
| London Mathematical Society Nonlinearity

Nonlinearity 27 (2014) 1419–1443 doi:10.1088/0951-7715/27/6/1419

Stability of relative equilibria of

multidimensional rigid body

Anton Izosimov

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, GSP-1,
1 Leninskiye Gory, Main Building, 119991, Moscow, Russia
National Research University Higher School of Economics, 2 Myasnitskaya str.,
101978 Moscow, Russia

E-mail: izosimov@mech.math.msu.su

Received 31 August 2013, revised 28 January 2014
Accepted for publication 24 February 2014
Published 20 May 2014

Recommended by A Chenciner

Abstract

It is a classical result of Euler that the rotation of a torque-free three-dimensional
rigid body about the short or the long axis is stable, whereas the rotation about
the middle axis is unstable. This result is generalized to the case of a multi-
dimensional body.
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1. Introduction

1.1. Three-dimensional free rigid body

The Euler problem in rigid body dynamics is one of the following equivalent problems.

(1) The motion of a rigid body fixed at the centre of mass under no external forces.

(2) The motion of a rigid body which is free to move in space under no external forces.

The second problem is reduced to the first one by passing to the coordinate system related to
the centre of mass. In both cases we can add a constant gravity field because the resulting
torque of the gravity force with respect to the centre of mass vanishes.

Let us consider the problem of motion of a rigid body fixed at the centre of mass acted
on by no external forces. Then, as was observed by Euler, the evolution equations for the
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angular velocity do not involve the position coordinates of the body. Euler’s equations have
the form

I1 ω̇1 = (I2 − I3) ω2ω3,

I2 ω̇2 = (I3 − I1) ω3ω1,

I3 ω̇3 = (I1 − I2) ω1ω2,

(1)

where I1, I2, I3 are the principal moments of inertia and ω = (ω1, ω2, ω3) is the angular
velocity vector written in principal axes. In terms of modern geometric mechanics, this system
is obtained from the ‘rigid body fixed at the centre of mass’ problem by reduction with respect
to the SO(3) action.

Remark 1.1. Recall that the inertia tensor of a rigid body is a positive-definite quadratic form
I which characterizes the distribution of mass in the body. The eigenvalues of I are called
principal moments of inertia, and its eigenvectors are called principal axes. For a uniform
box-shaped body, principal axes coincide with the axes of symmetry, and principal moments
are inversely proportional to the lengths of these axes. See [1] for details.

If we assume that the body is asymmetric, i.e. if I1, I2, and I3 are pairwise distinct, then the
right-hand sides of equation (1) vanish simultaneously if and only if the angular velocity vector
is collinear to one of the three principal axes. Thus the fixed point set of the system (1) consists
of three mutually orthogonal straight lines. These fixed points are stationary, or permanent,
rotations of the body, i.e. such motions that the axis of rotation is time-independent. Stationary
rotations are also called relative equilibria.

As was shown by Euler, stationary rotations about different principal axes have different
dynamical features. Rotation about the axis of greatest moment of inertia or axis of least
moment of inertia is stable, whereas rotation about the intermediate axis is unstable. This can
be demonstrated by trying to spin a book about one of its symmetry axes. While the book
spins fairly well about the longest and the shortest axis, spinning about the intermediate axis
causes the book to ‘tumble’, periodically reversing the direction of rotation.

The aim of this paper is to establish a multidimensional generalization of this result. The
problem was studied by a number of authors [2–7], however the general answer has only been
obtained in dimension four. As the dimension grows, the problem becomes too complicated
from the computational point of view when being approached by direct methods. In this
paper, the problem is solved in arbitrary dimension by means of algebraic technique related to
compatible Poisson brackets and Lie algebras.

1.2. Multidimensional rigid body

The possibility to generalize the free rigid body equations to the n-dimensional case was
already mentioned by Frahm [8] and Weyl [9]. Arnold [1] observed that, after the standard
identification of R

3 with the space of skew-symmetric 3 × 3 matrices so(3), equations (1) can
be rewritten in the form

Ṁ = [M, �],

M = �J + J�,
(2)

where M ∈ so(3) is the angular momentum, � ∈ so(3) is the angular velocity, and
J = diag(J1, J2, J3) is a constant positive-definite diagonal matrix such that I1 = J2 + J3,
I2 = J1 + J3 and I3 = J1 + J2.

The multidimensional generalization of equations (2) is straightforward: we just replace
3×3 matrices by n×n matrices. A somewhat better approach is to generalize not the equations
but the problem. Consider an n-dimensional rigid body fixed at the centre of mass acted on by
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no external forces. Fix a space frame and a body frame both centred at the centre of mass of
the body. Let X(t) ∈ SO(n) be the position of the body frame with respect to the space frame.
Define � = X−1Ẋ. This matrix is skew-symmetric and is called the angular velocity matrix.
Define also a symmetric matrix J by

Jij =
∫

xixj dµ,

where the coordinates xi are related to the body frame, and dµ is the density of the mass
distribution. Then it can be proved that the evolution of the angular velocity matrix � is
governed by equations (2). Note that equations (2) are equivalent to the conservation of the
angular momentum in the space frame

d

dt
(XMX−1) = 0.

See [1, 10] for details.

Remark 1.2. Following [11], we suggest that J is called the mass tensor. The mass tensor
should not be confused with the inertia tensor. The inertia tensor is the map I: so(n) → so(n),
which is given by I(�) = J� + �J. In three dimensions so(3) may be identified with R

3,
which may lead to a confusion between I and J . In higher dimensions these two operators act
on different spaces.

1.3. Multidimensional rigid body as a completely integrable system

Arnold showed that the system (2) is Hamiltonian with respect to the Lie–Poisson bracket on
the dual of the Lie algebra so(n), and therefore the invariants of the coadjoint representation
are the first integrals of the system. These first integrals are trivial in the sense that they are
Casimir functions of the Lie–Poisson bracket and do not correspond to symmetries. Later,
Mishchenko [12] found a family of non-trivial quadratic first integrals. They were shown to
be involution with respect to the Lie–Poisson bracket by Dikii [13]. Dikii also observed that
in the four-dimensional case Mishchenko’s first integrals are sufficient for complete Liouville
integrability. In his famous paper [14], Manakov showed that equations (2) can be rewritten
in the form

d

dt
(M + λJ 2) = [M + λJ 2, � + λJ ],

which implies that the functions fλ,k = Tr (M + λJ 2)k are first integrals1. Later it was proved
by Mishchenko and Fomenko [15] and Ratiu [10] that these first integrals Poisson-commute
and are sufficient for complete Liouville integrability.

Note that we will not be using the integrals of the system in their explicit form: they are
complicated polynomials not easy to deal with. Instead of considering the integrals, we will
make use of the bi-Hamiltonian structure of the system, which encodes all the information
about them. The bi-Hamiltonian structure of (2) was discovered by Bolsinov [16, 17]2.

1.4. Stability for the multidimensional rigid body

Below we discuss what is known about stability of stationary rotations in the multidimensional
case. A more detailed comparison of previously known results with the results of this paper
can be found in section 2.3.

1 Manakov also showed that the system (2) can be embedded into a large class of integrable systems which are now
called Manakov tops. Note that all the results of this paper remain true for all generic Manakov tops.
2 The same bi-Hamiltonian structure was later rediscovered by Morosi and Pizzocchero [18].
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The first topological description of the four-dimensional rigid body problem was obtained
by Oshemkov [2], who constructed bifurcation diagrams of the moment map. As it is clear
now, these diagrams can be used, in principle, to study stability of stationary rotations3.

