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a b s t r a c t

The presence of two compatible hamiltonian structures is known to be one of themain, and
the most natural, mechanisms of integrability. For every pair of hamiltonian structures,
there are associated conservation laws (first integrals). Another approach is to consider
the second hamiltonian structure on its own as a tensor conservation law. The latter is
more intrinsic as compared to scalar conservation laws derived from it and, as a rule,
it is ‘‘simpler’’. Thus it is natural to ask: can the dynamics of a bihamiltonian system
be understood by studying its hamiltonian pair, without studying the associated first
integrals?

In this paper, the problem of stability of equilibria in bihamiltonian systems is consid-
ered and it is shown that the conditions for nonlinear stability can be expressed in algebraic
terms of linearization of the underlying Poisson pencil. This is used to study stability of
stationary rotations of a free multidimensional rigid body.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since the pioneeringworks [1–3], the presence of two compatible Hamiltonian structures is known to be one of themain,
and the most natural, mechanisms of integrability. This mechanism is responsible for the integrability of many equations
coming frommechanics, mathematical physics and geometry (see, for example, [4] and references therein). The idea is that
for every pair of Hamiltonian structures, there are associated conservation laws (first integrals).

Accordingly, a biHamiltonian structure is usually considered as a ‘‘factory of conservation laws’’. However, the second
Hamiltonian structure on its own can be considered as a tensor conservation law. The latter is more intrinsic as compared
to scalar conservation laws derived from it and, as a rule, it is ‘‘simpler’’. For example, the second Poisson structure for
the Korteweg–de Vries equation [1] is linear, while the first integrals are complicated polynomials given by a recurrence
formula. Thus it is natural to ask: can the dynamics of a biHamiltonian system be understood by studying its Hamiltonian
pair, without studying the associated first integrals?

In this paper, the problem of stability of equilibria in biHamiltonian systems is considered and it is shown that the
conditions for nonlinear stability in the biHamiltonian case can be expressed in terms of the linear part of the underlying
Poisson pencil. This linear part appears to be a collection of Lie algebras, each carrying a two-cocycle. Thus, the problem of
stability in biHamiltonian systems can be considered as algebraic.

As it was noted above, the notions ‘‘biHamiltonian’’ and ‘‘integrable’’ are closely related. For this reason, the method
discussed in this paper can be viewed as a rather general method for stability investigation in integrable systems. This paper
focuses on the finite-dimensional case, however an essential part of the construction works in infinite dimension as well.1
Also note that the theorem formulated in this paper can be easily generalized from equilibria to periodic and general quasi-
periodic trajectories.

E-mail address: izosimov@mech.math.msu.su.
1 Certainly, the infinite-dimensional case needs a separate discussion.
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To the author’s knowledge, the idea of studying dynamics by means of a biHamiltonian structure was first suggested by
Bolsinov. In his paper [5] biHamiltonian structure is used to describe the singular set of an integrable Hamiltonian system.
Further developments are presented in the papers [6,7] devoted to amore detailed analysis of singularities of biHamiltonian
systems. In particular, in [7] the notion of linearization of a Poisson pencil is introduced. This notion is used in the present
paper to express stability conditions.

As an application, the stability problem for stationary rotations of a free multidimensional rigid body is solved. On the
one hand, this problem is too complicated to be solved by a direct method (such as the Arnold method, see below), because
the first integrals are polynomials of high degree. On the other hand, the biHamiltonian structure of this problem is simple
enough (in other words, the problem has complicated scalar conservation laws, but simple tensor conservation laws). This
circumstance makes the application of the biHamiltonian approach to a multidimensional rigid body extremely effective
and provides a simple method for the determination of its stability.

2. The Arnold method

In the Hamiltonian case, stability in a linear approximation is always neutral and thus insufficient for a conclusion about
nonlinear stability. To prove nonlinear stability in a Hamiltonian system, one usually uses the Arnold method (also known
as the Energy-Casimir method, see [8]). The Arnold method can be formulated as follows:

Theorem 1. Consider a Hamiltonian system v on a Poissonmanifold. Let x be an equilibrium point of vwhich belongs to a generic
symplectic leaf O. Then x is a critical point for the restriction of the energy to O. If this critical point is a non-degenerate minimum
or maximum, then x is stable.

