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Steady fluid flows have very special topology. In this paper we describe necessary and

sufficient conditions on the vorticity function of a 2D ideal flowon a surfacewith orwith-

out boundary, for which there exists a steady flow among isovorticed fields. (Here the

necessary condition is for anymetric, while the sufficient condition is for an appropriate

one.) For this we introduce the notion of an antiderivative (or circulation function) on a

measured graph, the Reeb graph associated with the vorticity function on the surface,

while the criterion is related to the total negativity of this antiderivative. It turns out

that given topology of the vorticity function, the set of coadjoint orbits of the symplecto-

morphism group admitting steady flows with this topology (and a certain metric) forms

a convex polytope. As a byproduct of the proposed construction, we also describe a com-

plete list of Casimirs for the 2D Euler hydrodynamics: we define generalized enstrophies

which, along with circulations, form a complete set of invariants for coadjoint orbits of

area-preserving diffeomorphisms on a surface.

1 Introduction

The study of topology of steady fluid flows is one of central topics of ideal hydrody-

namics. Steady flows are key objects in a variety of questions related to hydrodynamical

stability, existence of attractors, in dynamo constructions and magnetohydrodynamics,
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7460 A. Izosimov and B. Khesin

etc. Such flows satisfy very special constraints and are difficult to construct explicitly

(beyond certain very symmetric settings).

In this paper we present necessary conditions for the existence of steady flows

with a given vorticity function on an arbitrary 2D surface, possibly with boundary.

Furthermore, we show that these conditions are also sufficient in the sense that for any

vorticity satisfying these conditions there is a steady flow for an appropriate choice

of metric. This solves one of Arnold’s problems raised in [4] about existence of smooth

minimizers in Dirichlet problems for initial functions of various topology.

One is usually looking for Euler stationary solutions among fields with pre-

scribed vorticity since vorticity of the fluid is frozen into the flow. Our main tool in the

study of isovorticed fields is a description of fine properties of themeasuredReeb graphs

of vorticity functions and the notion of a graph antiderivative. In this hydrodynamical

application we call this antiderivative a circulation function. In turns out that the cri-

terion for the existence of a steady flow is that the corresponding circulation function

is balanced, that is, circulations in the vicinity of every singular level have the same

signs, as we explain below. Furthermore, given the geometry of the vorticity function, it

turns out that the set of coadjoint orbits admitting a stationary Euler flow forms a con-

vex polytope. This opens a variety of questions related to deeper connections between

steady flows and convex geometry.

Example 1.1. The following example illustrates the results discussed below in a nut-

shell. Consider a generic vorticity function on a surfaceM , see Figure 1 where vorticity

is the height function on a pretzel. (For a surface with boundary we consider a vorticity

function constant on the boundary ∂M .)

Associate with this function its Reeb graph �F (also called Kronrod graph, see

[1, 14]), which is the graph representing the set of connected components of levels of the

height vorticity function F . Critical points of F correspond to the vertices of the graph�F .

This graph comes with a natural parametrization by the values of F . Furthermore, the

surfaceM is equipped with an area form, preserved by the fluid motion. This area form

on the surface gives rise to a log-smooth measure on the Reeb graph �F (see Definition

3.5). It turns out that such a measured Reeb graph is the only invariant of a simple

Morse function (i.e., a Morse function with distinct critical values) on a surface modulo

symplectomorphisms. �

Theorem A (=Theorem 3.8). The mapping assigning the measured Reeb graph �F to a

simple Morse function F provides a one-to-one correspondence between simple Morse
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Steady Solutions to the 2D Euler Equation 7461

Fig. 1. A vorticity F on a pretzel, its measured Reeb graph, and the corresponding polytope of

totally negative circulation functions.

functions on M up to symplectomorphisms and measured Reeb graphs compatible

with M.

Steady flows are known to be critical points of the energy functional restricted to

the sets of isovorticed fields, that is, to coadjoint orbits of the group of volume- or area-

preserving diffeomorphisms of the manifold. To describe coadjoint orbits of the group

of symplectomorphisms of a surface M (see Theorem 3.19) we introduce the notion of

an antiderivative on a graph. Unlike integration on a segment, for a measured oriented

graph the antiderivatives form a space of dimension equal to the first Betti number of the

graph itself, see Section 3.2. (In the case with boundary, the space of antiderivatives has

dimension of the corresponding relative homology group.) For a pretzel on Figure 1 this

space is two-dimensional, parametrized by circulations over two independent cycles.

The space of such antiderivatives, called circulation functions, on a graph is in one-

to-one correspondence with the space of coadjoint orbits for a given vorticity. Roughly

speaking, an antiderivative of a measure is a function which is a classical antiderivative

at any smooth point of the graph, vanishes at the points of maximum and minimum,

while at vertices it can be discontinuous but satisfies the Kirchhoff rule. In particular,

at any trivalent point in the Reeb graph the total value of “incoming" circulations must

be equal to the total values of “outgoing" ones. One of the main results of the paper fully

characterizes which circulation functions correspond to steady flows.

Theorem B (=Theorem 4.4). Let (M ,ω) be a compact symplectic surface, possibly with

boundary. Then Morse-type coadjoint orbit corresponding to a given vorticity function

admits a steady flow if and only if the corresponding circulation function has the same

signs near every singular level of the vorticity.
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7462 A. Izosimov and B. Khesin

For closed surfaces one can sharpen this description:

Theorem C (=Theorems 4.25 and 4.27). For a symplectic surface without boundary a

Morse-type coadjoint orbit for a given vorticity function F admits a steady flow if and

only if the corresponding circulation function is totally negative. Moreover, the set of

such totally negative circulation functions is an open convex polytope in the affine

space of all circulation functions. In particular, the set of totally negative circulation

functions on the Reeb graph �F is bounded.

The latter implies that “most orbits" do not admit any smooth steady flow. For

instance, consider again the vorticity represented by the height function F of a pretzel,

see Figure 1. For each edge e of the Reeb graph �F consider the domain Me ⊂ M , the

preimage of this edge bounded by the corresponding critical levels of F . Consider the

mean values
∫
Me
F ω of the vorticity function in these regions andmark them on the edges

of the graph. Assume these mean values of F are as marked on the graph edges in Figure

1. In order to describe the set of circulation functions admitting a steady flow we note

that the set of all circulation functions on �F for given F is parametrized, for example, by

limits of circulations c1(v), c2(v) at branches of the vertex v. (The numbers ci(v) can be

thought of as circulations of the fluid velocity along two cycles across two left handles of

the pretzel.) It turns out that for such a vorticity the set of orbits admitting Euler steady

solutions is given only by the pairs of circulations lying inside the shaded trapezoid,

see Section 4.3.

One should note that Theorems B and C provide a necessary condition for the

existence of a steady flow for any metric on the surface (in particular, for any given

metric most orbits do not contain a steady solution). This condition is also sufficient,

but only for an appropriate metric, that is, for each orbit satisfying this condition we

construct a (generally speaking, dependent on the orbit) metric providing a steady flow.

Our construction is explicit in terms of the measured Reeb graph with a circulation

function and is rather rigid at hyperbolic points. Therefore, it is not clear if themetrics so

constructed form a dense and/or open set, or if for a given orbit there exists a transversal

submanifold consisting of steady flows (cf. [8]). The question whether a coadjoint orbit

admits a steady solution for a fixed metric is still open. This problem is of particular

interest for flat and constant curvature metrics in view of hydrodynamical applications.

To summarize, it turns out that there are very restrictive conditions on the sets

of isovorticed fields, so that among them there existed a steady flow. It is interesting to

compare these results with topological (rather than symplectic) necessary conditions on

vorticity functions to admit steady flows obtained in [10]. In the 2D case they follow from
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Steady Solutions to the 2D Euler Equation 7463

results of this paper, see Example 4.6. In a sense, in [10] the restrictions are obtained

by using only the information on the Morse indices of the vorticity, that is, on its Reeb

graph, while in this paper we show that the use of a measured Reeb graph allows one

to sharpen the necessary conditions and, in addition, to obtain sufficient conditions

on the existence of steady flows. On the other hand, in the case of a simple laminar

flow in an annulus, any vorticity without critical points and constant on the boundary

produces a steady flow on the corresponding orbit (Corollary 4.5), in a perfect matching

with results of [8]. It would be also interesting to find the relation of steady flows with

infinite-dimensional convex geometry related to the group of symplectomorphisms of

an annulus [6] and of arbitrary toric manifolds [7].

