restrictions. As an example, consider 
the Y-pin S := {(−1, 0), (1, 0), (0, 1), (0, 2)} depicted in Fig. 2. In this case, the horizontal 
level v(∗, t +2) may be expressed in terms of the previous two levels. Indeed, by definition 
of a Y-mesh, the vertex v(i, t + 2) may be reconstructed as the intersection of lines 
〈v(i − 1, t), v(i + 1, t)〉 ∩ 〈v(i − 1, t + 1), v(i + 1, t + 1)〉. Thus, in this case the Y-mesh 
may be viewed as a dynamical system on pairs of polygons. These polygons satisfy two 
additional conditions:

• The vertex v(i, t +1) of the second polygon lies on the diagonal 〈v(i −1, t), v(i +1, t)〉
of the first polygon.

• The respective diagonals 〈v(i − 1, t), v(i + 1, t)〉 and 〈v(i − 1, t + 1), v(i + 1, t + 1)〉 of 
the two polygons are coplanar.

Further, the authors of [12] observe that in dimension d = 3 the square of the map

(v(∗, t), v(∗, t + 1)) �→ (v(∗, t + 1), v(∗, t + 2))
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defined by the Y-pin depicted in Fig. 2 is precisely the short-diagonal pentagram map. 
Indeed, we have v(i −1, t +1) ∈ 〈v(i −2, t), v(i, t)〉 and v(i +1, t +1) ∈ 〈v(i, t), v(i +2, t)〉, 
so the point v(i, t + 2) ∈ 〈v(i − 1, t + 1), v(i + 1, t + 1)〉 belongs to the plane 〈v(i −
2, t), v(i, t), v(i + 2, t)〉. Given also that v(i, t + 2) ∈ 〈v(i − 1, t), v(i + 1, t)〉, we get

v(i, t + 2) ∈ 〈v(i− 1, t), v(i + 1, t)〉 ∩ 〈v(i− 2, t), v(i, t), v(i + 2, t)〉,

which is precisely the definition of the short-diagonal map. Thus, the map defined by 
the Y-pin depicted in Fig. 2 can be viewed as the “square root” of the short-diagonal 
map. This square root, however, is not defined on the space of polygons itself, but on a 
certain extension of that space which consists of pairs of polygons satisfying two above-
mentioned conditions. It can be shown, using purely geometric arguments, that this 
extended space is generically a finite cover of the space of polygons. In other words, 
given a level v(∗, t) of a Y-mesh of type depicted in Fig. 2, there are generically finitely 
many ways to reconstruct the next level v(∗, t +1) and thus all subsequent levels. Below 
we give an algebraic proof, by showing that this reconstruction problem is equivalent 
to a factorization problem for the difference operator D+ corresponding to the initial 
polygon v(∗, t).

Recall that the short-diagonal map in 3D corresponds to progressions J+ = {−2, 0, 2}, 
J− = {−1, 1}. To every twisted n-gon in P 3 we can assign two operators D± ∈ DOn(J±)
supported in those sets, which identifies the short-diagonal map with refactorization 
dynamics (1’). Assume now that the polygon encoded by the operators D± is realized 
as a level v(∗, t) of a Y-mesh of type depicted in Fig. 2. Let V (i, t) be the lifts of points 
v(i, t) to R4. Since the levels v(∗, t) and v(∗, t +2) are related by the short-diagonal map, 
their lifts V (∗, t), V (∗, t + 2) may be chosen in such a way that

D+V (∗, t) = −D−V (∗, t) = V (∗, t + 2)

(cf. the proof of Theorem 1.1). Furthermore, since v(i, t +2) ∈ 〈v(i −1, t +1), v(i +1, t +2)〉, 
there exists a difference operator D(1)

+ supported in {−1, 1} such that

V (∗, t + 2) = D(1)
+ V (∗, t + 1).

Analogously, there exists a difference operator D(2)
+ supported in {−1, 1} such that

V (∗, t + 1) = D(2)
+ V (∗, t). (26)

Therefore, we have

(D+ −D(1)
+ D(2)

+ )V (∗, t) = 0.

But since both operators D+ and D(1)
+ D(2)

+ and hence their difference are supported in 
{−2, 0, 2}, it follows that
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D+ = D(1)
+ D(2)

+ .

Conversely, given such a factorization of D+, we can reconstruct the level v(∗, t + 1)
of the Y-mesh by using (26), and hence reconstruct all the subsequent levels.