The solution of the stability problem in dimension four was obtained by Fehér and
Marshall [3], and later by another approach by Birtea and Caşu [5], Birtea et al [7]. In
this paper these results receive a geometric interpretation (see example 2.3).

There was also an attempt to solve the stability problem in five dimensions, however only
partial results are available, see Caşu [6].

The multidimensional situation was studied in the thesis of Spiegler [4]. He gave a
sufficient condition for a stationary rotation to be stable in arbitrary even dimension. However,
as follows from the results of this paper, this condition is far from necessary and sufficient (see
example 2.5).

In this paper, the stability problem is solved almost completely in arbitrary dimension by
means of the bi-Hamiltonian approach. The bi-Hamiltonian approach for studying topology
and stability in integrable systems was suggested and developed in [21–23].

We also refer the reader to the author’s preprint [24] where the stability problem for the
multidimensional rigid body is studied by means of algebraic geometry.

1.5. Structure of the paper

The paper is organized as follows. All main results are contained in section 2. Section 2.1 is
devoted to the classification of stationary rotations. In section 2.2, the notion of a parabolic
diagram is defined and the main stability theorem is formulated. Section 2.3 contains some
examples and compares the results of the paper to previously known results. In section 3, the
machinery which allows to prove stability in bi-Hamiltonian systems is presented. In section 4,
the bi-Hamiltonian structure of the multidimensional rigid body is introduced. The proof of the
main theorem is in sections 5 and 6. Finally, the appendix contains the explicit classification
of Lie algebras gλ, which arise in the bi-Hamiltonian geometry of the multidimensional rigid
body.

2. Main results

2.1. Stationary rotations

We study the equations

Ṁ = [M, �],

M = �J + J�,
(3)

where M ∈ so(n) is called the angular momentum matrix4, � ∈ so(n) is called the angular
velocity matrix and J is a positive symmetric matrix called the mass tensor. Without loss of
generality we may assume that J is diagonal.

3 See [19] where the relation between topology and stability in integrable systems is discussed. Also note that the
topological approach to integrable systems was first proposed in the classical work of Smale [20].
4 To be precise, the angular momentum M belongs to the dual space so(n)∗. In what follows, we identify so(n) and
so(n)∗ by means of the Killing form Tr XY .
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Before describing stationary rotations, consider how an n-dimensional body may rotate.
At each moment of time, the angular velocity matrix � may be brought to a canonical form

� =




0 ω1

−ω1 0

. . .

0 ωm

−ωm 0

0

. . .




(4)

by an orthogonal transformation. In other words, R
n is decomposed into a sum of m

pairwise orthogonal two-dimensional planes �1, . . . , �m and a space �0 of dimension n−2m

orthogonal to all these planes:

R
n =

(
m⊕

i=1

�i

)
⊕ �0. (5)

There is an independent rotation in each of the planes �1, . . . , �m, while �0 = Ker � is
immovable.

Definition 1. The eigenvectors of J are called principal axes of inertia.

A classical three-dimensional result states that a rotation is stationary if and only if it is a
rotation about a principal axis of inertia. In the multidimensional case, this is not always so.
Stationary rotations of a multidimensional rigid body are described in [25].

Proposition 2.1. Consider the system (3). Suppose that J has pairwise distinct eigenvalues.

Then M is an equilibrium point of the system if and only if there exists an orthonormal basis

such that J is diagonal, and � is block-diagonal of the following form

� =




ω1�1

. . .

ωk�k

0

. . .




,

where �i ∈ so(2mi) ∩ SO(2mi) for some mi > 0, and ωis are distinct positive real numbers.

Definition 2. A stationary rotation M is regular if there exists an orthonormal basis such that
J is diagonal, and � is of the form (4). Otherwise, M is exotic.

In other words, a rotation is regular if all the planes �i entering (5) are spanned by principal
axes of inertia. Note that if all non-zero eigenvalues of � are distinct, then the rotation is
automatically regular. In the three-dimensional case, all stationary rotations are regular.

In this paper, only regular stationary rotations are considered.

Remark 2.1. It was asserted in the announcement [26] as well as in the earlier version of this
paper that all exotic stationary rotations are unstable, however some technical details in the
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Figure 1. Parabolic diagrams for the three-dimensional rigid body. Rotations around
the long, middle and short axes of inertia, respectively.

proof are still to be completed5. The proof will be published elsewhere. Also note that exotic
stationary rotations arise as relative equilibria of the n point masses problem [28].

The main problem of the paper is to study regular stationary rotations for Lyapunov stability.
It will be assumed that the body is asymmetric, i.e. all eigenvalues of J are pairwise distinct.

2.2. Parabolic diagrams and stability

Consider a regular stationary rotation. Then there exists an orthonormal basis such that J is
diagonal, and � is given by (4). In other words, there exists a decomposition (5) in which all
planes �i are spanned by principal axes of inertia.

Define the notion of the parabolic diagram of a regular stationary rotation.

(1) Draw a coordinate plane.
(2) For each 2-plane �i, i > 0, draw the parabola given by y = χi(x) where

χi(x) =
(x − λ2

i1)(x − λ2
i2)

ω2
i (λi1 + λi2)2

, (6)

ωi is the frequency of rotation in the plane �i and λi1, λi2 are the eigenvalues of J

corresponding to the eigenvectors ei1, ei2 ∈ �i .
(3) For each immovable principal axis e0 ∈ �0, draw a vertical straight line through λ2 where

λ is the eigenvalue of J corresponding to the eigenvector e0.

As a result, there is either a parabola or a vertical straight line passing through the square of
each eigenvalue of J .

Definition 3. The obtained picture is the parabolic diagram of a regular stationary rotation.

Parabolic diagrams for the three-dimensional rigid body are depicted in figure 1. See
section 2.3 for more examples.

The following theorem is the main result of the paper.

Theorem 1. Consider a regular stationary rotation of a multidimensional rigid body.

(1) Assume that

(a) all intersections in the associated parabolic diagram are either real and belong to

the upper half-plane, or infinite;

5 Namely, we can prove that all exotic equilibria are unstable provided that (3) is known to be a non-resonant system,
which means that trajectories of the system are dense on almost all Liouville tori. Moreover, we can prove that the
non-resonant condition is satisfied for a certain open subset of the phase space. Since the system is analytic, this
should imply that it is non-resonant everywhere [27], however the proof of this latter assertion is unknown to the
author.
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Figure 2. Parabolic diagrams for the four-dimensional rigid body. Stable rotation.
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Figure 3. Parabolic diagram for the four-dimensional rigid body. Unstable rotation.

(b) the are no tangency points in the parabolic diagram.

Then the rotation is stable.

(2) Assume that there is at least one intersection in the parabolic diagram which is either

complex or belongs to the lower half-plane. Then the rotation is unstable.

Remark 2.2. When speaking about real, complex or infinite intersections, the parabolic
diagram is considered as a curve in CP2.

Remark 2.3. In [22], a weaker version of the first statement of theorem 1 was announced. It
included an additional requirement that dim �0 � 2. In this paper, the technique of [22] is
extended, so that the mentioned requirement could be omitted: it seems to be quite natural to
consider rotations with a large number of fixed axes.