Since we deal with the finite-dimensional case, this method proves the nonlinear (Lyapunov) stability.
Now let the system under consideration be integrable. Then one can replace the energy in the formulation of the Arnold

method by any linear combination of the conserved quantities. The extended method can be formulated as follows:

Theorem 2. Consider an integrable Hamiltonian system v on a Poissonmanifold. Let x be an equilibrium point of vwhich belongs
to a generic symplectic leaf O. Let also f1, . . . , fn be the first integrals of the system. Suppose that there exists a linear combination
f =


aifi such that df |O = 0 and d2f |O > 0. Then x is stable.

This extended formulation of the Arnold method is a powerful tool for investigating stability in integrable Hamiltonian
systems. Nevertheless, in many dimensions it may be very complicated to compute the second differentials d2fi and find a
linear combination of them satisfying the conditions of the theorem. However, it turns out, that in the biHamiltonian case
this calculation can be replaced by a verification of a certain algebraic condition.

3. Definitions

3.1. Poisson pencils and biHamiltonian vector fields

Definition 1. Two Poisson brackets on a manifold M are called compatible, if any linear combination of them is a Poisson
bracket again. The Poisson pencil generated by two compatible Poisson brackets P0, P∞ is the set

Π = {Pλ = P0 − λP∞}λ∈R. (1)

Sometimes it also makes sense to consider λ ∈ C.

Remark 1. A Poisson pencil can also be defined as the set of all non-trivial linear combinations of two compatible brackets.
However, it makes sense to consider Poisson brackets only up to proportionality, thus these two definitions may be
considered as equivalent.

The minus sign in (1) is conventional.

Example 1. Let g be an arbitrary Lie algebra, a ∈ g∗. Consider the Lie–Poisson bracket2 given by P0(x)(ξ , η) = x([ξ, η]) and
a constant bracket given by P∞(x)(ξ , η) = a([ξ, η]), the so-called bracket ‘‘with the frozen argument’’. It is easy to see that
P0 and P∞ are compatible.

These two brackets are related to the so-called ‘‘argument shift method’’ introduced by Mishchenko and Fomenko [9].

Definition 2. A vector field is biHamiltonian with respect to a given pencil if it is Hamiltonian with respect to all brackets
of the pencil.

2 Throughout the whole paper Poisson brackets are identified with their Poisson tensors.
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3.2. Rank and spectrum of a Poisson pencil

Definition 3. The rank of a pencilΠ at a point x is the number

rankΠ(x) = max
λ∈C

rank Pλ(x). (2)

The rank of a pencilΠ (on a manifoldM) is the number

rankΠ = max
x∈M

rankΠ(x). (3)

Definition 4. The spectrum of a pencilΠ at a point x is the set

ΛΠ (x) = {λ ∈ C | rank Pλ(x) < rankΠ(x)}. (4)

Example 2. LetΠ be the pencil from Example 1. If a is regular, then the spectrumΛΠ (x) consists of λ ∈ C such that x− λa
is singular in C ⊗ g∗. If a is singular, then the spectrum additionally contains λ = ∞.

3.3. Linear Poisson pencils

Definition 5. Let g be a Lie algebra and A be a skew-symmetric bilinear form on it. Then A can be considered as a Poisson
tensor on the dual space g∗. Assume that the corresponding bracket is compatible with the Lie–Poisson bracket. In this case
the Poisson pencilΠ(g, A) generated by these two brackets is called the linear pencil associated with the pair (g, A).

Example 3. The pencil from Example 1 is linear.

The following is well known.

Proposition 1. A form A on g is compatible with the Lie–Poisson bracket if and only if this form is a Lie algebra 2-cocycle, i.e.

dA(ξ , η, ζ ) = A([ξ, η], ζ )+ A([η, ζ ], ξ)+ A([ζ , ξ ], η) = 0 (5)

for any ξ, η, ζ ∈ g.