Proposition 4.20. A generic difference operator D supported in {−2, 0, 2} has two fac-
torizations of the form D = D1D2, where Di’s are supported in {−1, 1}, if n is odd, and 
four such factorizations if n is even. Two factorizations D1D2 and D̃1D̃2 are considered 
the same if D̃1 = D1α

−1 and D̃2 = αD2 for a certain n-periodic non-vanishing sequence 
α.

Remark 4.21. The coefficients of the factors are, in general, complex numbers, even if 
the initial operator D is real.

Proof of Proposition 4.20. The problem is equivalent to representing an operator sup-
ported in {0, 2, 4} as a product of two operators supported in {0, 2}. If n is odd, this 
problem further reduces, using the isomorphism described in Remark 3.27, to represent-
ing an operator D supported in {0, 1, 2} as a product D1D2 of two operators supported 
in {0, 1}. The latter problem has two different solutions for generic D since D2 is a 
right divisor of D if and only it annihilates a certain element of KerD, and since D2
must be periodic, this element has to be of the two eigenvectors of the monodromy op-
erator. Similarly, if n is even, an operator supported in {0, 2, 4} can be identified with 
two (n/2)-periodic operators supported in {0, 1, 2} (see Remark 3.27), each of which has 
two different factorizations. Hence, in this case we generically have 2 × 2 = 4 distinct 
factorizations. �

Therefore, the square root of the short-diagonal map defined by the Y-pin depicted 
in Fig. 2 acts on the space which is generically a 2-to-1 or 4-to-1 covering of the space of 
polygons. This space can be described as the space of triples of operators D(1)

+ , D(2)
+ , D−, 

all of which are supported in {−1, 1}. These operators should be considered up to the 
action

D(1)
+ �→ αD(1)

+ β−1, D(2)
+ �→ βD(2)

+ γ−1, D− �→ αD−γ
−1,

where α, β, γ are n-quasi-periodic sequences with the same monodromy. This space 
projects to the space of polygons in P 3 by means of the map

D(1)
+ ,D(2)

+ ,D− �−→ D(1)
+ D(2)

+ ,D−.

Furthermore, the Y-mesh dynamics (i.e. the square root of the short-diagonal map) can 
be expressed in terms of difference operators as follows:

D̃−D(2)
+ = D̃(1)

+ D−, D̃(2)
+ = D(1)

+ ,



40 A. Izosimov / Advances in Mathematics 404 (2022) 108476
Fig. 3. A network.

which can also be described as the following refactorization:

D−1
− D(1)

+ D(2)
+ �−→ D(2)

+ D−1
− D(1)

+ .

Since D̃(2)
+ = D(1)

+ , applying this refactorization twice we obtain the operator 
D(1)

+ D(2)
+ D−1

− , which is equivalent to the short-diagonal map. Thus, the Y-mesh inter-
pretation of higher pentagram maps can be regarded as a step-by-step refactorization, 
where on each step one needs to solve a refactorization-type problem for binomial dif-
ference operators (i.e. operators whose support consists of two elements). As shown in 
[12], each of these individual steps can be identified with a sequence of mutations in an 
appropriately defined cluster algebra. We conjecture that refactorization problems for 
binomial operators always admit a cluster description. An example of that is discussed 
in the next section. Namely, we show how the refactorization description of the classi-
cal pentagram map yields a description in terms of networks, in the spirit of [9]. Since 
network moves are well-known to correspond to cluster mutations, this also provides a 
cluster algebra description.

4.5. From refactorization to networks

In this section we show how the refactorization approach to the classical pentagram 
map yields a description in terms of weighted directed networks, in the spirit of [9]. Such 
networks were introduced by A. Postnikov [26] to study totally positive Grassmannians. 
For the purposes of our paper, a network is a directed graph embedded in an infinite 
strip, as shown in Fig. 3. All vertices located at one boundary component of the strip 
are 1-valent sources labeled by integers (so there are countably many of them). Likewise, 
all vertices at the other boundary component are 1-valent sinks also labeled by integers. 
All interior vertices are 3-valent and are neither sources nor sinks. Some edges of the 
graph are assigned with numbers, called weights. If no weight is explicitly assigned, it is 
assumed that the weight of the corresponding edge is 1. We also assume for simplicity 
that there are no directed cycles.

The weight of a directed path in a network is the product of weights of edges on that 
path. The boundary measurement between the source i and sink j is the sum of weights of 
all directed paths going from i to j (we will only consider networks for which every such 
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Fig. 4. Networks representing the difference operator a + bT and its inverse.

sum is finite). The boundary measurement matrix is the bi-infinite matrix whose entries 
are the boundary measurements (below we use the convention that the (i, j) entry of 
that matrix corresponds to boundary measurement between the source j and sink i). In 
what follows, we only consider networks whose boundary measurement matrices repre-
sent difference or pseudo-difference operators. If the boundary measurement matrix of a 
certain network represents an operator, we will also say that the network itself represents 
that operator.