Remark 2.4. Note that this theorem solves the stability problem for an open dense subset of
regular stationary rotations.

Remark 2.5. It is proved in the preprint [24] that condition 1(b) of theorem 1 can be omitted,
so a regular stationary rotation is stable if and only if all intersections in the associated parabolic
diagram are either real and belong to the upper half-plane, or infinite. The proof uses methods
from algebraic geometry.

2.3. Examples

Example 2.1 (Three-dimensional rigid body). Parabolic diagrams for the three-dimensional
rigid body are depicted in figure 1. The classical results on stability are immediately recovered.

Example 2.2 (Four-dimensional rigid body). Let e1, e2, e3, e4 be the principal axes sorted
in order of increasing eigenvalues of J . There are three possibilities.

(1) �1 = 〈e1, e2〉, �2 = 〈e3, e4〉. The rotation is stable (see figure 2; note that there is an
intersection at infinity in the second diagram).

(2) �1 = 〈e1, e3〉, �2 = 〈e2, e4〉. The rotation is unstable (see figure 3).
(3) �1 = 〈e1, e4〉, �2 = 〈e2, e3〉. In this case, stability depends on the ratio of angular

velocities. If ω1 ≫ ω2, then the rotation is unstable (see figure 4; note that there is a
complex intersection in the second diagram). If ω1 ≪ ω2, then the rotation is stable
(see figure 5).
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Figure 4. Parabolic diagrams for the four-dimensional rigid body. Unstable rotation.
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Figure 5. Parabolic diagram for the four-dimensional rigid body. Stable rotation.
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Figure 6. Parabolic diagram for the four-dimensional rigid body. Hamiltonian Hopf
bifurcation.

The conclusions of items (1), (2), (3) above coincide with the results of [3,5,7]. Of course, the
papers [3, 5, 7] do not use the language of parabolic diagrams and give stability conditions in
terms of some inequalities. However, the translation from the language of parabolic diagrams
to the language of inequalities is straightforward.

Note that there is a case with a tangency point in the upper half-plane (figure 6) when
theorem 1 is not applicable. It is claimed in [3, 7] that this rotation is unstable, however this
conclusion seems to be incorrect. This follows from the results of [24] and can also be deduced
from the bifurcation diagrams constructed by Oshemkov [2].

Example 2.3 (Two-dimensional rotation). Suppose that there is only one plane of rotation
�1, i.e. the body is rotating about a subspace of codimension two. Sort principal axes in order
of increasing eigenvalues of J . Then theorem 1 implies that the rotation is stable if and only
if the plane of rotation is spanned by two adjacent axes: �1 = 〈ei, ei+1〉. This result can be
viewed as a natural generalization of the Euler theorem.

Example 2.4 (Rotation with one fixed axis). Suppose that there is only one fixed axis, i.e.
�0 is one-dimensional. Sort principal axes in order of increasing eigenvalues of J . Assume
that the fixed axis is in the even place (2nd, or 4th, or 6th, . . . ). Then the rotation is unstable.
This result can also be viewed as a natural generalization of Euler’s theorem about instability
of rotation about the middle axis.
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Example 2.5 (Spiegler’s theorem). Below is the main result of the work [4], reformulated in
terms of this paper.

Theorem 2 (Spiegler [4]). Consider a regular stationary rotation of a 2m-dimensional rigid

body. Sort principal axes in order of increasing eigenvalues of J . Assume that

(1) all planes of rotation are spanned by two adjacent axes: �1 = 〈e1, e2〉, �2 = 〈e3, e4〉, . . .;
(2) |ω1| > . . . > |ωn|, or |ω1| < . . . < |ωn|.

Then the rotation is stable.

It is easy to see that theorem 1 implies theorem 2. Moreover, theorem 1 implies that condition 2
of theorem 2 can be omitted, and there are many more stability cases not covered by the result
of Spiegler (see e.g. figure 2).

Note that Spiegler’s approach to the problem is based on the method known as the Arnold
energy-Casimir method (see [1, 29]). As he proves, condition of theorem 2 is necessary and
sufficient for the Hessian of the energy to be positive-definite on the coadjoint orbit. By
comparing theorem 2 with theorem 1, we conclude that for the majority of stable stationary
rotations the Hessian of the energy is indefinite, so the energy-Casimir method fails. For these
rotations, another Lyapunov function is needed to prove stability. Such a function can be
explicitly found in small dimensions, as was done in [3, 5, 6], however it is not clear how to
proceed for general n. The method of this paper allows to prove the existence of a Lyapunov
function without finding it explicitly.

3. Bi-Hamiltonian structures and stability

In this section, basic definitions and theorems related to stability in bi-Hamiltonian systems
are formulated. Most of them can be found in [22, 23]. Basic notions from Poisson geometry
used throughout the section can be found in [30].

3.1. Basic notions

Definition 4. Two Poisson brackets on a manifold M are called compatible, if any linear
combination of them is a Poisson bracket again. The Poisson pencil generated by two
compatible Poisson brackets P0, P∞ is the set

� := {Pλ = P0 − λP∞}λ∈C
.

A vector field X is bi-Hamiltonian with respect to a pencil � if it is Hamiltonian with respect
to all brackets of the pencil, i.e. for any λ ∈ C there exists a (complex-valued) smooth function
Hλ such that

X = Pλ dHλ.

The notion of a bi-Hamiltonian system was introduced by Magri [31], Gel’fand and Dorfman
[32].

Remark 3.1. For complex values of λ, the bracket Pλ should be treated as a complex-valued
Poisson bracket on complex-valued functions. The corresponding Poisson tensor is a bilinear
form on the complexified cotangent space at each point.

Definition 5. The rank of a pencil � at a point x is the number

rank �(x) := max
λ∈C

rank Pλ(x).
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The rank of a pencil � (on a manifold M) is the number

rank � := max
x∈M

rank �(x).

Definition 6. The spectrum of a pencil � at a point x is the set

��(x) := {λ ∈ C | rank Pλ(x) < rank �(x)}.

When � is fixed, the notation �(x) is also used.
By gλ(x), denote the Lie algebra structure defined on Ker Pλ(x) by the linear part of Pλ

at the point x. The commutator in gλ is given by

[ξ, η]λ := d{f, g}λ(x),

where ξ, η ∈ Ker Pλ, and f, g are any smooth functions such that df (x) = ξ, dg(x) = η.
The algebra gλ(x) is mainly considered only for λ ∈ �(x).

Remark 3.2. For λ ∈ R, the algebra gλ is real. However, for complex values of λ, the space
Ker Pλ(x) is a subspace of T∗

xM ⊗C, and therefore gλ is considered as a complex Lie algebra.

Let X be a system which is bi-Hamiltonian with respect to �, and let x be an equilibrium
point of X.

Definition 7. Say that x is regular if the following condition holds:

Ker Pα(x) = Ker Pβ(x) for all α, β /∈ �(x).

Remark 3.3. Under some additional technical assumptions, regularity is equivalent to the
following: x is an equilibrium for all systems which are bi-Hamiltonian with respect to the
pencil � (see [21, 22]). Equilibria not satisfying this condition are normally unstable.

For a regular equilibrium x, denote Ker(x) := Ker Pα(x) = Ker Pβ(x). It is easy to see that
Ker(x) ⊂ gλ(x) is a Lie subalgebra for each λ.