It isworthmentioning onemore byproduct of the use ofmeasuredReeb graphs in

the description of coadjoint orbits of symplectomorphism groups: it allows one to give

a complete list of Casimirs in two-dimensional hydrodynamics, which was a folklore

open question since Arnold’s 1974 paper [3] on the Hopf invariant. It is known that the

2D Euler equation admits an infinite number of conserved quantities called enstrophies,

which are moments of the vorticity function. They are called Casimirs, or first integrals

of the motion for any Riemannian metric fixed on the surface. However, the set of all

enstrophies is known to be incomplete for flows with generic vorticities: there are non-

diffeomorphic vorticities with the same values of enstrophies. In Appendix 3, we show

how measured Reeb graphs can be used to define generalized enstrophies, and prove

that they together with the set of circulations form a complete list of Casimir invariants

for flows of an ideal 2D fluid with simple Morse vorticity functions (Corollary A.5).

To the best of our knowledge, a complete description of Casimirs in 2D fluid

dynamics has not previously appeared in the literature, while various partial results

couldbe found in [5, 15–17]. Steadyflowsare conditional extremaof the energy functional

on the sets of isovorticed fields, so Casimirs allow one to single out such sets in order

to introduce appropriate Lagrange multipliers. Furthermore, Casimirs in fluid dynam-

ics are a cornerstone of the energy-Casimir method for the study of hydrodynamical

stability (see, e.g., [2]).

2 Euler Equations and Steady Flows

2.1 Geodesic and Hamiltonian frameworks of the Euler equation

Consider an inviscid incompressible fluid filling ann-dimensional Riemannianmanifold

M with the Riemannian volume form μ and, possibly, with boundary ∂M . The motion of
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7464 A. Izosimov and B. Khesin

an ideal fluid is governed by the hydrodynamical Euler equations

∂tu+ (u,∇)u = −∇p,
divu = 0 and u ‖ ∂M ,

(1)

describing an evolution of the velocity field u of a fluid flow in M , supplemented by

the divergence-free condition and tangency to the boundary. The pressure function p

entering the Euler equation is defineduniquelymodulo an additive constant by the above

constraints on the velocity u. The notation (u,∇)u stands for the Riemannian covariant

derivative ∇uu of the field u along itself.

Arnold [2] showed that the Euler equations in any dimension can be regarded as

an equation of the geodesic flow on the group SDiff(M) := {φ ∈ Diff(M) | φ∗μ = μ} of
volume-preserving diffeomorphisms of M with respect to the right-invariant L2-metric

on the group given by the energy of the fluid’s velocity field: E(u) = 1
2

∫
M (u,u) μ. In

this approach an evolution of the velocity field u(t) according to the Euler equations

is understood as an evolution of the vector in the Lie algebra svect(M) = {u ∈ vect(M) |
Luμ = 0}, tracing the geodesic on the groupSDiff(M)definedby the given initial condition

u(0) = u0 (here Lu stands for the Lie derivative along the field u).

The geodesic description implies the following Hamiltonian framework for the

Euler equation. Consider the (smooth) dual space g∗ = svect∗(M) to the space g = svect(M)

of divergence-free vector fields on M . This dual space has a natural description as the

space of cosets g∗ = �1(M)/d�0(M): for a one-form α on M its coset of one-forms is

[α] = {α + df | for all f ∈ C∞(M)} ∈ �1(M)/d�0(M).

The pairing between cosets and divergence-free vector fields is straightforward:

〈[α],W〉 := ∫
M α(W) ω for any field W ∈ svect(M). The coadjoint action of the group

SDiff(M) on the dual g∗ is given by the change of coordinates in (cosets of) one-forms on

M by means of volume-preserving diffeomorphisms.

The Riemannianmetric (., .) on themanifoldM allows one to identify (the smooth

part of) the Lie algebra and its dual by means of the so-called inertia operator: given

a vector field u on M one defines the one-form α = u� as the pointwise inner product

with the velocity field u: u�(W) := (u,W) for all W ∈ TxM , see details in [5]. Note also

that divergence-free fields u correspond to co-closed one-forms u�. The Euler equation

(1) rewritten on one-forms α = u� is

∂tα + Luα = −dP
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Steady Solutions to the 2D Euler Equation 7465

for an appropriate function P on M . In terms of the cosets of one-forms [α], the Euler

equation on the dual space g∗ looks as follows:

∂t[α] + Lu[α] = 0. (2)

The Euler equation (2) on g∗ = svect∗(M) turns out to be a Hamiltonian equation

with the Hamiltonian functional H given by the fluid’s kinetic energy,

H([α]) = E(u) = 1

2

∫
M
(u,u) μ

for α = u�. The corresponding Poisson structure is given by the natural linear Lie–

Poisson bracket on the dual space g∗ of the Lie algebra g, see details in [2, 5]. The

corresponding Hamiltonian operator is given by the Lie algebra coadjoint action ad∗u,

which in the case of the diffeomorphism group corresponds to the Lie derivative:

ad∗u = Lu. Its symplectic leaves are coadjoint orbits of the corresponding group SDiff(M).

All invariants of the coadjoint action, also called Casimirs, are first integrals of the Euler

equation for any choice of Riemannian metric. Stationary (or steady) solutions of the

Euler equation satisfying ∂tu = 0 (or, equivalently, ∂t[α] = 0) are critical points of the

restriction of the Hamiltonian functional H to coadjoint orbits. The main result of this

paper is a complete characterization of those coadjoint obits that admit steady solutions.

Remark 2.1. Recall that according to the Euler equation (2) in any dimension the coset

of one-forms [α] evolves by a volume-preserving change of coordinates, that is, during

the Euler evolution it remains in the same coadjoint orbit in g∗. Introduce the vorticity

two-form ξ := du� as the differential of the one-form α = u� and note that the vortic-

ity exact two-form is well-defined for cosets [α]: one-forms α in the same coset have

equal vorticities ξ = dα. The corresponding Euler equation assumes the vorticity (or

Helmholtz) form

∂tξ + Luξ = 0, (3)

which means that the vorticity form is transported by (or “frozen into") the fluid flow

(Kelvin’s theorem). The definition of vorticity ξ as an exact two-form ξ = du� makes

sense for a manifold M of any dimension. �

Remark 2.2. In the case of two-dimensional oriented surfaces M the group SDiff(M)

of volume-preserving diffeomorphisms ofM coincides with the group Symp(M) of sym-

plectomorphisms of M with the area form μ = ω given by the symplectic structure.
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7466 A. Izosimov and B. Khesin

Furthermore, in 2D we identify the vorticity two-form ξ with a function F satisfying

ξ = Fω. Since locally any symplectic vector field u is Hamiltonian, it satisfies iuω = −dH
for a (locally defined) Hamiltonian function H . Then vorticity function F and the Hamil-

tonian H are related via 
H = −F , by means of the Laplace–Beltrami operator for the

Riemannian metric on the surface M . �

2.2 Steady flows and Dirichlet variational problem

As we mentioned above, steady flows on a manifoldM (of any dimension) are defined by

the Euler stationary equation ∂t[α] = 0, which means

Lu[α] = 0,

where [α] is the coset of the one-form α = u� obtained from a divergence-free vector field

u on M tangent to the boundary. (The Euler stationary equation is often written in the

form (u,∇)u = −∇p for a field u with div u = 0, u ‖ ∂M , and an appropriate pressure

function p.)