3.4. Linearization of a Poisson pencil

Let P be a Poisson bracket. It is well-known that the linear part of P at a point x defines a natural Lie algebra structure
on Ker P(x). This Lie algebra is called the linearization of P at x. Now consider a Poisson pencil Π = {Pλ} and fix a point x.
Denote by gλ(x) the linearization of Pλ at the point x.

It turns out that apart from the Lie algebra structure gλ carries one more additional structure.

Proposition 2. 1. For any α and β the restrictions of Pα(x), Pβ(x) on gλ(x) coincide up to a multiplicative constant.
2. The 2-form Pα|gλ is a 2-cocycle on gλ.

Consequently, Pα|gλ defines a linear Poisson pencil on g∗

λ. Since Pα|gλ is defined up to a multiplicative constant, the pencil
is well-defined. Denote this pencil by dλΠ(x).

Definition 6. The pencil dλΠ(x) is called the λ-linearization of the pencilΠ at x.

The linearization of a Poisson pencil at a given point is, therefore, not a single pencil, but awhole ‘‘curve’’ of linear Poisson
pencils parametrized by λ ∈ C. However, if rankΠ(x) = rankΠ , then it is easy to see that dλΠ(x) is non-trivial only for
λ ∈ ΛΠ (x).

Example 4. Consider the pencil from Example 1. The algebra gλ(x) in this case is simply the stabilizer of x− λa. The second
form Pα|gλ is given on the stabilizer by the formula a|gλ([ξ, η]). Thus, the λ-linearization is the ‘‘restriction’’ of the initial
pencil to the stabilizer of x − λa. If λ is not in the spectrum, then this stabilizer is abelian, and the linearization is trivial.

Remark 2. Note that it is natural to expect that a ‘‘linearization’’ of an object defined on a manifold M is an object defined
on the tangent space TxM . For a λ-linearization of a Poisson pencil this is not so: it is defined on (Ker Pλ(x))∗. However, the
natural inclusion map Ker Pλ(x) → T∗

xM induces an isomorphism

TxM/TxOλ(x) ≃ (Ker Pλ(x))∗, (6)

whereOλ(x) is the symplectic leaf of Pλ passing through x. Thus, dλΠ(x) can be considered as a Poisson pencil on the quotient
TxM/TxOλ(x).
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3.5. Compact linear pencils

Let A be a 2-cocycle on a Lie algebra g. For an arbitrary element ν ∈ Ker A define the bilinear form Aν(ξ , η) = A([ν, ξ ], η).
The cocycle identity (5) implies that this form is symmetric. Furthermore, Ker Aν ⊃ Ker A, therefore Aν is a well-defined
symmetric form on g/Ker A.

Definition 7. A linear pencilΠ(g, A) is compact if there exists ν ∈ Z(Ker A) such that Aν is positive-definite on g/Ker A.

Remark 3. Z stands for the center of a Lie algebra.

Example 5. Any linear pencil on a compact semisimple Lie algebra is compact. Indeed, let g be a compact semisimple Lie
algebra. Since H2(g) = 0, any cocycle A on g has the form A(ξ , η) = ⟨a, [ξ, η]⟩, where ⟨ , ⟩ is the Killing form. It is easy to
see that for ν = a the form Aν is positive-definite on g/Ker A.

Example 6. Let g = sl(2,R). Again, any cocycle on g has the form A(ξ , η) = ⟨a, [ξ, η]⟩. Suppose that a ≠ 0. Then it is easy
to see thatΠ(g, A) is compact if and only if the Killing form is negative on a. A suitable choice of ν is ν = −a.

Example 7. Let g = Vect(S1) be a Lie algebra of vector fields on a circle and A be the Gelfand–Fuks cocycle (see [4]):

A(φ, ψ) =

 2π

0
φψ ′′′dx. (7)

Then the pencilΠ(g, A) is compact. Indeed, if we choose ν = 1, then

Aν(φ, φ) =

 2π

0
(φ′′)2dx. (8)

3.6. Geometric meaning of compactness condition

Proposition 3. Suppose that a system v is biHamiltonian with respect to a compact linear pencil. Then the origin is a stable
equilibrium of v.