3.2. Spectral formula for bi-Hamiltonian systems

Let x be a regular equilibrium of a bi-Hamiltonian system X = Pλ dHλ(x). Let ξ ∈ gλ(x) =
Ker Pλ(x). Denote

adλξ(η) := [ξ, η]λ,

where [ , ]λ is the commutator in gλ(x).
Note that Pλ dHλ(x) = X(x) = 0, so dHλ(x) ∈ Ker Pλ(x) = gλ(x). Consequently, the

operator adλ dHλ(x) is well-defined.

Proposition 3.1. The subalgebra Ker(x) ⊂ gλ(x) is invariant with respect to adλ dHλ(x), i.e.

[dHλ(x), Ker(x)]λ ⊂ Ker(x).

Proof. Let ξ ∈ Ker(x). By definition,

[dHλ(x), ξ ]λ = d{Hλ, g}λ(x),

where g is any function such that dg(x) = ξ . Further,

{Hλ, g}λ = X(g) = {Hα, g}α
for any α ∈ C. So,

[dHλ(x), ξ ]λ = d{Hα, g}α(x) = [dHα, ξ ]α.

If α /∈ �(x), then [dHα, ξ ]α ∈ Ker Pα(x) = Ker(x), so [dHλ(x), ξ ]λ ∈ Ker(x). �
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Let x be a regular equilibrium point of a bi-Hamiltonian system. Then all symplectic
leaves of generic brackets Pα, α /∈ �(x) are tangent to each other. Denote their common
tangent space by T(x).

The following statement is used to find the spectrum of a bi-Hamiltonian system linearized
at a regular equilibrium point.

Lemma 3.1. Suppose that � is a Poisson pencil on a finite-dimensional manifold, and

X = Pλ dHλ is a system which is bi-Hamiltonian with respect to �. Let x be a regular

equilibrium of X.

Then the spectrum of the linearization of X at x restricted to T(x) is given by

σ(dX |T(x)) =
⋃

λ∈�(x)

σ
(
(adλ dHλ(x)) |gλ(x)/Ker(x)

)
,

where σ(P ) stands for the spectrum of the operator P .

Note that the restriction of adλ dHλ(x) to gλ(x)/Ker(x) is well-defined since Ker(x) is invariant
with respect to adλ dHλ(x) (see proposition 3.1).

The proof of lemma 3.1 easily follows from the results of [22, 23].

3.3. Linearization of a Poisson pencil and nonlinear stability

Definition 8. Let g be a (real or complex) Lie algebra, and let B be a skew-symmetric bilinear
form on g. Then B can be considered as a Poisson tensor on the dual space g∗. Assume that
the corresponding bracket is compatible with the Lie–Poisson bracket. In this case the Poisson
pencil �(g, B) generated by these two brackets is called the linear pencil associated with the
pair (g, B).

Proposition 3.2. A form B on g is compatible with the Lie–Poisson bracket if and only if this

form is a Lie algebra 2-cocycle, i.e.

dB(ξ, η, ζ ) := B([ξ, η], ζ ) + B([η, ζ ], ξ) + B([ζ, ξ ], η) = 0

for any ξ, η, ζ ∈ g.

Below is the central construction of the theory discussed in the present section. Let � be an
arbitrary Poisson pencil on a manifold M, and x ∈ M. As before, denote the Lie algebra on
Ker Pλ(x) by gλ(x). It turns out that apart from the Lie algebra structure, gλ carries one more
additional structure.

Proposition 3.3.

(1) For any α and β the restrictions of Pα(x), Pβ(x) on gλ(x) coincide up to a constant factor.

(2) The 2-form Pα|gλ
is a 2-cocycle on gλ.

Consequently, Pα|gλ
defines a linear Poisson pencil on g∗

λ. Since Pα|gλ
is defined up to a

constant factor, the pencil is well-defined. Denote this pencil by dλ�(x).

Definition 9. The pencil dλ�(x) is called the λ-linearization of the pencil � at x.

Now, let B be a 2-cocycle on a Lie algebra g. For an arbitrary element ν ∈ Ker B, define
the bilinear form

Bν(ξ, η) := B([ν, ξ ], η).

The cocycle identity implies that this form is symmetric. Furthermore, Ker Bν ⊃ Ker B,
therefore Bν is a well-defined symmetric form on the vector space g/Ker B.
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Definition 10. A linear pencil �(g, B) is compact if there exists ν ∈ Z(Ker B) such that Bν

is positive-definite on g/Ker B.

Remark 3.4. The notation Z(g) stands for the centre of the Lie algebra g.

Definition 10 is motivated by the following statement.

Proposition 3.4. Any linear pencil on a compact semisimple Lie algebra is compact.

Proof. Let g be a compact semisimple Lie algebra. Since H2(g) = 0, any cocycle B on g has
the form B(ξ, η) = 〈ζ, [ξ, η]〉, where 〈 , 〉 is the Killing form, ζ ∈ g. Take ν = ζ . Note that
Ker B is the centralizer of ν, so ν ∈ Z(Ker B). Further,

Bν(ξ, ξ) = 〈ν, [[ν, ξ ], ξ ]〉 = −〈[ν, ξ ], [ν, ξ ]〉 > 0,

so the pencil is compact. �

Another motivation for definition 10 is the following fact: let a system X be bi-
Hamiltonian with respect to a compact linear pencil; then all trajectories of X are bounded.

In this paper, there will be non-trivial examples of compact linear pencils on non-compact
Lie algebras u(p, q) and u(p, q) ⋉ C

p+q arising as λ-linearizations of the pencil related to the
multidimensional rigid body (see the appendix).

Definition 11. A pencil � is called diagonalizable at x if

dim Ker
(
Pα(x)|Pλ(x)

)
= corank �(x) for all λ ∈ ��(x), α �= λ. (7)

Note that if (7) is satisfied for some α �= λ, then it is satisfied for any α �= λ (see proposition 3.3).
The following theorem is used to prove nonlinear stability for a bi-Hamiltonian system.

Theorem 3. Suppose that � is a Poisson pencil on a finite-dimensional manifold, and X is

bi-Hamiltonian with respect to �. Let x be an equilibrium point of X. Assume that

(1) rank �(x) = rank �.

(2) The equilibrium x is regular.

(3) The spectrum of � at x is real: ��(x) ⊂ R.

(4) The pencil � is diagonalizable at x.

(5) For each λ ∈ ��(x) the λ-linearization dλ�(x) is compact.

Then x is Lyapunov stable.

See [22] for the proof.

Remark 3.5. The idea of the proof can be explained as follows. A bi-Hamiltonian system
automatically possesses a large number of first integrals: these are the Casimir functions of
all brackets of the pencil. The Hessians of these functions are controlled by linear parts of the
corresponding brackets. The conditions of the theorem allow to show that there exists a linear
combination of Casimir functions with a positive-definite Hessian, so that this combination
can be used as a Lyapunov function.
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3.4. Generalized stability theorem

In this section, a stronger stability result is formulated which allows to proceed for those points
where rank �(x) < rank �. The condition rank �(x) = rank � can only be omitted under
some additional technical assumptions.