Example 4.22. For two bi-infinite scalar sequences a, b, consider the difference operator 
a + bT . Fig. 4 shows networks representing that operator and its inverse (which is a 
pseudo-difference operator). To prove that these two networks represent inverse opera-
tors, one considers their concatenation, i.e. glues the sinks of one network to the sources 
of the other (which corresponds to composition of the corresponding operators), and 
shows that the resulting network represents the identity operator. Note that if the oper-
ator a + bT is periodic, then these networks are also periodic and can be thought of as 
networks on a cylinder, as in [9].

Networks admit local transformations which do not change boundary measurements. 
These transformations are known as Postnikov moves. Following [9], we consider three 
types of moves depicted in Fig. 5. For the third move, the updated weights w̃, x̃, ỹ, z̃ are 
rational functions of the initial weights w, x, y, z whose particular form can be easily 
derived from preservation of boundary measurements and is irrelevant to our purposes. 
For other types of moves, weights do not change.

We now show how to use Postnikov moves to encode refactorization of pseudo-
difference operators. We will do that using the classical pentagram map as an example. 
Consider the progressions J+ = {0, 1}, J− = {2, 3}. Then the equation D̃+D− = D̃−D+, 
where the operators D± and D̃± are supported in J±, encodes the inverse pentagram 
map. Accordingly, the pentagram map itself can be described by D+D̃− = D−D̃+, which 
is the same as

D̃−D̃−1
+ = D−1

+ D−.
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Fig. 5. Postnikov moves.

Thus, an application of the pentagram map can be thought of as rewriting an operator 
of the form D−1

+ D− as D̃−D̃−1
+ . This operation can be represented as a sequence of 

Postnikov moves, as follows. The network representing D−1
+ D−, where D+ = a + bT and 

D− = cT 2 + dT 3 is basically the concatenation of networks in Fig. 4, up to a change of 
weights and shift of indices, see upper left picture in Fig. 6. Applying Postnikov moves 
as shown in the figure (the figure does not show transformations of weights since those 
are irrelevant) results in the network depicted in the bottom left picture. That resulting 
network represents an operator of the form D̃−D̃−1

+ , as can be seen by cutting it along 
the dashed line and labeling the newly obtained boundary vertices as shown (simply 
put, the left half of the new network looks the same as the right half of the initial one, 
and vice versa). Furthermore, since this new network is obtained from the initial one by 
Postnikov moves, these networks represent the same operator:

D̃−D̃−1
+ = D−1

+ D−,

as required. Thus, the pentagram map can be represented as a sequence of Postnikov 
moves. Furthermore, it is well known that Postnikov moves give rise to cluster transfor-
mations of certain variables associated with faces, which gives the cluster description of 
the pentagram map, see [9].
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Fig. 6. A network representing a pseudo-difference operator (a + bT )−1(cT 2 + dT 3) and its refactorization.

Remark 4.23. In [9], the authors consider two different networks describing the penta-
gram map, in a sense dual to each other. One of their networks coincides with the one 
shown in the upper right picture in Fig. 6, cf. [9, Figure 14]. Thus, their network is ob-
tained from ours by type 2 Postnikov moves. The advantage of our approach is that we 
obtain networks directly from the refactorization description and hence essentially from 
the geometry of the map, while in [9] the identification between maps and networks is 
done at the level of formulas.

More generally, one gets a network description for all refactorization corresponding to 
J± of the form {k, k+1}, thus recovering the results of [9]. It is an open problem whether 
it is possible to represent other pentagram maps using networks. This problem reduces 
to the question of constructing networks representing operators with support other than 
{k, k + 1}. This can definitely be done by means of factorization, as in the previous 
section. However, the weights of so obtained networks will not be rational functions in 
terms of the initial data. It is an interesting question whether one can represent an 
operator supported, say, in {0, 1, 2} by means of a network whose weights are rational in 
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terms of the operator coefficients. If this can be done, one may hope to obtain a cluster 
description of higher pentagram maps.

5. Open problems

1. Relation to cluster algebras. The classical pentagram map, as well as pentagram 
maps on corrugated polygons, can be described as sequences of cluster mutations [11,9]. 
It would be interesting to find a similar description for more general pentagram maps on 
J-corrugated polygons or, even more generally, the maps ΨJ± associated with arbitrary 
pairs of progressions with the same common difference.