The idea of the proof is that the form Aν > 0 can be used to construct a positive-definite integral of v.
A similar statement is true for nonlinear pencils, see Theorem 4. In this case stability can be studied by checking the

compactness of the linearizations. In contrast to the classical linearization procedure, which can only prove linearized
stability, biHamiltonian linearization (defined above) proves nonlinear stability.

3.7. Diagonalizability condition

Definition 8. The pencilΠ is called diagonalizable at x if

dimKer

Pα(x)|Pλ(x)


= corankΠ(x) for all λ ∈ ΛΠ (x), α ≠ λ. (9)

Remark 4. The Jordan–Kronecker theorem (see [10]) claims that two skew-symmetric forms on a vector space can be
simultaneously brought to a certain block-diagonal form. This form contains blocks of two types: Jordan blocks and
Kronecker blocks. The diagonalizability condition means that all Jordan blocks for P0(x), P∞(x) have size 2 × 2.

Example 8. LetΠ be the pencil from Example 1. Suppose that a is regular. Then the pencil is diagonalizable at x if for each
λ ∈ ΛΠ (x) the following two conditions hold:

1. The index3 of the stabilizer of x − λa equals the index of g.
2. The restriction of a to the stabilizer of x − λa is a regular element.

3 Recall that the index of a Lie algebra g can be defined as the corank of the corresponding Lie–Poisson structure, or, equivalently, as the dimension of
the stabilizer of a regular element a ∈ g∗ .
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3.8. Regularity condition

Let v be a system which is biHamiltonian with respect toΠ, v(x) = 0. Suppose that rankΠ(x) = rankΠ .

Definition 9. Say that x is regular if the following condition holds:

Ker Pα(x) = Ker Pβ(x) for all α, β ∉ Λ(x). (10)

Theorem 3 (Bolsinov and Oshemkov [6]). Let v be a system which is biHamiltonian with respect toΠ, v(x) = 0. Suppose that
rankΠ(x) = rankΠ . Then, if x is not regular, we can find an integral f of v and α ∈ R such that Pαdf (x) ≠ 0.

Consequently, if x is not regular, the whole trajectory of Pαdf passing through x consists of equilibrium points of v. In this
situation it can be shown that, provided the system is non-resonant,4 x cannot be Lyapunov stable. Therefore, it only makes
sense to study regular equilibria for stability.

4. Stability theorem

Theorem 4 (Stability Theorem). Suppose that Π is a Poisson pencil on a finite-dimensional manifold, v is biHamiltonian with
respect toΠ . Let x be an equilibrium of v. Assume that

1. rankΠ(x) = rankΠ .
2. The equilibrium x is regular.
3. The pencilΠ is diagonalizable at x.
4. For each λ ∈ ΛΠ (x) the λ-linearization dλΠ(x) is compact.

Then x is Lyapunov (nonlinearly) stable.

The proof is given in Section 6.

Remark 5. Condition 4 implies that the spectrumofΠ at x is real, since a pencil on a complex Lie algebra cannot be compact.

Theorem 4 is a biHamiltonian reformulation of Theorem 2 in the following sense. Let a system v be biHamiltonian with
respect to a pencilΠ . Then the Casimir functions of all brackets of the pencil are first integrals of v. These first integrals are
known to be in involution (see [3]). Consider the family F generated by all these first integrals. Then the following is true:
if the first condition of Theorem 4 is satisfied, then the subsequent conditions are equivalent to the existence of f ∈ F satisfying
the conditions of Theorem 2.

If F happens to exhaust all the first integrals of v, then Theorems 2 and 4 are equivalent (for generic points satisfying
rankΠ(x) = rankΠ ). This should be expected if the first integrals belonging to F are sufficient for complete Liouville
integrability of v.

Definition 10. A pencil is called Kronecker if its spectrum is empty almost everywhere.

Remark 6. This condition means that the Jordan–Kronecker normal form (see Remark 4) for P0(x), P∞(x) contains only
Kronecker blocks for almost all x.