Let X be a system which is bi-Hamiltonian with respect to a pencil �, and let x be a
regular equilibrium point of X. Then for each α /∈ �(x), the linear part of Pα(x) defines a
natural Lie algebra structure on Ker(x) = Ker Pα(x). For λ ∈ �(x), there is a strict inclusion
Ker(x) ⊂ Ker Pλ(x). However, since Pλ(x) is a linear combination of Pα(x) and Pβ(x) for

any α �= β ∈ C, the subspace Ker(x) is a subalgebra in Ker Pλ(x) for any λ. Thus, Ker(x)

carries a structure of a Lie pencil. Denote by Zα(Ker(x)) the centre of Ker(x) with respect to
the Lie structure [ , ]α .

Definition 12. Say that x is strongly regular if it is regular, and

Z(Ker(x)) := Zα(Ker(x))

does not depend on α.

Remark 3.6. The centre of the kernel is important for the following reason: if f is a Casimir
function of P , then df (x) ∈ Z(Ker P(x)). Moreover, if the transverse Poisson structure to P

at the point x is linearizable, then the differentials of Casimir functions span Z(Ker P(x)).

Definition 13. A pencil � is called fine at a point x if there exists α /∈ �(x) and an open
neighbourhood U ∋ α such that

(1) for each β ∈ U the transverse Poisson structure to Pβ at the point x is linearizable, and
its linear part is compact;

(2) for any fα ∈ Z(Pα) there exists a family fβ depending continuously on β and defined for
β ∈ U such that fβ ∈ Z(Pβ), i.e. any Casimir function of Pα can be ‘approximated’ by
Casimir functions of nearby brackets of the pencil.

Remark 3.7. The notation Z(P ) stands for the set of (local) Casimir functions of the Poisson
bracket P .

The following theorem is a generalization of theorem 3.

Theorem 4. Suppose that � is a Poisson pencil on a finite-dimensional manifold, and X is a

dynamical system which is bi-Hamiltonian with respect to �. Let x be an equilibrium point

of X. Assume that

(1) The pencil � is fine at x.

(2) The equilibrium point x is strongly regular.

(3) The spectrum of � at x is real: ��(x) ⊂ R.

(4) The pencil � is diagonalizable at x.

(5) For each λ ∈ ��(x) the λ-linearization dλ�(x) is compact.

Then x is Lyapunov stable.

It is easy to see that if rank �(x) = rank �, then the pencil � is fine at x, and regularity is
equivalent to strong regularity. So, theorem 4 is a generalization of theorem 3. The proof of
theorem 4 repeats the proof of theorem 3.
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4. Bi-Hamiltonian structure of the multidimensional rigid body

Denote the standard Lie bracket on so(n) by [ , ]∞ and the corresponding Lie–Poisson bracket
on so(n)∗ by { , }∞. The latter is given by

{f, g}∞(M) := 〈M, [df, dg]∞〉

for M ∈ so(n)∗ ≃ so(n) and f, g ∈ C∞(so(n)∗). By 〈 , 〉 we denote the Killing form

〈X, Y 〉 = Tr XY,

and so(n)∗ is identified with so(n) by means of this form.
The following was observed by Arnold [1].

Proposition 4.1. Equations (3) are Hamiltonian with respect to the bracket { , }∞. The

Hamiltonian is given by the kinetic energy

H∞ :=
1

2
〈�, M〉.

Now introduce a second operation on so(n) defined by

[X, Y ]0 := XJ 2Y − YJ 2X.

Proposition 4.2.

(1) [ , ]0 is a Lie bracket compatible with the standard Lie bracket. In other words, any linear

combination of these brackets defines a Lie algebra structure on so(n).

(2) The corresponding Lie–Poisson bracket { , }0 on so(n)∗ given by

{f, g}0 := 〈M, [df, dg]0〉

is compatible with the Lie–Poisson bracket { , }∞.

Consequently, a Lie pencil is defined on so(n), and a Poisson pencil is defined on so(n)∗.
Write down these pencils in the form

[X, Y ]λ = [X, Y ]0 − λ[X, Y ]∞ = X(J 2 − λE)Y − Y (J 2 − λE)X (8)

for X, Y ∈ so(n) and

{f, g}λ = {f, g}0 − λ{f, g}∞ = 〈M, df (J 2 − λE)dg − dg(J 2 − λE)df 〉 (9)

for M ∈ so(n)∗ and f, g ∈ C∞(so(n)∗).
The Poisson tensor corresponding to the bracket { , }λ reads

Pλ(M)(X, Y ) = 〈M, X(J 2 − λE)Y − Y (J 2 − λE)X〉, (10)

where M ∈ so(n)∗ and X, Y ∈ T∗
M(so(n)∗) = so(n).

Proposition 4.3 (Bolsinov [17, 33]). The system (3) is Hamiltonian with respect to any bracket

{ , }λ, so it is bi-Hamiltonian. The Hamiltonian is given by

Hλ := −
1

2
〈(J +

√
λE)−1�(J +

√
λE)−1, M〉. (11)

Remark 4.1. The matrix J +
√

λE is invertible for any λ if the proper value of the square root
is chosen.

Note that the function Hλ written here is different from the one given by Bolsinov. The
difference is a Casimir function of Pλ.
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5. Proof of theorem 1: instability

The proof consists of the following steps:

(1) check that a regular stationary rotation (in the sense of definition 2) is a regular equilibrium
(in the sense of definition 7), so that lemma 3.1 can be applied (section 5.1);

(2) describe the spectrum �(M) (section 5.2);

(3) describe the adjoint operators adλ (section 5.3);

(4) find the spectrum of the linearized system using lemma 3.1 (section 5.4).

Fix some notation which is used throughout the proofs.
It is only regular stationary rotations which are considered. So, assume that there exists an

orthonormal basis such that J is diagonal, while � and M are block-diagonal with two-by-two
blocks on the diagonal (definition 2). Denote by λi the diagonal elements of J in this basis.
Note that this means that λi are possibly different for different rotations. However, they are
unique up to a permutation and coincide with the eigenvalues of J .

By ωis, denote the non-zero entries of the matrix � as in (4). By mi = (λ2i−1 + λ2i)ωi ,
denote the non-zero entries of the matrix M . The notation Mi stands for the diagonal two-by-
two blocks of M , i.e.

Mi :=
(

0 mi

−mi 0

)
. (12)

The number n stands for the dimension of the body and m stands for the number of non-zero
ωis, that is for the number of two-dimensional planes in the decomposition (5).

For a fixed λ, let A := J 2 − λE if λ �= ∞ or A := E otherwise. By ai , denote the
diagonal entries of the matrix A. Clearly, ai = λ2

i − λ if λ �= ∞, and ai = 1 otherwise. It is
also convenient to represent A as

A =




A1

. . .

Am

a2m+1

. . .

an




, (13)

where Ai are two-by-two diagonal matrices and ai are numbers.
Further, extend the definition of χi(x) given by (6) to the point ∞.

χi(∞) :=
1

ω2
i (λ2i−1 + λ2i)2

=
1

m2
i

.

Note that for each λ ∈ C the following equality holds.

χi(λ) =
a2i−1a2i

m2
i

. (14)

5.1. Regularity

Let M be a regular stationary rotation (in the sense of definition 2). Find a basis such that J

is diagonal and M is block-diagonal. Introduce the following subspaces:

• K ⊂ so(n) is generated by {E2i−1,2i − E2i,2i−1}i=1,...,m and {Eij − Eji}2m<i<j�n.
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• Vij ⊂ so(n) is generated by E2i−1,2j−1 − E2j−1,2i−1, E2i−1,2j − E2j,2i−1,
E2i,2j−1 − E2j−1,2i , E2i,2j − E2j,2i .