Remark 2.3. For a two-dimensional surfaceM steady flows can be described by means

of the following data. Recall that in the 2D case the vorticity two-form can be thought

of as a function F = dα/ω, and the corresponding stationary Euler equation assumes

the vorticity form LuF = 0. Since an area-preserving field on a surface M is locally

Hamiltonian, one can rewrite the stationary condition in terms of the corresponding

stream (or Hamiltonian) function H of the vector field u = XH . Namely, the 2D stationary

Euler equation LuF = 0 assumes the form {F ,H} = 0 of vanishing the Poisson bracket

between the vorticity F and (local) stream function H . The latter in 2D means that F and

H have common level curves. In particular, if the Hamiltonian H = H(F) is a smooth

function of vorticity F (or vice versa), the corresponding Hamiltonian field defines a

steady flow.

Also note that for steady flows the vorticity F is necessarily constant on con-

nected components of the boundary of M , since so is the stream function H (the latter

must be constant on boundary components in view of the condition u ‖ ∂M ). �

In the above description of steady flows one can separate the role of the metric

and the area form. First note that on a surface with a symplectic structure ω and a

Riemannian metric g(, ) there is a natural almost complex structure J relating them:

ω(V , JW) = g(V ,W) for any pair of vector fields V and W on M . (On surfaces an almost

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2017/24/7459/2580437 by U
N

IVER
SITY O

F AR
IZO

N
A user on 20 O

ctober 2018



Steady Solutions to the 2D Euler Equation 7467

complex structure is always a complex structure for dimensional reasons.) Given only

a symplectic structure ω we say that an almost complex structure J is compatible with

ω if the formula above produces a positive-definite metric g.

Definition 2.4. Let (M ,ω) be a symplectic surface, and let F : M → R be a smooth

function. Then a triple (α, J ,H), where α is a one-form, J is an almost complex structure

compatible with ω, and H = H(F) is a smooth function of F , such that J ∗α = −dH and

dα = Fω, is called an F-steady triple. �

Proposition 2.5. A steady triple (α, J ,H) on a symplectic surface (M ,ω) gives rise to a

steady flow with vorticity F and stream function H . �

Proof. Indeed, let us show that such a one-form α defines a steady flow u = α�, that is,
that the condition Lu[α] = 0 is fulfilled. Since Lu = iud+diu we need to show that the one-

form iudα is exact. The latter holds, since iudα = iuFω = Fiuω = −FdH(F) = d�(F) for an

appropriate function �. Furthermore, the relation J ∗α = −dH along with the condition

of compatibility of J and ω for the Hamiltonian field, which satisfies iuω = −dH , gives

α( . ) = g(u, . ), that is, precisely u = α� in the metric g. Thus the Hamiltonian field u for

the Hamiltonian function H is a steady solution of the Euler equation. �

It is worth mentioning that, in addition to the direct definition of steady flows

by means of the stationary Euler equation, there are two variational problems leading

to the same characterization, both of which have hydrodynamical origin.

Proposition 2.6. (a) Steady flows of an ideal fluid correspond to critical points of the

L2-energy Hamiltonian H([α]) on the sets of isovorticed fields.

(b) Steady flows of an ideal fluid correspond to critical points of the L2-energy

E(u) on the sets of fields related by the action of volume-preserving diffeomorphisms.

�

Indeed, the first description is a direct consequence of the aforementioned

Hamiltonian framework in ideal hydrodynamics: being Hamiltonian on the dual space

g∗, steady flows are critical points of theHamiltonian function,which is the L2-energy, on

coadjoint orbits of volume-preserving diffeomorphisms. Such orbits consist of (cosets

of) one-forms α which are diffeomorphic by means of volume-preserving diffeomor-

phisms, and the corresponding vector fields are called isovorticed, since they correspond

to diffeomorphic vorticity two-forms dα.
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7468 A. Izosimov and B. Khesin

In the second description, originated in magnetohydrodynamics, one is look-

ing for critical points of the same energy functional but on the sets of diffeomorphic

fields, which are adjoint orbits in the Lie algebra g of the group of volume-preserving

diffeomorphisms, and the sets of conditional extrema in the two problems coincide, see

[5, 13].

In terms of the stream function H , the second variational problem is closely

related to the following minimization problem, posed by Arnold in [3]: given a simple

Morse function H̄ on a surface M , find among the functions H = φ∗H̄ obtained from it

by volume-preserving coordinate change φ ∈ SDiff(M) those realizing the minimum for

the Dirichlet functional: DF(H) := ∫M (∇H ,∇H) ω. One can show that functions realizing

extremals of the Dirichlet functional can be regarded as stream functions of steady flows

on M .

Example 2.7. For a function H̄ on a disk with the only critical point, maximum, inside

the disk and constant on the boundary, the minimum of the Dirichlet functional is

assumed on a rotationally symmetric function symplectomorphic to H̄ [3]. It corresponds

to a steady flow on the disk whose stream function depends only on the radius and flow

trajectories are concentric circles. On the other hand, for a positive function on the disk

with one local maximum, one local minimum, and one saddle point there is no smooth

function realizing the minimum [10]. �

In this paper we show how very restrictive the condition of stationarity is and

give a criterion for a coadjoint orbit to admit a steady solution for an appropriatemetric.

2.3 Casimirs of the 2D Euler equation

The fact that the vorticity two-form ξ is “frozen into" the incompressible flow allows one

to define first integrals of the hydrodynamical Euler equation valid for any Riemannian

metric on M . In 2D the Euler equation on M is known to possess infinitely many so-

called enstrophy invariants mλ(F) :=
∫
Mλ(F) ω, where λ(F) is an arbitrary function of

the vorticity function F . In particular, the enstrophy momenta

mi(F) :=
∫
M
Fi ω

are conserved quantities for any i ∈ N. These Casimir invariants are fundamental in the

study of nonlinear stability of 2D flows, and in particular, were the basis for Arnold’s

stability criterion in ideal hydrodynamics, see [2, 5]. In the energy-Casimir method one
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Steady Solutions to the 2D Euler Equation 7469

studies the second variation of the energy functional with an appropriately chosen

combination of Casimirs.

In the case of a flow in an annuluswith a vorticity functionwithout critical points

such invariants forma complete set of Casimirs [8], while formore complicated functions

and domains it is not so. In Appendix 3 we give a complete description of Casimirs in

the general setting of Morse vorticity functions on two-dimensional surfaces with or

without boundary.

3 Coadjoint Orbits of the Symplectomorphisms Group

3.1 Simple Morse functions and measured Reeb graphs

Definition 3.1. Let M be a compact connected surface with a possibly non-empty

boundary ∂M . A Morse function F : M → R is called simple if it satisfies the following

conditions:

(i) F is constant on each connected component of the boundary ∂M ;

(ii) F does not have critical points at the boundary;

(iii) any F-level contains atmost one critical point. (Inwhat follows, by an F-level

we mean a connected component of the set F = const.) �

With each simple Morse function F : M → R, one can associate a graph. This

graph �F is defined as the space of F-levels with the induced quotient topology. Each ver-

tex of this graph corresponds either to a critical level of the function F or to a boundary

component of the surface M .

The function F onM descends to a function f on the graph�F . It is also convenient

to assume that �F is oriented: edges are oriented in the direction of increasing f .

To distinguish between vertices of �F corresponding to critical levels of F and

vertices corresponding to boundary components, we denote the latter by circles and call

them boundary vertices. We shall use the notation ∂� for the set of boundary vertices.

Example 3.2. Figure 2 shows level curves of a simple Morse function on a disk and the

corresponding graph �F . �

Definition 3.3. A Reeb graph (�, f ) is an oriented connected graph � with a continuous

function f : �→ R which satisfies the following properties.

(i) All vertices of � are either one-valent or three-valent.
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7470 A. Izosimov and B. Khesin

Fig. 2. A simple Morse function on a disk and the associated graph.

Fig. 3. Trunk and branches in a Reeb graph.

(ii) one-valent vertices are of two types: boundary vertices and non-boundary

vertices.