Theorem 5 (Bolsinov [5]). Let v be biHamiltonian with respect to a pencilΠ and F be the family of first integrals of v described
above. Then the first integrals belonging to F are sufficient for complete Liouville integrability of v if and only if Π is Kronecker.

So, Theorem 4 should be the most effective for Kronecker pencils.

5. Multidimensional rigid body

5.1. Statement of the problem

It is well known that a free asymmetric three-dimensional rigid body admits three stationary rotations.5 These are the
rotations around three principal axes of inertia. The rotations around the long and the short axes are stable,while the rotation
around the intermediate axis is unstable (see [8]). The problem is to obtain a multidimensional generalization of this fact,
i.e. to study stationary rotations of a free multidimensional rigid body for stability.

This problem has been studied by many people, see [12–17]. However, no general solution is known.

4 Recall that an integrable system is called non-resonant if its trajectories are dense on almost all Liouville tori. See [11].
5 A rotation is called stationary if the axis of rotation is time independent.
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5.2. The Euler–Arnold equations and the biHamiltonian structure

The dynamics of the angular velocity matrix Ω of a free multidimensional rigid body is described by the Euler–Arnold
equations (see [8])

Ω̇J + JΩ̇ = [J,Ω2
], (11)

where J is the mass tensor (see below).

Remark 7. The proof of integrability of (11) belongs to Manakov [18]. For this reason the system (11) is also known as the
Manakov top.

The following two observations allow the application of Theorem 4 to the problem of stability of stationary rotations:

1. Stationary rotations are just the equilibria of (11).
2. The system (11) is biHamiltonian (with respect to a Kronecker pencil), as it was observed by Bolsinov [5]. The first

Poisson structure (due to Arnold) is the standard Lie–Poisson structure on so(n)∗. The second (due to Bolsinov) is also a
Lie–Poisson structure, but for a non-standard commutator on so(n) given by [X, Y ] = XJ2Y − YJ2X .

5.3. Rotation of a multidimensional body

First, consider howann-dimensional bodymay rotate. At eachmoment of timeRn is decomposed into a sumofmpairwise
orthogonal two-dimensional planesΠ1, . . . ,Πm and a spaceΠ0 of dimension n − 2m orthogonal to all these planes:

Rn
=


m
i=1

Πi


⊕Π0. (12)

There is an independent rotation in each of the planes Π1, . . . ,Πm, while Π0 is fixed.6 In other words, a rotation of a
multidimensional body can be represented as a superposition of ‘‘elementary’’ 2-dimensional rotations.

A rotation is stationary if all the planesΠ0, . . . ,Πm are time independent (this condition automatically implies that the
velocities of the rotations are also constant).

Before studying stationary rotations for stability it is necessary to find these rotations. Recall that a rotation of a generic
three-dimensional rigid body is stationary if and only if it is a rotation around one of the principal axes of inertia. In the
multidimensional case the situation is slightly more complicated. If the planes Π0, . . . ,Πm are spanned by principal axes
of inertia (such rotations are called in [19] regular), then the rotation is stationary. But the converse is not necessarily true
(see [19]). However, as it is shown in [20], the rotations which are not regular are always unstable. Therefore, it is only
necessary to consider regular stationary rotations.

5.4. Mass tensor of a rigid body

From the dynamical point of view a rigid body is characterized by its mass tensor J . The entries of this tensor are given
by

Jij =


(xi −xi)(xj −xj)dµ, (13)

wherexi are the center of mass coordinates.
A body is called asymmetric if all the eigenvalues of J are distinct.

5.5. Parabolic diagram of a regular stationary rotation

Consider a regular stationary rotation. Then, by definition, the planes Πi entering (12) are spanned by principal axes of
inertia. For each planeΠi, i > 0 let us denote by λ1(Πi), λ2(Πi) the eigenvalues of the mass tensor J corresponding to the
principal axes of inertia which spanΠi. By ω(Πi) denote the angular velocity of rotation in the planeΠi.