• Wij ⊂ so(n) is generated by E2i−1,j − Ej,2i−1, E2i,j − Ej,2i .

Clearly, the following vector space decomposition holds

so(n) = K ⊕
⊕

1�i<j�m

Vij ⊕
⊕

1�i�m,

2m<j�n

Wij . (15)

Proposition 5.1. The space K belongs to the common kernel of all brackets of the pencil at

the point M . All spaces Vij , Wi are mutually orthogonal with respect to all brackets of the

pencil.

Proof. Use (10). �

Proposition 5.1 implies that the rank of a bracket Pλ drops if and only if this bracket is
degenerate on one of the spaces Vij or Wij . Calculate the forms Pλ on these spaces.

Identify Vij with the space of two-by-two matrices, and Wij with R
2. Let the matrices Mi

be defined by (12). Let also the numbers aj and the matrices Ai be defined by (13).

Proposition 5.2. The form Pλ restricted to Vij reads

Pλ(X, Y ) = 2Tr (MiXAjY
t + MjX

tAiY ).

The form Pλ restricted to Wij reads

Pλ(v, w) = −2ajv
tMiw.

Proof. Use (10). �

Now calculate Pλ on Vij in coordinates. Let

X =
(

a b

c d

)
∈ Vij , Y =

(
e f

g h

)
∈ Vij .

Explicit calculation shows that

Pλ(X, Y ) = 2(mia2j−1c + mja2i−1b)e + 2(mja2id − mia2j−1a)g

+ 2(mia2jd − mja2i−1a)f − 2(mia2jb + mja2ic)h.

Consequently, X ∈ Ker Pλ if and only if




mia2j−1c + mja2i−1b = 0,

mja2id − mia2j−1a = 0,

mia2jd − mja2i−1a = 0,

mia2jb + mja2ic = 0.

This system can be split into 2 two-by-two systems, and the determinant of both of them equals

det = m2
ja2i−1a2i − m2

i a2j−1a2j .

So, the following is true.

Proposition 5.3. Pλ is degenerate on Vij if and only if

m2
ja2i−1a2i − m2

i a2j−1a2j = 0. (16)

If Pλ is degenerate on Vij , then its kernel is given by

X =
(

αmja2i βmia2j−1

−βmja2i−1 αmia2j−1

)
, (17)

where α and β are arbitrary numbers.
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Now study Pλ on Wij .

Proposition 5.4. Pλ is degenerate (and, consequently, zero) on Wij if and only if λ = λ2
j .

Proof. Use proposition 5.2. �

Proposition 5.5. The intersection of kernels of all brackets of the pencil is exactly K . For

almost all brackets the kernel is exactly K . Thus, M is a regular equilibrium (in the sense of

definition 7), and Ker(M) = K .

Proof. Only finite numbers of brackets are degenerate on each of the spaces Vij and Wij (see
propositions 5.3 and 5.4). �

5.2. Description of the spectrum �(M)

Proposition 5.6. Let M be a regular stationary rotation. Then �(M) is the set of horizontal

coordinates of intersection points in the parabolic diagram of M .

Proof. By proposition 5.3, the bracket Pλ is degenerate on Vij if and only if

m2
ja2i−1a2i − m2

i a2j−1a2j = 0.

This equality can be rewritten as (see (14))

χi(λ) = χj (λ),

which means that λ is the horizontal coordinate of the intersection point of two parabolas
y = χi(x) and y = χj (x). Further, by proposition 5.4, Pλ is degenerate on Wij if and only if
λ = λ2

j , which means that λ is the horizontal coordinate of the intersection point of the vertical

line x = λ2
j with any parabola. �

5.3. Description of adjoint operators

Compute the restriction of the operator adλ dHλ to the space Ker Pλ/K . Using proposition 5.1,
the kernel Ker Pλ(M) can be decomposed in the following way

Ker Pλ = K ⊕
⊕

1�i<j�m

Vij (λ) ⊕
⊕

1�i�m,

2m<j�n

Wij (λ),

where

Vij (λ) := Ker
(
Pλ |Vij

)
⊂ Vij , Wij (λ) := Ker

(
Pλ |Wij

)
⊂ Wij . (18)

The space Ker Pλ/K is decomposed as

Ker Pλ/K =
⊕

1�i<j�m

Vij (λ) ⊕
⊕

1�i�m,

2m<j�n

Wij (λ),

To compute adλ dHλ, note that Pλ is a linear bracket, so the commutator in gλ is simply the
restriction of the bracket [ , ]λ given by (8) to the space Ker Pλ, so it is given by

[X, Y ]λ = XAY − YAX. (19)
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Formula (11) implies that

dHλ = −(J +
√

λE)−1�(J +
√

λE)−1, (20)

so dHλ is a block-diagonal matrix with two-by-two blocks on the diagonal. Denote the space
of such matrices by L. Clearly, L ⊂ K ⊂ Ker Pλ. Since dHλ ∈ L, it suffices to describe the
operators adλX for X ∈ L.

Proposition 5.7. For any X ∈ L, the spaces Vij (λ) and Wij (λ) are invariant with respect to

the operator adλX.

Proof. Let X ∈ L and Y ∈ Vij . Then, using (19), show that [X, Y ]λ ∈ Vij , which means
that adλX(Vij ) ⊂ Vij . Further, Vij (λ) = Vij ∩ Ker Pλ, and Ker Pλ is invariant with respect
to adλX, so Vij (λ) is invariant as the intersection of two invariant subspaces. The proof for
Wij (λ) is the same. �

Represent an element X ∈ L as

X =




0 x1

−x1 0

. . .


 .

Proposition 5.8. Let Vij (λ) �= 0. Then the operator adλX, being written in coordinates α, β

given by (17), reads



0 −a2i−1

(
xi −

mj

mi

xj

)

a2i

(
xi −

mj

mi

xj

)
0


 .

Proof. Use (19). �

Proposition 5.9. Let Wij (λ) �= 0. Then, after the natural identification of Wij (λ) = Wij with

R
2, the matrix of adλX reads

(
0 xia2i

−xia2i−1 0

)
.

Proof. Use (19). �

Proposition 5.10.

(1) Let Vij (λ) �= 0. Then the eigenvalues of adλX restricted to Vij (λ) are ±νij (X), where

νij (X) =
√

−χi(λ)(mjxj − mixi).

(2) Let Wij (λ) �= 0. Then the eigenvalues of adλX restricted to Wij (λ) are ±µi(X), where

µi(X) =
√

−χi(λ)mixi .

Proof. Use propositions 5.8 and 5.9. �
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5.4. Spectrum of the linearized system

Let M be a regular stationary rotation. Then the symplectic leaves of generic brackets
Pα, α /∈ �(M) are tangent at M . By T(M) denote their common tangent space. By dX

denote the linearization of (3) at M .

Proposition 5.11. Let M be a regular stationary rotation. Let also λ
(1)
ij , λ

(2)
ij be two roots of

the equation χi(λ) = χj (λ). Then the spectrum of dX |T(M) is

σ(dX |T(M)) = {±σ
(k)
ij }k=1,2

1�i<j�m ∪ {±τij }2m+1�j�n

1�i�m

where

σ
(k)
ij =

1√
−χi

(
λ

(k)
ij

)

(
λ

(k)
ij + λ2i−1λ2i

λ2i−1 + λ2i

−
λ

(k)
ij + λ2j−1λ2j

λ2j−1 + λ2j

)
if λ

(k)
ij �= ∞,

σ
(k)
ij = (ωj − ωi)

√
−1 if λ

(k)
ij = ∞,

and

τij =
1√

−χi

(
λ2

j

)
(λj − λ2i−1)(λj − λ2i)

λ2i−1 + λ2i

.