(iii) For each three-valent vertex, there are either two incoming and one outgoing

edge, or vice versa. �

It is a standard result from Morse theory that the graph �F associated with a

simple Morse function F : M → R on an orientable connected surfaceM is a Reeb graph

in the sense of Definition 3.3. We will call this graph the Reeb graph of the function F .

Reeb graphs classify simple Morse functions on M up to diffeomorphisms.

In what follows, we assume that the surface M is endowed with an area (i.e.,

symplectic) form ω. We are interested in the classification problem for simple Morse

functions up to area-preserving (i.e., symplectic) diffeomorphisms. It turns out that this

classification can be given in terms of so-called log-smooth measures on Reeb graphs.

Definition 3.4. Let � be a Reeb graph. Assume that e0, e1, and e2 are three edges of �

which meet at a three-valent vertex v. Then e0 is called the trunk of v, and e1, e2 are

called branches of v if either e0 is an outgoing edge for v, and e1, e2 are its incoming

edges, or e0 is an incoming edge for v, and e1, e2 are its outgoing edges (see Figure 3). �

Definition 3.5. A measure μ on a Reeb graph (�, f ) is called log-smooth if it has the

following properties:
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Steady Solutions to the 2D Euler Equation 7471

(i) It has a C∞ smooth non-vanishing density dμ/df at interior points and one

valent vertices of �.

(ii) At three-valent vertices, the measure μ has logarithmic singularities. More

precisely, one has the following. Assume that v is a three-valent vertex of

�. Without loss of generality assume that f (v) = 0 (if not, we replace f by

f̃ (x) := f (x)−f (v)). Let e0 be the trunk of v, and let e1, e2 be the branches of v.

Then there exist functions ψ , η0, η1, η2 of one variable, smooth in the neigh-

borhood of the origin 0 ∈ R and such that for any point x ∈ ei sufficiently
close to v, we have

μ([v,x]) = εiψ(f (x)) ln |f (x)| + ηi(f (x)),

where ε0 = 2, ε1 = ε2 = −1, ψ(0) = 0, ψ ′(0) �= 0, and η0 + η1 + η2 = 0. �

Definition 3.6. A Reeb graph (�, f ) endowed with a log-smooth measure μ is called a

measured Reeb graph. �

If a surface M is endowed with an area form ω, then the Reeb graph �F of any

simple Morse function F : M → R has a natural structure of a measured Reeb graph. The

measure μ on �F is defined as the pushforward of the area form onM under the natural

projection π : M → �F .

It turns out that there is a one-to-one correspondence between simple Morse

functions on M , considered up to symplectomorphisms, and measured Reeb graphs

satisfying the following natural compatibility conditions:

Definition 3.7. Let M be a connected surface, possibly with boundary, endowed with

a symplectic form ω. A measured Reeb graph (�, f ,μ) is compatible with (M ,ω) if

(i) the genus dimH1(�,R) of � is equal to the genus of M ;

(ii) the number of boundary vertices of � is equal to the number of components

of ∂M ;

(iii) the volume of � with respect to the measure μ is equal to the volume of M :∫
�
dμ = ∫M ω. �

Theorem 3.8. The mapping assigning the measured Reeb graph �F to a simple Morse

function F provides a one-to-one correspondence between simple Morse functions onM

up to a symplectomorphism and measured Reeb graphs compatible with M . �
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7472 A. Izosimov and B. Khesin

Proof. When M is closed, this result is Theorem 3.11 of [11]. The general case can be

reduced to the case of closed M by means of the symplectic cut operation. Namely, let

M be a connected surface with boundary endowed with a symplectic form ω and let

F : M → R be a simple Morse function. Consider the topological space M̃ obtained from

M by contracting each connected component of ∂M into a point. Denote by π : M → M̃ the

natural projection, and by the F̃ and ω̃ the pushforwards to the M̃ of the corresponding

function F and symplectic structure ω.

Proposition 3.9. There exists a smooth structure on M̃ such that the function F and

symplectic structure ω descend to smooth objects F̃ and ω̃ on M̃ . �

Proof of Proposition 3.9. In a sense, this is a nonlinear version of the Archimedes

theorem that the radial projection from a sphere to the circumscribed cylinder is area-

preserving. Indeed, in a neighborhood of every boundary component � of M introduce

action-angle coordinates, that is, smooth functions

S : U → R≥0 = {z ∈ R | z ≥ 0}, � : U → S1 = R /2πZ,

such that ω = dS ∧ d�, S = 0 on �, and F = ζ(S) where ζ is a smooth function in

one variable such that ζ ′(0) �= 0. Then in a neighborhood of the point Z = π(�) ∈ M̃ ,

the image of this boundary component, we define a chart by taking the functions P :=√
S cos�, Q := √S sin� as local coordinates. Then the function F in terms of functions

P, Q near each point Z becomes F̃ = ζ(P2 + Q2), while the symplectic structure now is

ω̃ = 2dP ∧ dQ. �

Nowwe have a functor (M ,F ,ω) �→ (M̃ , F̃ , ω̃) from the category of triples (M ,F ,ω)

on surfaces with boundary to the category of triples (M̃ , F̃ , ω̃) on closed surfaces. This

functor becomes invertible upon specification of minima and maxima of the function

F̃ that correspond to boundary components of M . At the level of Reeb graphs, this

correspondence replaces boundary vertices by marked vertices. Since measured Reeb

graphs up to isomorphism completely describe simple Morse functions on closed sym-

plectic surfaces modulo symplectomorphisms (see Theorem 3.11 of [11]), this one-to-one

correspondence extends to symplectic surfaces with boundary. �

Remark 3.10. The functor (M ,F ,ω) �→ (M̃ , F̃ , ω̃) may be viewed as a particular case of

the symplectic cut operation introduced by Lerman [12]. �
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Steady Solutions to the 2D Euler Equation 7473

3.2 Antiderivatives on graphs

In order to pass from the above classification of simple Morse functions on symplec-

tic surfaces to the classification of coadjoint orbits of the group SDiff(M), we need to

introduce the notion of the antiderivative of a density on a graph. Let � be an oriented

graph, some of whose vertices are marked and called boundary vertices. Let also ρ be a

density on �, that is, a finite Borel-signed measure.

Definition 3.11. A function λ : � \ V → R defined and continuous on the graph� outside

its set of vertices V = V(�) is called an antiderivative of the density ρ if it has the

following properties.

(i) It has at worst jump discontinuities at vertices, which means that for any

vertex v ∈ V and any edge e � v, there exists a finite limit

lim
x

e−→v
λ(x),

where x
e−→ v means “as x tends to v along the edge e.”

(ii) Assume that x,y are two interior points of some edge e ∈ �, and that e is

pointing from x toward y. Then λ satisfies the Newton–Leibniz formula

λ(y)− λ(x) = ρ([x,y]). (4)

(iii) Let v be a non-boundary vertex of �. Then λ satisfies the Kirchhoff rule at v:∑
e→v

lim
x

e−→v
λ(x) =

∑
e←v

lim
x

e−→v
λ(x), (5)

where the notation e→ v stands for the set of edges pointing at the vertex

v, and e← v stands for the set of edges pointing away from v. �

Proposition 3.12. Let � be an oriented graph with marked boundary vertices.

(i) If the graph � has at least one boundary vertex, then any density ρ on �

admits an antiderivative.

(ii) If � has no boundary vertices, then a density ρ on � admits an antiderivative

if and only if ρ(�) = 0.

(iii) If a density ρ on � admits an antiderivative, then the set of antiderivatives of

ρ is an affine space whose underlying vector space is the relative homology

group H1(�, ∂�,R), where ∂� is the set of boundary vertices of �. �
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7474 A. Izosimov and B. Khesin

Fig. 4. The space of antiderivatives on a graph of genus one.