Draw a coordinate plane. Mark squares of all eigenvalues of J on the horizontal axis. For eachΠi draw a parabola through
λ1(Πi)

2, λ2(Πi)
2 given by y = χi(x), where

χi(x) =
(x − λ1(Πi)

2)(x − λ2(Πi)
2)

ω(Πi)2(λ1(Πi)+ λ2(Πi))2
. (14)

For all fixed principal axes draw vertical lines through the squares of corresponding eigenvalues of J .

6 Note thatΠ0 may be zero in the even-dimensional case, which means that there are no fixed axes.
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Fig. 1. Stable rotation of a three-dimensional body around the short principal axis of inertia. λ1 < λ2 < λ3 are the eigenvalues of the mass tensor.

Fig. 2. Unstable rotation of a three-dimensional body around the middle principal axis of inertia.

Definition 11. The obtained picture is called the parabolic diagram of a regular stationary rotation.

Figs. 1 and 2 illustrate two examples of parabolic diagrams.

Definition 12. 1. Two parabolas on a parabolic diagram are said to intersect at infinity if they have only one point of
intersection (of multiplicity one) or no points of intersection (neither real, nor complex).

2. Two parabolas on a parabolic diagram are said to be tangent at infinity if they have no points of intersection (real or
complex).

5.6. Stability theorems

Applying Theorem 4 we obtain the following result:

Theorem 6. Consider a regular stationary rotation of an asymmetric multidimensional rigid body. Assume that

1. All intersections on the parabolic diagram of the rotation are either real and belong to the upper half-plane or infinite.
2. There are no points of tangency on the parabolic diagram.
3. The rotation has no more than two fixed axes (dimΠ0 ≤ 2).

Then the rotation is stable.

Remark 8. Vice versa, if the parabolic diagram of a rotation contains at least one complex intersection point or an intersec-
tion at the lower half-plane, then the rotation is unstable. This is proved in [20].

For example, the rotation illustrated in Fig. 1 is stable, in Fig. 2—unstable.
The proof of Theorem 6 is the formal application of Theorem 4. Below are some brief comments on how the conditions

of Theorem 6 are related to the conditions of Theorem 4.

1. Condition 1 of Theorem 4 which reads ‘‘rankΠ(x) = rankΠ ’’ is equivalent to the condition that ‘‘the rotation has no
more than two fixed axes’’.

2. Condition 2 of Theorem 4 which reads ‘‘the equilibrium is regular’’ is equivalent to the fact that a rotation is regular.
3. The spectrum of the pencil is exactly the set of the horizontal coordinates of the intersection points on the parabolic

diagram. Thus, parabolic diagrams naturally appear in the problem.
4. Condition 3 of Theorem 4 which reads ‘‘the pencil is diagonalizable’’ is equivalent to the condition that ‘‘there are no

points of tangency on the parabolic diagram’’.
5. Condition 4 of Theorem 4 which reads ‘‘for each λ ∈ ΛΠ (x) the λ-linearization dλΠ(x) is compact’’ is equivalent to

the condition that ‘‘All intersections on the parabolic diagram of the rotation are either real and belong to the upper
half-plane or infinite’’.

Note that parabolic diagrams, which appear naturally as spectral data of the Poisson pencil associated with a rigid body,
give a visual interpretation of stability results even in the four-dimensional case,whichwas studied earlier by directmethods
in [13,15,16].

Thus the biHamiltonian approach, in this case, not only allows simpler calculations but also provides a more natural
interpretation of the results.
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6. Proof of the stability theorem

A technique similar to that used in [7] will be used to prove Theorem 4, however the proof is self-contained.

6.1. Step 1. The forms Qf

For notational simplicity denote the spectrum ofΠ at x byΛ and the cotangent space to the ambient manifoldM by V ∗.
Suppose that the equilibriumpoint x is regular. Then, by definition, Ker Pα = Ker Pβ for allα, β ∉ Λ. Denote this common

kernel by K . The regularity condition also implies that the symplectic leafs of all brackets Pα, α ∉ Λ have a common tangent
space at the point x. Denote this tangent space by O. It will be proved that under the conditions of Theorem 4 there exists
an integral f such that d2f |O(x) > 0. If this is so, then stability follows from Theorem 2.