Proof. Use lemma 3.1, proposition 5.10 and formula (20). �

Remark 5.1. It is also possible to find the spectrum of the linearized system explicitly, without
introducing the bi-Hamiltonian structure. However, the bi-Hamiltonian framework is essential
for the proof of the stability part of theorem 1 (section 6), so it seems to be better to prove both
parts using the same philosophy. At the same time, the bi-Hamiltonian approach is simpler
from the computational viewpoint. Also note that lemma 3.1 allows to find the spectrum for
all systems bi-Hamiltonian with respect to � at once.

5.5. Completion of the proof

For simplicity assume that all eigenvalues of � are distinct. Suppose that there is at least
one intersection in the parabolic diagram which is either complex or belongs to the lower
half-plane. Then proposition 5.11 shows that dX has an eigenvalue with a non-zero real part
unless

λ
(k)
ij + λ2i−1λ2i

λ2i−1 + λ2i

−
λ

(k)
ij + λ2j−1λ2j

λ2j−1 + λ2j

= 0. (21)

A simple computation shows that (21) implies the equality ω2
i = ω2

j . If all eigenvalues of �

are distinct, then this is not possible, so dX has an eigenvalue with a non-zero real part, and
the equilibrium is unstable.

The sketch of the proof in the case when � has multiple eigenvalues is as follows.
Assume that (21) is satisfied. Then λ

(k)
ij is a real number. So, we only need to consider

the case when there is a real intersection in the lower half-plane. Find a stationary rotation
Mε ∈ Uε(M) such that all eigenvalues of �(Mε) are distinct. Then the rotation Mε is unstable.
Moreover, an argument similar to the one of [3] can be used to show that there is a heteroclinic
trajectory joining Mε with another stationary rotation M−

ε such that the distance dist(Mε, M
−
ε )

is uniformly bounded from below as ε → 0. Therefore M is unstable.

1437



Nonlinearity 27 (2014) 1419 A Izosimov

6. Proof of theorem 1: stability

According to theorem 4, to prove the stability part of theorem 1 we should do the following:

(1) check that the pencil � is fine at M (section 6.1);
(2) check that the equilibrium point M is strongly regular (section 6.2);
(3) check that the spectrum of � at M is real (section 6.3);
(4) check that the pencil � is diagonalizable at x (section 6.4);
(5) check that for each λ ∈ ��(x) the λ-linearization dλ�(x) is compact (section 6.5).

6.1. The pencil � is fine

Let α be such that α /∈ �(M) and α < λ2
min where λmin is the minimal eigenvalue of J . Take ε

such that α+ε < λ2
min, and (α−ε, α+ε)∩�(M) = ∅. Take U = (α−ε, α+ε). Then for each

β ∈ U , the bracket Pβ is compact semisimple. Therefore conditions 1 and 2 of definition 13
are satisfied. Further, for any β ∈ U , the map

Fαβ : (so(n), [ , ]α) → (so(n), [ , ]β)

defined by

Fαβ(X) = (J 2 − βE)−1/2(J 2 − αE)1/2X(J 2 − αE)1/2(J 2 − βE)−1/2

is an isomorphism of Lie algebras. Therefore, for any fα ∈ Z(Pα), the function

fβ(x) = fα(F ∗
αβ(x))

is a Casimir function of Pβ , so condition 3 of definition 13 is also satisfied, and the pencil is
fine at every point.

6.2. Strong regularity

Proposition 5.5 shows that a regular stationary rotation (in the sense of definition 2) is a regular
equilibrium (in the sense of definition 7). Now, prove that each regular stationary rotation is
strongly regular (see definition 12). Introduce the following subspaces:

• K0 is generated by {E2i−1,2i − E2i,2i−1}i=1,...,m;
• K1 is generated by {Eij − Eji}2m<i<j�n.

Then

K = K0 ⊕ K1

as a Lie pencil, which means that K0 and K1 are Lie subalgebras with respect to all Lie
structures [ , ]α , and [K0, K1]α = 0.

Clearly, K0 is Abelian with respect to all structures [ , ]α , and K1 is isomorphic to so(n)

with a Lie pencil given by

[X, Y ]λ = [X, Y ]0 − λ[X, Y ]∞ = X(J 2
1 − λE)Y − Y (J 2

1 − λE)X,

where J1 = diag(λ2m+1, . . . , λn). Therefore the centre of K1 with respect to any Lie structure
[ , ]α is trivial unless n − 2m = 2. So, Zα(K) = K0 for all α if n − 2m �= 2, and Zα(K) = K

if n − 2m = 2. In both cases Zα(K) does not depend on α, so M is strongly regular.

6.3. The spectrum �(M) is real

By proposition 5.6, the spectrum �(M) is the set of horizontal coordinates of the intersection
points on the parabolic diagram of M . So, under the conditions of theorem 1, the spectrum
is real.
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6.4. Diagonalizability

It is convenient to use the following alternative definition of diagonalizability.

Proposition 6.1. Assume that x is a regular equilibrium of a bi-Hamiltonian system, and that

the spectrum ��(x) is real. Then the pencil � is diagonalizable at the point x if and only if

T∗
xM/Ker(x) =

⊕

λ∈�(x)

Ker Pλ(x)/Ker(x).

For the proof, see [22, 23].

Proposition 6.2. Let M be a regular stationary rotation. Then the pencil is diagonalizable at

M if and only if any two parabolas in the parabolic diagram of M intersect at two different

points.

Proof. Proposition 6.1 implies that the pencil is diagonalizable if and only if

so(n)/K =
⊕

λ∈�(M)

Ker (Pλ) /K. (22)

Using (15), write

so(n)/K =
⊕

1�i<j�m

Vij ⊕
⊕

1�i�m,

2m<j�n

Wij .

Since all the summands of this decomposition are pairwise orthogonal with respect to Pλ

(proposition 5.1), relation (22) is satisfied if and only if

Vij =
⊕

λ∈�(M)

Vij (λ) for 1 � i < j � m, (23)

Wij =
⊕

λ∈�(M)

Wij (λ) for 1 � i � m, 2m < j � n, (24)

where Vij (λ) and Wij (λ) are defined by (18).
Since there is a unique λ = λ2

j such that Wij = Wij (λ), equality (24) is always satisfied.
Equality (23) is satisfied if and only if equation (16) has two distinct roots, i.e. if corresponding
two parabolas are not tangent to each other. �

6.5. Compactness

Show that under the conditions of theorem 1, the pencil dλ�(M) is compact.
First, consider the case λ = ∞. Then gλ is the ad∗ stabilizer of M ∈ so(n)∗, so gλ is

compact, and so is the pencil d∞�(M) (see proposition 3.4).
So, let λ �= ∞. The pencil dλ�(M) is defined on gλ by the cocycle B = P∞ |Ker Pλ

. Prove
that there exists X ∈ Z(Ker B) such that the form

BX(Y, Y ) := P∞([X, Y ]λ, Y )

is positive definite on Ker Pλ/Ker B.
By proposition 6.2, the pencil is diagonalizable at M . This implies that (see definition 11)

dim Ker (P∞ |Ker Pλ
) = dim Ker P∞.