Example 3.13. Consider the graph � depicted in Figure 4. Let ρ be a density on � such

that ρ(ei) = ai, where the numbers ai satisfy a1 + a2 + a3 + a4 = 0 (so that the density ρ

admits an antiderivative). The numbers near vertices in the figure stand for the limits of

the antiderivative λ of ρ. The space of such antiderivatives has one parameter z, which

determines how the splitting of the antiderivative between the edges e2 and e3 takes

place (by the proposition above the space of antiderivatives is one-dimensional). �

Proof of Proposition 3.12. Let λ : � \ V → R be any function satisfying conditions (i)

and (ii) of Definition 3.11. Let e be an edge of � going from v to w, and let x ∈ e. Denote
by λ−(e) and λ+(e) the limits of λ(x) as x tends to v and w, respectively. Consider the

one-chain

ch(λ) :=
∑
e ∈E

λ+(e)e, (6)

where E = E(�) stands for the set of edges of �. The mapping ch is a one-to-one map

between functions λ : � \ V → R satisfying conditions (i) and (ii) of Definition 3.11 and

one-chains on �. Then we have

∂ch(λ) =
∑
v ∈V

(∑
e→v

λ+(e)−
∑
e←v

λ+(e)

)
v = χ +

∑
v ∈V


(v)v,

where χ is a zero-chain given by

χ := −
∑
v ∈V

∑
e←v

ρ(e)v,
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Steady Solutions to the 2D Euler Equation 7475

and


(v) :=
∑
e→v

λ+(e) −
∑
e←v

λ−(e).

Note that 
(v) = 0 is equivalent to the Kirchhoff rule at v. Therefore, λ is an

antiderivative of ρ if and only if

∂ch(λ) = χ mod ∂�. (7)

So, a density ρ on � admits an antiderivative if and only if the zero-chain χ is a relative

boundary modulo ∂�. If the set ∂� is non-empty, then we have H0(�, ∂�,R) = 0, so the

chain χ is always a relative boundary, which proves the first statement of the propo-

sition. Further, if ∂� is empty, then χ is a boundary if and only if ε(χ) = 0 where ε is

the augmentation map ε
(∑

civi
) = ∑

ci. We have ε(χ) = −ρ(�), which proves the sec-

ond statement. To prove the third statement, note that since the mapping ch identifies

appropriate functions λ : � \ V → R and one-chains on �, it identifies antiderivatives of

ρ with the set of one-chains having property (7). Now, to complete the proof, it suffices to

note that the latter set is an affine space with underlying vector space H1(�, ∂�,R). �

3.3 Classification of coadjoint orbits

Let M be a compact connected surface, possibly with boundary. Assume that M is

endowed with a symplectic form ω. Recall that the regular dual svect∗(M) of the Lie

algebra svect(M) of divergence-free vector fields on a surface M is identified with the

space �1(M)/d�0(M) of smooth one-forms modulo exact one-forms onM . The coadjoint

action of a SDiff(M) on svect∗(M) is given by the change of coordinates in (cosets of) one-

forms onM by means of a symplectic diffeomorphism: Ad∗� [α] = [�∗α]. In what follows,

the notation [α] stands for the coset of one-forms α in �1(M)/d�0(M). In particular, if

the form α is closed, then [α] is the cohomology class of α.

To describe orbits of the coadjoint action of SDiff(M) on svect∗(M), consider the

mapping curl : �1(M) /d�0(M)→ C∞(M) given by taking the vorticity function

curl[α] := dα

ω
.

(One can view this map as taking the vorticity of a vector field u = α�.)

Remark 3.14. If the boundary of M is non-empty, then the mapping curl is surjective.

Otherwise, its image is the space of functions with zero mean. �
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7476 A. Izosimov and B. Khesin

An important property of the mapping curl is its equivariance with respect to

the SDiff(M) action: if cosets [α], [β] ∈ svect∗(M) belong to the same coadjoint orbit,

then the functions curl[α] and curl[β] are conjugated by a symplectic diffeomorphism. In

particular, if curl[α] is a simple Morse function, then so is curl[β].

Definition 3.15. We say that a coset of one-forms [α] ∈ svect∗(M) isMorse-type if curl[α]
is a simple Morse function. A coadjoint orbit O ⊂ svect∗(M) is Morse-type if any coset

[α] ∈ O is Morse-type (equivalently, if at least one coset [α] ∈ O is Morse-type). �

Let [α] ∈ svect∗(M) be Morse-type, and let F = curl[α]. Consider the measured

Reeb graph �F . Since curl is an equivariant mapping, this graph is invariant under the

coadjoint action of SDiff(M) on svect∗(M). However, this invariant is not complete if M

is not simply connected (i.e., if M is neither a sphere S2, nor a disk D2). To construct a

complete invariant, we endow the graph �F with a circulation function constructed as

follows. Let π : M → �F be the natural projection. Take any point x lying in the interior

of some edge e ∈ �F . Then π−1(x) is a circle �x . It is naturally oriented as the boundary

of the set of smaller values. The integral of α over �x does not depend on the choice of a

representative α ∈ [α]. Thus, we obtain a function c : �F \ V(�F )→ R given by

c(x) :=
∫
�x

α. (8)

In the presence of a metric on M , the value c(x) is the circulation over the level π−1(x)

of the vector field α� dual to the one-form α.

Proposition 3.16. For any Morse-type coset [α] ∈ svect∗(M), the function c given by

formula (8) is an antiderivative of the density ρ(I) := ∫I fdμ in the sense ofDefinition 3.11.

�

Remark 3.17. This density ρ is the pushforward of the vorticity two-form d[α] from
the surface to the Reeb graph. �

Proof of Proposition 3.16. The proof is straightforward and follows from the Stokes

formula and additivity of the circulation integral. �

Definition 3.18. Let (�, f ,μ) be a measured Reeb graph. A circulation function c on �

is an antiderivative of the density ρ(I) := ∫I fdμ. A measured Reeb graph endowed with

a circulation function is called a circulation graph. �
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Steady Solutions to the 2D Euler Equation 7477

So, with any Morse-type coset [α] ∈ svect∗(M) we associate a circulation graph.

Denote this graph by �[α].

Theorem 3.19. Let M be a compact connected symplectic surface. Then Morse-type

coadjoint orbits of SDiff(M) are in one-to-one correspondence with circulation graphs

(�, f ,μ, c) compatible with M . �

The proof of this theorem is a version of the proof of Theorem 4.6 in [11] adapted

to surfaces with boundary. We present it in Appendix 1. Now we are ready to describe

steady solutions on such coadjoint orbits.

4 Steady Fluid Flows and Coadjoint Orbits

4.1 Orbits admitting steady flows

Definition 4.1. Let (M ,ω) be a compact symplectic surface, possibly with boundary.

We say that a coadjoint orbit O ⊂ svect∗(M) admits a steady flow if there exists a metric

g on M compatible with the symplectic structure ω and such that the corresponding

Euler equation has a steady solution on O. �

Below we give a necessary and sufficient condition for a Morse-type coadjoint

orbit to admit a steady flow. Recall that coadjoint orbits of SDiff(M) are described by

measured Reeb graphs endowed with a circulation function. Let � be a measured Reeb

graph, and let c be a circulation function on �. Let also v ∈ V(�) be a three-valent vertex

of �, and let e0, e1, e2 be the edges of � adjacent to v. Denote

ci(v) := lim
x
ei−→v

c(x). (9)

Definition 4.2. Let � be a measured Reeb graph. We say that a circulation function c on

� is balanced if for any three-valent vertex v ∈ �, the numbers c0(v), c1(v), c2(v) defined

by formula (9) are non-zero and have the same sign. �

Remark 4.3. If e0 is the trunk of v, and e1, e2 are branches of v, then, by the Kirchhoff

rule (5), we have c0(v) = c1(v) + c2(v), so c0(v), c1(v), c2(v) are non-zero and have the

same sign if and only if c1(v) and c2(v) are non-zero and have the same sign. �

Theorem 4.4. Let (M ,ω) be a compact symplectic surface, possibly with boundary, and

let O ⊂ svect∗(M) be a Morse-type coadjoint orbit. Then O admits a steady flow if and

only if the corresponding circulation function is balanced. �
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7478 A. Izosimov and B. Khesin

Fig. 5. A directed path � joining a local minimum with a local maximum.