Without loss of generality assume that ∞ ∉ Λ. Then the map P∞: V ∗/K → O is an isomorphism. Instead of d2f consider
the form Qf defined on V ∗/K by

Qf (ξ , η) = d2f (P∞ξ, P∞η). (15)

Obviously, d2f and Qf are both simultaneously positive definite.
Let α0 be larger than all elements ofΛ. Define F as the space spanned by all (local) Casimir functions of all brackets Pα ,

where α0 < α < +∞. It will be proved that there exists f ∈ F such that Qf > 0 on V ∗/K .

6.2. Step 2. Decomposition of V ∗/K

Since Ker Pα ⊃ K for each α, all forms Pα are well defined on V ∗/K . Since P∞ is non-degenerate on V ∗/K , consider the
recursion operator

R = P−1
∞

P0: V ∗/K → V ∗/K . (16)

It is easy to see that the spectrum of R coincides with the spectrum of the pencil: σ(R) = Λ. The λ-eigenspace of R is

Vλ = Ker Pλ/K . (17)

Lemma 1. Under the conditions of Theorem 4 the operator R is diagonalizable over R.

Proof. First,Λ ⊂ R (see Remark 5). Consequently, all eigenvalues ofR are real and it suffices to prove thatR is diagonalizable.
Suppose the contrary, i.e. that R has a Jordan block. Then there exists ξ ∈ Vλ, η ∈ V ∗/K such that Rη = λη+ξ . Therefore, for
all ζ ∈ V ∗/K , Pλ(η, ζ ) = P∞(ξ , ζ ). Consequently, P∞(ξ , ζ ) = 0 for all ζ ∈ Vλ. But the diagonalizability condition implies
that P∞ is non-degenerate on Vλ. The obtained contradiction proves the lemma. �

So, under the conditions of Theorem 4 there exists a decomposition

V ∗/K =


λ∈Λ

Vλ. (18)

It will be shown that all forms Qf , f ∈ F respect this decomposition.

Lemma 2. For each f ∈ F and each α < α0 there exist functionsf , f̄ ∈ F such that for any function g the following ‘‘recursion’’
relations hold:

{f , g}∞ = {f , g}α, {f , g}α = {f̄ , g}∞. (19)

Proof. First, let f be a Casimir function of Pβ , β > α0. Then

{f , g}α = {f , g}β + (β − α){f , g}∞ = (α − β){f , g}∞. (20)

Thus,f = f /(β − α), f̄ = (β − α)f are as required.
For an arbitrary f ∈ F the statement is true by linearity. �

Let Df Pα be the operator dual to the linearization of Pαdf at x. Then it is easy to see that Qf is given by the formula

Qf (ξ , η) = P∞(Df P∞(ξ), η). (21)

The operator Df Pα: V ∗
→ V ∗ can be given by an explicit formula

Df Pα(dg(x)) = d{f , g}α(x). (22)

Note that this formula, together with the Jacobi identity, implies that Df Pα is skew-symmetric with respect to Pα .
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Lemma 3. For f ∈ F the operator Df P∞ is skew-symmetric with respect to all forms Pα .

Proof. First, Df P∞ is skew-symmetric with respect to P∞. Taking into account (22) and Lemma 2, Df P∞ can be rewritten
as Df P0. Thus, this operator is skew-symmetric with respect to P∞ and P0, and, by linearity, with respect to all forms of the
pencil. �

Lemma 4. For f ∈ F the recursion operator is symmetric with respect to Qf :

Qf (Rξ, η) = Qf (ξ , Rη), (23)

and, consequently, the summands of (18) are pairwise orthogonal with respect to Qf .

Proof. Lemma 3 implies that Df P∞ commutes with R. Also note that R is symmetric with respect to P∞, and Df P∞ is skew-
symmetric with respect to P∞. Therefore

Qf (Rξ, η) = P∞(Df P∞(Rξ), η) = −P∞(Rξ,Df P∞η)

= −P∞(ξ , RDf P∞(η)) = P∞(Df P∞(Rη), ξ) = Qf (Rη, ξ). � (24)

6.3. Step 3. Positivity of Qf on Vλ

Lemma 5. Under the conditions of Theorem 4 for each λ ∈ Λ there exists fλ ∈ F such that Qfλ is positive on Vλ.