Since Ker P∞ = K (proposition 5.5),

dim Ker (P∞ |Ker Pλ
) = dim K.

On the other hand, Ker (P∞ |Ker Pλ
) ⊃ K . So,

Ker B = Ker (P∞ |Ker Pλ
) = K, (25)
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and the compactness condition can be reformulated as follows: there exists X ∈ Z(K) such
that the form BX is positive definite on

Ker Pλ/K =
⊕

1�i<j�m

Vij (λ) ⊕
⊕

1�i�m,

2m<j�n

Wij (λ).

At the same time, Z(K) = K0 or Z(K) = K (section 6.2), so K0 ⊂ Z(K), and it suffices to
show that there exists X ∈ K0 such that BX is positive on Ker Pλ/K . Represent an element
X ∈ K0 as

X =




0 x1

−x1 0

. . .

0 xm

−xm 0

0

. . .




.

Denote

bi := a2i + a2i−1.

Proposition 6.3. Let Vij (λ) �= 0,

Y =
(

α

β

)
∈ Vij (λ), Z =

(
α̃

β̃

)
∈ Vij (λ),

where α, β are the coordinates on Vij (λ) given by (17). Then

P∞(Y, Z) = 2mia2j−1

(
m2

i bj − m2
jbi

)
(αβ̃ − α̃β).

Proof. Use proposition 5.2. �

Proposition 6.4. Let

Y =
(

α

β

)
∈ Vij (λ) �= 0,

where α, β are the coordinates on Vij (λ) given by (17). Then

BX(Y, Y ) = −2a2j−1

(
m2

i bj − m2
jbi

)
(mixi − mjxj )(a2iα

2 + a2i−1β
2). (26)

Proof. Use propositions 6.3 and 5.8. �

Proposition 6.5. Let

Y =
(

α

β

)
∈ Wij (λ) �= 0,

where α, β are the coordinates on Wij (λ) = Wij given by its natural identification with R
2.

Then

BX(Y, Y ) = −2mixi(a2i−1α
2 + a2iβ

2). (27)

Proof. Use propositions 5.2 and 5.9. �

Proposition 6.6. Under the conditions of theorem 1, the pencil dλ�(M) is compact.
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Proof. It suffices to consider the case λ �= ∞ (see beginning of the section). Show that there
exists X ∈ K0 such that BX is positive on

Ker Pλ/K =
⊕

Vij (λ) ⊕
⊕

Wij (λ).

The summands of this decomposition are pairwise orthogonal with respect to BX, so it suffices
to show that there exists X such that BX is positive-definite on each of the summands.
Propositions 6.4 and 6.5 show that for each summand there exists X such that BX is positive

on this summand (note that a2i and a2i−1 are of the same sign; this is because all intersections
are in the upper half-plane). However, it is not obvious a priori why there should exist X such
that BX is positive on all summands. Nevertheless, such an X exists and can be defined by the
following magical formula

xi := −
mi

bi

(28)

for i = 1, . . . , m. Show that BX > 0 on Vij (λ). Substituting (28) into (26), obtain

BX(Y, Y ) = 2a2j−1bj (a2iα
2 + a2i−1β

2)bi

(
m2

i

bi

−
m2

j

bj

)2

.

Since all intersections are in the upper half-plane, a2j−1 and bj have the same sign. The same
is true for a2i, a2i−1 and bi . Consequently, for Y �= 0, the following inequality is satisfied

a2j−1bj (a2iα
2 + a2i−1β

2)bi > 0.

Further, if

m2
i

bi

−
m2

j

bj

= 0,

then P∞(Y, Y ) = 0 (see proposition 6.3), and

Vij (λ) ⊂ Ker
(
P∞ |Ker Pλ

)
,

which contradicts (25). So, BX is positive on Vij (λ).
Now, show that BX > 0 on Wij (λ). Substituting (28) into (26), obtain

BX(Y, Y ) = 2
m2

i

bi

(a2i−1α
2 + a2iβ

2).

Since a2i, a2i−1 and bi are of the same sign, and mi �= 0, the form BX > 0 on Wij (λ). �

Remark 6.1. Let λ > λ2
max or λ < λ2

min where λmin and λmax are, respectively, the minimal and
the maximal eigenvalues of J . Then the compactness of dλ�(M) is natural, since the algebra
so(n) with the [ , ]λ bracket is compact, and so is gλ(M) which is the ad∗

λ stabilizer of M .
However, for λ ∈ [λ2

min, λ
2
max], the algebra gλ(M) is not necessarily compact. The

classification of Lie algebras gλ(M) up to an isomorphism is given in the appendix.
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Appendix: Classification of Lie algebras gλ

Let M be a regular stationary rotation, λ ∈ C. By �λ denote the set of intersection points
on the parabolic diagram of M with abscissa x = λ. For λ ∈ R, denote by �+

λ , �−
λ the set
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λ λ

Figure 7. Rotations with gλ ≃ u(1, 2) ⊕ R
N and gλ ≃ u(3) ⊕ R

N , respectively.

of intersection points ∈ �λ which lie in the upper and lower half-planes, respectively. For
z ∈ �λ denote by nz the number of parabolas passing through z. For z ∈ �+

λ denote by lz, rz

the number of parabolas passing through z such that their vertices are to the left or right of z,
respectively. Denote by v the number of vertical lines on the parabolic diagram. For λ ∈ R,
denote by lλ and rλ the number of vertical lines to the left or to the right of the line x = λ,
respectively.

Proposition A.1. Let M be a regular stationary rotation.

(1) If λ ∈ R, and there is no vertical line x = λ on the parabolic diagram of M , then

gλ ≃ so(lλ, rλ) ⊕
⊕

z∈�+
λ

u(lz, rz) ⊕
⊕

z∈�−
λ

gl(nz, R) ⊕ R
N .

(2) If λ = ∞, then

gλ ≃ so(v, R) ⊕
⊕

z∈�λ

u(nz, R) ⊕ R
N .

(3) If λ ∈ C \ R, then

gλ ≃ so(v, C) ⊕
⊕

z∈�λ

gl(nz, C) ⊕ C
N .

(4) If λ ∈ R, and there is a vertical line x = λ on the parabolic diagram of M , then

gλ ≃ (so(lλ, rλ) ⋉ρ1
R

lλ+rλ) ⊕
⊕

z∈�+
λ

(u(lz, rz) ⋉ρ2
C

lz+rz) ⊕
⊕

z∈�−
λ

(gl(nz, R) ⋉ρ3
R

2nz) ⊕ R
N ,

where representations ρ1, ρ2 are standard, and

ρ3(A) =
(

A 0

0 −At

)
.

In all cases N is some number � 0.

Example A.1. Rotations with gλ ≃ u(1, 2) ⊕ R
N and gλ ≃ u(3) ⊕ R

N , respectively are
depicted in figure 7. Proposition 5.11 can be used to check that both cases correspond to a
(1 : 1 : 1) resonance. Note that, in both cases, the bi-Hamiltonian system corresponding to the
linear pencil dλ� coincides with the three-wave interaction system [34]. So, the three-wave
interaction system is the bi-Hamiltonian linearization of the multidimensional rigid body at a
(1 : 1 : 1) resonance.
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