Corollary 4.5. If the Reeb graph of the vorticity function does not have three-valent

vertices, then the orbit admits a steady flow. �

There are only four such graphs: a segment with no, either, or two marked

points. They correspond to vorticity functions with one maximum and one minimum

on the sphere, disk, or cylinder. All corresponding orbits have steady flows for the met-

ric of constant curvature. Once the vorticity function has saddle points, the existence

conditions become quite non-trivial.

Example 4.6 (see Theorem 5.6 of [10]). Assume that M is diffeomorphic to a disk D2.

Let O ⊂ svect∗(M) be a Morse-type coadjoint orbit such that the corresponding vorticity

function F has a local minimum and a local maximum in M \ ∂M . Then, if F > 0 in

M \ ∂M , the orbit O does not contain steady solutions of the Euler equation.

Indeed, let (�, f ,μ, c) be the circulation graph corresponding to the orbit O. The

graph � has exactly one boundary vertex (since M is a disk), at least one non-boundary

one-valent vertex with an incoming edge (local maximum of the vorticity), and at least

one non-boundary one-valent vertex with an outgoing edge (local minimum of the vor-

ticity). Using these three conditions, one can easily show that there exists a directed

path � in � which joins two non-boundary one-valent vertices (see Figure 5).

Let us consider the behavior of the circulation function c along the path �. First,

the Newton–Leibniz formula (4) and positivity of the vorticity imply that c is strictly

increasing at all points of � except, possibly, three-valent vertices, where c has jump

discontinuities. Secondly, by the Kirchhoff rule (5), the function c vanishes at endpoints

of �. Together, these two conditions imply that the function c must change sign at some

three-valent vertex v ∈ �. So, by Theorem 4.4, the orbitO does not admit steady solutions

of the Euler equation, q.e.d.

The assumption that M is a disk is not important. It suffices to require that the

boundary ∂M of M has one connected component. �
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Steady Solutions to the 2D Euler Equation 7479

Remark 4.7. The above theorem provides the necessary and sufficient conditions for

the existence of a steady solution on a Morse-type orbit for some metric compatible

with a given area two-form ω. In fact, the necessary condition holds for any metric and,

roughly speaking, the fact that the circulation function is balanced is a consequence of

an analysis of the hyperbolic figure-eight levels of the vorticity function F for steady

flows along with the condition H = H(F) of dependence of the stream and vorticity

functions (see Proposition 4.8 and Lemma 4.10).

The sufficiency (proved in the next section) is based on a technical procedure

divided into local and global steps. The local part consists of constructing stream func-

tions H and metrics g such that the triples (F ,g,H) (or, equivalently, triples (α, J ,H))

solve the steady Euler equation in the vicinity of all maxima and minima of F (Propo-

sition 4.13), in a neighborhood of a figure-eight level (Propositions 4.15 and 4.16) and

in regions fibered by regular levels of F (Propositions 4.12 and 4.17). The global part

consists of gluing all the previous local constructions by using the structure of the

corresponding circulation graphs (Proposition 4.20) and appropriate normal forms for

metrics, complex structures, and stream functions in the vicinity of the critical points

of F . �

Proof of the “only if” part of Theorem 4.4. We need to prove that if a Morse-type

coadjoint orbit admits a steady flow, then the corresponding circulation function is

balanced. Recall that if [α] ∈ svect∗(M) is a steady solution of the Euler equation, then

the vorticity function F = curl[α] is a first integral for the fluid velocity field u. In other

words, the fluid velocity field u of a steady flow is tangent to every level of the vorticity

F , and in particular, to hyperbolic figure-eight levels. The proof of necessity is based on

the following proposition, which we are proving later.

Proposition 4.8. Assume that (M ,ω) is a compact symplectic surface, possibly with

boundary, and let [α] ∈ svect∗(M) be a fixed point of the Euler equation such that the

corresponding vorticity F = curl[α] is a simpleMorse function. Let also E be a hyperbolic

figure-eight level of F , and let O ∈ E be the singular point. Then:

(i) the fluid velocity field u does not vanish in E \ {O};
(ii) u induces the same orientation on both connected components of E \ {O} (see

Figure 6). (Recall that each level of F is naturally oriented as the boundary of

the set of smaller values. This allows us to compare the orientations induced

by u on different connected components of E \ {O}.) �
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7480 A. Izosimov and B. Khesin

Fig. 6. Neighborhood of a hyperbolic level of the vorticity function.

Now let α ∈ [α] be a co-closed representative one-form for a steady solution

[α] ∈ svect∗(M) of the Euler equation. Take any three-valent vertex v of the circulation

graph �[α] corresponding to the coset [α]. Let e0 be the trunk of v, and let e1, e2 be the

branches of v. Let also E be the figure-eight level of the vorticity function F = curl[α]
corresponding to the vertex v (see Figure 6). Then for i = 1, 2 we have

ci(v) =
∫
�i

α,

where ci(v) is defined by formula (9). According to Proposition 4.8, either the direction

of the fluid velocity field u coincides with the natural orientation on both arcs �1, �2 of E ,
or the field u is opposite to the orientation of both arcs. In the case where orientations

coincide, one can take the natural time parameter t on integral trajectories of u as a

parameter on �1, �2. Then, for i = 1, 2, we have

ci(v) =
∫
�i

α =
+∞∫
−∞

α(�̇i(t))dt =
+∞∫
−∞

α(u(t))dt =
+∞∫
−∞
(u(t),u(t))dt,

where (, ) is the dot product given by the metric onM . So, in this case the numbers ci(v)

are both positive. Similarly, in the case of opposite orientation of u and the arcs, ci(v)

are both negative. Thus, in both cases the numbers ci(v) are non-zero and have the same

sign, as desired. This completes the proof of the “only if” part of the theorem modulo

the proposition above. �

Proof of Proposition 4.8. Consider a tubular neighborhoodU of E , as depicted in Figure

6. Since the fluid velocity vector field u is symplectic, the one-form β := iuω is closed.

Further, since u is tangent to the arcs �1 and �2, we have β |�1= β |�2= 0, and, therefore,∫
�1

β =
∫
�2

β = 0,

which implies that the one-form β is exact in U , that is, iuω = dH for a suitable smooth

function H : U → R (the stream function).
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Steady Solutions to the 2D Euler Equation 7481

The first statement of the proposition is immediate: if one assumes that the field

u vanishes at some point of E \ {O}, say on the arc �1, then dH vanishes at that point and

hence on the whole arc �1, which contradicts that O is an isolated critical point of H .

To prove the second statement we need two auxiliary lemmas. The first one is

known as the Morse–Darboux lemma. This lemma is a particular case of Le lemme de

Morse isochore due to Colin de Verdière and Vey [9].

Lemma 4.9. Assume that (M ,ω) is a symplectic surface, and let F : M → R be a smooth

function. Let also O ∈ M \ ∂M be a Morse critical point of F . Then, in a neighborhood of

O, there exist coordinates (P,Q) such that ω = dP∧dQ, and F = ζ(S)where S = 1
2 (P

2+Q2)

or S = PQ. The function ζ of one variable is smooth in the neighborhood of the origin

0 ∈ R, and ζ ′(0) �= 0. �

Now, let [α] ∈ svect∗(M) be a fixed point of the Euler equation, and let α ∈ [α] be a
co-closed representative, a co-closed one-form α in this coset. The co-closedness condi-

tion implies that the corresponding fluid velocity field u = α� is divergence-free, that is,

symplectic or locally Hamiltonian, and the corresponding locally defined Hamiltonian

is called the stream function. Let also O ∈ M be a hyperbolic Morse critical point of the

vorticity F = curl[α]. Then in a neighborhood of O there exists a stream function H , such

that iuω = dH .