Proof. Let [, ] be the commutator in gλ = Ker Pλ. The compactness condition implies that there exists ν ∈ K such that

Aν(ξ , ξ) = P∞([ν, ξ ], ξ) (25)

is positive definite on Vλ. Take f ∈ F such that df (x) = ν. By Lemma 2 there exists f̄ ∈ F such that {f , g}λ = {f̄ , g}∞. Take
fλ = f̄ . Let ξ ∈ Vλ. Then

Qf̄ (ξ , ξ) = P∞(Df̄ P∞(ξ), ξ) = P∞(Df Pλ(ξ), ξ). (26)

Since ξ ∈ Ker Pλ, (22) implies that Df Pλ(ξ) = [df (x), ξ ]. Thus,

Qf̄ (ξ , ξ) = P∞([df , ξ ], ξ) = P∞([ν, ξ ], ξ) = Aν(ξ , ξ) > 0. � (27)

6.4. Step 4. Recursion invariance

Lemma 6. Suppose that f ∈ F and p(z) is a polynomial. Then there existsf ∈ F such that

Qf (p(R)ξ , η) = Qf (ξ , η). (28)

Proof. First suppose that p(z) = z. Since df ∈ K , there exists a Casimir function f∞ of P∞ such that df (x) = df∞(x). Formula
(22) implies that Df P∞ = Df−f∞P∞. Further, for any g such that dg = 0 the same formula (22) implies that DgPα = d2gPα ,
thus

Df P∞ = d2(f − f∞)P∞. (29)

Consequently, taking into account (21),

Qf (Rξ, η) = P∞(d2(f − f∞)P∞R(ξ), η) = P∞(d2(f − f∞)P0(ξ), η)

= P∞(Df−f∞P0(ξ), η). (30)

Note that if f − f∞ ∈ F , then, by Lemma 2, Df−f∞P0(ξ) can be rewritten as Df̄ P∞, which proves the lemma. However, f − f∞
is not in F a priori,7 therefore the following limit argument is applied.

Choose a family fα such that fα is a Casimir function of Pα and fα → f∞ as α → ∞. Then f − fα ∈ F , and, by Lemma 2,
there exists f̄α ∈ F such that {f − fα, g}0 = {f̄α, g}∞. Thus, Df−fαP0 = Df̄αP∞. So (30) gives

Qf (Rξ, η) = lim
α→∞

P∞(Df−fαP0(ξ), η) = lim
α→∞

P∞(Df̄αP∞(ξ), η) = lim
α→∞

Qf̄α (ξ , η). (31)

Consequently, the form Qf (Rξ, η) belongs to the closure of the space {Qg , g ∈ F }. But this latter space is finite-dimensional,
thus Qf (Rξ, η) = Qf (ξ , η) for somef ∈ F .

For an arbitrary polynomial the lemma is proved by induction. �

7 This can be overcome by adding Casimir functions of P∞ to F . However, this would make the proof of Lemma 2 much more complicated.
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6.5. Step 5. Completion of the proof

Let

pλ0(z) =


λ∈Λ\{λ0}

z − λ

λ0 − λ
. (32)

Then pλ(R) is the projector V ∗/K → Vλ.
By Lemma 5 there exists fλ ∈ F such that Qfλ is positive on Vλ. By Lemma 6 there existsfλ ∈ F such that

Qfλ(pλ(R)ξ , ξ) = Qfλ(ξ , ξ). (33)

Take

f =


λ∈Λ

fλ. (34)

Now claim that Qf > 0 on V ∗/K . By Lemma 4 it suffices to show that Qf is positive on each Vλ, λ ∈ Λ. Let ξ ∈ Vλ0 . Then

Qf (ξ , ξ) =


λ∈Λ

Qfλ(ξ , ξ) =


λ∈Λ

Qfλ(pλ(R)ξ , ξ) = Qfλ0
(ξ , ξ) > 0. (35)

In the last equality we used the fact that pλ(R) is a projector. The theorem is proved.
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