Short-diagonal and dented maps were recently treated from the cluster perspective in 
[12] (see also Section 4.4 above), where the authors introduced certain variables which 
transform, under the corresponding pentagram map, according to a cluster rule. However, 
the definition of those variables involves introduction of the k’th root of the corresponding 
map, which in general results in multivalued functions on the space of polygons (as we 
show in Section 4.4, computation of such a root is equivalent to a factorization problem 
for a certain difference operator; in general, this operation cannot be performed using 
only rational functions). Do there exist single-valued cluster variables for short-diagonal, 
dented, and more general maps studied in the present paper? A possible approach to 
this problem is outlined in Section 4.5: first construct networks representing arbitrary 
difference operators and their inverses, and then show that refactorization is equivalent 
to a sequence of Postnikov moves.

A related question is whether our maps fit into a construction of [13] of integrable 
systems associated with dimer models on bipartite graphs, or perhaps some generalized 
version of it.

2. Refactorization and Y-meshes. Generalize the approach of Section 4.4 to all types 
of Y-meshes. What is the precise relation between maps described in the present paper 
and maps that admit a Y-mesh description? In particular, is it possible to interpret the 
cluster dynamics of [12] as refactorization of ratios of binomial difference operators, as 
in Section 4.4 above?

3. Maps associated with pairs of non-disjoint progressions. In this paper we con-
structed refactorization maps associated with pairs of progressions J± ⊂ Z with the 
same common difference. When these progressions are disjoint, such maps can be inter-
preted as pentagram-type maps. What is a geometric interpretation in the non-disjoint 
case?

4. The leapfrog map. Give a geometric proof of the fact that for J+ = {−1, 0}, 
J− = {0, 1} our construction leads to the leapfrog map of [9] (cf. Remark 4.7).

5. Integrability. For all maps ΨJ± associated with pairs of progressions we constructed 
a Lax representation with spectral parameter and a Poisson structure such that the first 
integrals coming from the Lax representation Poisson-commute. This suggests that all 
these maps are both algebraically and Liouville integrable. Find a proof of this fact, i.e. 
show that the joint levels sets of first integrals are Lagrangian submanifolds of symplectic 
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leaves, that each of those submanifolds can be identified with an open subset in the 
Jacobian of the corresponding spectral curve, and that a suitable power of the map ΨJ±

is a translation relative to the natural group structure on the Jacobian.
6. Difference operators with matrix coefficients and pentagram maps on Grassman-

nians. The construction of the present paper can be generalized to difference operators 
with matrix coefficients. Does this lead to pentagram maps on Grassmannians defined 
in [7]? How are the corresponding Poisson structures related to double brackets of [23]?

7. Partial difference operators and the Laplace transform. One can generalize the 
construction of the present paper to partial difference operators supported in arithmetic 
progressions J± ⊂ Z2. This leads to pentagram-type maps defined on polyhedra. The 
simplest example of such a map is the discrete Laplace transform of [5] corresponding 
to J+ = {(0, 0), (1, 0)}, J− = {(0, 1), (1, 1)}. Are maps of this type integrable?

Note that pentagram map as well as its generalizations to corrugated polygons can 
be thought of as reductions of the Laplace transform, see [1]. This should correspond to 
certain reductions of partial difference operators to ordinary ones.

8. Poisson structures on reductions of difference operators. Poisson structures stud-
ied in the present paper arise as reductions of structures on rational pseudo-difference
operators. One can also study Poisson structures on polygons arising as reductions of 
difference operators, see Remark 3.12. For example, taking d = 1 and coordinatizing the 
moduli space of polygons in RP1 by means of cross-ratios of quadruples of consecutive 
vertices, one gets the following Poisson bracket:

{xi, xi+1} = xixi+1(xi + xi+1 − 1), {xi, xi+2} = xixi+1xi+2.

This bracket is well-known in relation to the Volterra lattice and also arises in the 
study of cross-ratio dynamics on polygons [2,32]. Furthermore, this structure is often 
considered as a lattice analogue of the Virasoro algebra [6]. Similarly, computing the 
bracket on polygons in RP2, one recovers the Belov-Chaltikian lattice W3-algebra [3]. 
More generally, we believe that Poisson structures on polygons obtained by reduction 
from difference operators can be viewed as lattice versions of classical W -algebras. In 
particular, we conjecture that these structures coincide with the ones constructed by 
means of difference Drinfeld-Sokolov reduction [20]. One interesting property that such 
structures have is that, in contrast to Poisson brackets studied in the present paper, they 
restrict to the space of closed polygons.
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