Lemma 4.10. Assume that (M ,ω) is a symplectic surface, and let [α] ∈ svect∗(M) be a

fixed point of the Euler equation. Let also O ∈ M \ ∂M be a hyperbolic Morse critical

point of the vorticity F = curl[α]. Then O is also a hyperbolic Morse critical point for the

stream function H . Moreover, in coordinates P,Q from Lemma 4.9, the Taylor expansion

of H at O reads H = a + bPQ + · · · , where a,b are constants, b �= 0, and dots denote

higher-order terms. �

Proof. Since [α] is a fixed point for the Euler equation, we have {F ,H} = 0, where {, } is
the Poisson bracket defined by the symplectic structure ω. Applying Lemma 4.9 to the

vorticity F at the point O, we find local coordinates P,Q such that ω = dP ∧ dQ, and

F = ζ(PQ). Since ζ ′(0) �= 0, we have PQ = ζ−1(F), and

{PQ,H} = (ζ−1)′(F) · {F ,H} = 0.

The latter equation implies that the Taylor expansion of H at O reads H = a + bPQ +
cP2Q2+· · · , where a,b, c ∈ R are constants, and dots denote higher-order terms. Assume
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7482 A. Izosimov and B. Khesin

that b = 0. Then H = a+ cP2Q2 + · · · , and a straightforward computation shows that

F = −
H = 8cg12(O)PQ− 2cg11(O)P
2 − 2cg22(O)Q

2 + · · · , (10)

where
 is the Laplace–Beltrami operator, and gij are components of the metric g in P,Q

coordinates. On the other hand, we have

F = ζ(PQ) = ζ(0)+ ζ ′(0)PQ+ . . . .

Comparing the latter formula with (10), we conclude that c = 0, so ζ ′(0) = 0, which is a

contradiction. Therefore, our assumption is false, and we have H = a+bPQ+· · · , where

b �= 0, q.e.d. �

Now, let us prove the second statement of Proposition 4.8. In a neighborhood of

the point O, the fluid velocity field u has the form

u = ω−1dH = b
(
P
∂

∂p
−Q ∂

∂q

)
+ · · · ,

Similarly, we have

XF = ω−1dF = ζ ′(0)
(
P
∂

∂p
−Q ∂

∂q

)
+ · · · ,

so,modulo higher-order terms,wehaveu ≈ (b/ζ ′(0))XF . Now, note that the vector fieldXF

induces the same orientation on �1, �2 (it is opposite to the natural orientation). Therefore,

the same is true for the field u. This completes the proof of the proposition. �

4.2 Construction of steady flows

In this section we prove that if a circulation function corresponding to a Morse-type

coadjoint orbit O ⊂ svect∗(M) is balanced, then the orbit O admits a steady flow, that

is, there exists a metric g on M compatible with the symplectic structure ω and such

that the corresponding Euler equation has a steady solution on O. We divide the proof

into several statements (see Remark 4.7 for the scheme of the proof). The first lemma is

well-known being a particular case of the Arnold–Liouville theorem:

Lemma 4.11. Assume that (C,ω) is a compact symplectic cylinder, and let F : C → R be

a smooth function constant on the boundary of C. Assume also that dF �= 0 on C. Then

there exist functions

S : C → R, � : C → S1 = R /2πZ,
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Steady Solutions to the 2D Euler Equation 7483

called the action-angle variables, such that ω = dS ∧ d�, and F = ζ(S) where ζ is a

smooth function in one variable such that ζ ′(S) �= 0. �

Recall that to construct a steady flowwith a prescribed vorticity F on a symplec-

tic surface (M ,ω) it suffices to define an F-steady triple (α, J ,H) onM , see Definition 2.4.

Here α is a one-form, J is an almost complex structure compatible with ω, and H = H(F)

satisfying J ∗α = −dH and dα = Fω.

Proposition 4.12. Assume that (C,ω) is a symplectic cylinder, and let F : C → R be a

smooth function constant on the boundary of C. Assume also that dF �= 0 on C. Then

there exists an F-steady triple (α, J ,H) on C. Moreover, for any F-level � ⊂ C and any

constant c, the form α can be chosen in such a way that
∫
�
α = c. �

Proof. We work in action-angle coordinates S,� from Lemma 4.11. Without loss of

generality, we may assume that S = 0 on �. By setting

α := η(S)d�, H := −
∫
η(S)dS, and J :=

(
0 −1
1 0

)
(11)

we provide J ∗α = −dH for any smooth function η(S). Now by specifying this function

to be

η(S) := c

2π
+

S∫
0

ζ(ξ)dξ

we also obtain dα = Fω for F = ζ(S), as well as
∫
�
α = c, as desired. �

Proposition 4.13. Let (M ,ω) be a symplectic surface, and let F : M → R be a smooth

function on M . Assume that O ∈ M \ ∂M is a non-degenerate minimum or maximum

singular point of F . Then there exists an F-steady triple (α, J ,H) in the neighborhood

of O. �

Proof. This proposition can be thought of as a modification of the one above for c = 0,

but requires an independent proof of smoothness at O. By Lemma 4.9, there exist local

coordinates P,Q in the neighborhood of O such that ω = dP ∧ dQ and F = ζ(S) where

S = 1
2 (P

2 + Q2). We use the polar coordinates (
√
2S,�) related to (P,Q) as action-angle

variables, ω = dP ∧ dQ = dS ∧ d�. Then we set

η(S) :=
∫ S

0
ζ(ξ)dξ ,

and define a steady triple (α, J ,H) using formulas (11). �
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7484 A. Izosimov and B. Khesin

Before we turn to constructing F-steady triples near hyperbolic levels, let us

point out the following key property of the sign of dH/dF .

Lemma 4.14. For a steady flow α with a stream function H = H(F) expressed in terms

of vorticity F , the sign of the derivative of the stream function with respect to vorticity

is minus the sign of the circulation function. More precisely, for any nonsingular F-level

� ⊂ M

sign
dH

dF
= −sign

∫
�

α. �

Equivalently, in terms of the Reeb graph (�, f ) of the function F on M and the

circulation function c(x) on the graph, defined by integrals of the one-form α over levels

�x = π−1(x) for interior points x ∈ �, one has

sign
dH

dF
(f (x)) = −sign c(x). (12)

The proof in terms of F-steady triples directly follows from the relation J ∗α = −dH .

Now we study the vicinity of hyperbolic levels of vorticity functions.

Proposition 4.15. Let (M ,ω) be a symplectic surface, possibly with boundary, and let

F : M → R be a smooth function on M . Assume that O ∈ M \ ∂M is a non-degenerate

hyperbolic singular point of F . Then there exists an F-steady triple (α, J ,H) in the neigh-

borhood of O. Moreover, for any ε = ±1, the triple (α, J ,H) can be chosen in such a way

that sign (dH/dF) = ε. �

Proof. By Lemma 4.9, there exist local coordinates P,Q in the neighborhood of O such

that ω = dP ∧ dQ, and F = ζ(S) where S = PQ, and ζ ′(0) �= 0. Without loss of generality,

we may assume that ζ ′(0) > 0 (if not, we replace the chart P,Q with Q,−P). Let

α := (η(S)Q+ cP)dP − (η(S)P + cQ)dQ for η(S) := − 1

2S

S∫
0

ζ(ξ)dξ ,

where c is any constant such that sign c = ε and |c| > |η(S)| in a sufficiently small

neighborhood of the point O. Then we have

dα = −2(Sη′(S)+ η(S))dP ∧ dQ = Fω,
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Steady Solutions to the 2D Euler Equation 7485

as desired. Further, for ε = 1 we set

J := 1√
c2 − η(S)2

(
η(S) −c
c −η(S)

)
, H(S) :=

∫ √
c2 − η(S)2 dS.

Then J is a complex structure compatible with ω, and J ∗α = −dH . Furthermore, we

obtain

sign
dH

dF
= sign

(
dH

dS
:
dF

dS

)
= sign

√
c2 − η(S)2
ζ ′(S)

= 1,

as required. Similarly, for ε = −1 we simply need to change the signs of J and H . �

Proposition 4.16. Let (M ,ω) be a compact symplectic surface, possibly with boundary,

and let F : M → R be a simple Morse function on M . Let also E be a figure-eight level of

F . Then there exists a steady F-triple (α, J ,H) in the neighborhood of E . Moreover, for

any non-zero numbers c1, c2 ∈ R having the same sign, the triple (α, J ,H) can be chosen

in such a way that ∫
�i

α = ci,

where �i are the loops constituting the level E (see Figure 6). �

The proof of this proposition is a rather technical explicit construction, and we

give it in Appendix 2.

Proposition 4.17. Let (C,ω) be a symplectic cylinder with boundary ∂C = �2 − �1, and
let F : C → R be a smooth function without critical points on C and constant on the

boundary components: F |�1 = c1 < c2 = F |�2 . Let also α1,α2 be one-forms defined in

neighborhoods of the cycles �1, �2 respectively such that

dα1 = dα2 = Fω. (13)

Assume also that in those neighborhoods the expressionω−1(αi, dF) does not vanish, that

is, one-forms αi and dF are linearly independent at every point of the neighborhoods.

Furthermore, consider the function

η(z) :=
∫
�1

α1 +
∫
Cz

Fω,
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7486 A. Izosimov and B. Khesin

where Cz is the set of points where F ≤ z. We assume that

η(c2) =
∫
�2

α2, (14)

and that η(z) does not change sign in the interval [c1, c2].
Then there exists a one-form α on C which “interpolates" between αi, that is, it

is linearly independent with dF , coincides with αi in a sufficiently small neighborhood

of �i, and satisfies dα = Fω. �

Proof. Wework in action-angle coordinates S,� fromLemma 4.11. In the neighborhood

of �i we have

αi = Ai(S,�)dS + Bi(S,�)d�.

By taking the direct image of the second component under the projection to the S-axis

and recalling that F = ζ(S) we see that

2π∫
0

Bi(S,�)d� = η(ζ(S))

(for any S where the left-hand side is well-defined), as follows from (13), (14), and the

Stokes formula. The condition of linear independence implies that the functions B1,B2

do not vanish. Furthermore, they have the same sign as the function η, since

2π∫
0

Bi(S(�i),�)d� =
∫
�i

αi = η(ci).

Consider the convex set B of smooth functions B(S,�) on the cylinder C which have

the same sign as the function η and the same pushforward η(ζ(S)) for the one-forms

B(S,�)d�. The setB is non-empty as it contains a function of S only:B0(S,�) := 1
2π η(ζ(S)).

Therefore, using a partition of unity, one can construct a function B̃(S,�) ∈ B which

coincides with Bi in a neighborhood of �i for i = 1, 2. Then one can restore the desired

one-form

α := A(S,�)dS + B̃(S,�)d�,

satisfying dα = Fω by Poincaré’s lemma with parameters: the one-form ( ∂
∂S B̃(S,�) −

ζ(S))d� is closed on levels sets of F and has zero periods, and hence exact, that is, for any

fixed S represented as d�A(S,�) for an appropriate function A(S,�) on the cylinder. �
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Steady Solutions to the 2D Euler Equation 7487

Definition 4.18. Let (�, f ,μ) be a measured Reeb graph, and let c be a balanced circu-

lation function on �. Denote by Ṽ ⊂ � the set of exceptional points of the graph, defined

as the union of all vertices and all points x of the graph where either f (x) = 0 or c(x) = 0

(or both):

Ṽ := V(�) ∪ {x ∈ � | f (x) = 0} ∪ {x ∈ � | c(x) = 0}. �

Definition 4.19. By a one-form on a Reeb graph (�, f ) we mean an expression which

can locally be written as g(f )df , where g(f ) is a smooth function of f . A one-form β is

exact if for any cycle � in � we have
∫
�
β = 0. �

Proposition 4.20. Let (�, f ,μ) be ameasured Reeb graph, c a balanced circulation func-

tion on �, and Ṽ the set of the corresponding exceptional points of the graph. Assume

that in the neighborhood Ui of each exceptional point xi ∈ Ṽ there is a one-form βi such

that for each x ∈ Ui \ {xi}, we have

sign
βi

df
= −sign c. (15)

Then there exists a one-form β on � which does not vanish in � \ Ṽ , coincides with βi

in a neighborhood of xi ∈ Ṽ , and such that the form f β is exact. �

The proof of Proposition 4.20 is based on the following lemma:

Lemma 4.21. Assume that � is an oriented graph, and let ε : E(�)→ {±1} be a function

such that for any subset E ′ ⊂ E(�), we have

∂
∑
e ∈E ′

ε(e)e �= 0. (16)

Then there exists a one-coboundary ξ : E(�)→ R such that sign ξ = ε. �

Proof. Reverse the orientation of all edges e such that ε(e) = −1. Then from condition

(16) it follows that the obtained graph has no directed cycles. Therefore, there exists a

zero-cochain η such that η(w) > η(v) if there is an edge going from v to w, and it is

easy to see that the one-coboundary ξ := δη, where δ is the coboundary operator, has

the desired property. �

Proof of Proposition 4.20. Consider the graph �̃ obtained from � by regarding all

points x ∈ � such that f (x) = 0 or c(x) = 0 as two-valent vertices. Then the product f c
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7488 A. Izosimov and B. Khesin

Fig. 7. A maximum of f on a cycle � in a measured Reeb graph.

has the same sign at interior points of any edge e ∈ �̃. Define a function ε : E(�̃)→ {±1}
by setting

ε(e) := −sign f c|e. (17)

Thanks to condition (15), the forms βi defined near vertices of the graph �̃ extend to a

global form β such that

sign
β

df
(x) = −sign c(x)

for any interior point x ∈ �̃. For any edge e ∈ E(�̃), we have

sign
∫
e
f β = ε(e),

where ε(e) is given by formula (17). Moreover, it is easy to see that for any one-cochain

ξ : E(�̃)→ R such that sign ξ(e) = ε(e), one can choose the form β in such a way that∫
e
f β = ξ(e). (18)

We claim that the function ε(e) satisfies condition (16). Indeed, assume that

� =
∑
e ∈E ′

ε(e)e

is a cycle. Consider the point vmax ∈ � where f is maximal. Then vmax has to be a three-

valent vertex with two incoming edges e1, e2 ∈ E(�̃) (see Figure 7). Since the circulation
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Steady Solutions to the 2D Euler Equation 7489

function c is balanced, the product f c has the same sign at e1 and e2. Therefore, we have

ε(e1) = ε(e2), which contradicts � being a cycle.

Thus, since ε(e) satisfies (16), by Lemma 4.21 the one-cochain ξ entering (18) can

be chosen to be a coboundary. The latter implies that β can be chosen in such a way that

f β is exact, q.e.d. �

Proof of the “if” part of Theorem 4.4. Let (M ,ω) be a compact-connected symplectic

surface, possibly with boundary. Let also O ⊂ svect∗(M) be aMorse-type coadjoint orbit,

and let (�, f ,μ, c) be the corresponding circulation graph. Assume that the circulation

function c is balanced. We need to show that there exists a metric g on M which is

compatible with ω and such that the corresponding Euler equation has a fixed point

on O.

Take any [α̃] ∈ O, and let F = curl[α̃]. Then themeasuredReeb graph�F associated

with F coincides with (�, f ,μ), and we have a projection π : M → �. As in Proposition

4.20, let Ṽ be the set of exceptional points,

Ṽ := V(�) ∪ {x ∈ � | f (x) = 0} ∪ {x ∈ � | c(x) = 0},

and let Ui be a neighborhood of xi ∈ Ṽ . Now, we use Propositions 4.12, 4.13, 4.16 to

construct an F-steady triple (αi, Ji,Hi) in π−1(Ui) such that:

(i) If xi ∈ Ṽ is a boundary vertex or an interior point of �, then∫
�i

αi = c(xi),

where �i = π−1(xi).
(ii) If xi ∈ Ṽ is a three-valent vertex of �, and e1, e2 are branches of xi, then for

j = 1, 2 we have ∫
�ij

αi = cj(xi),

where �ij = π−1(xi)∩∂π−1(ej), and cj(xi) is the limit of the circulation function

c(x) as x tends to xi along the edge ej.

It follows from our construction that for any x ∈ Ui \ xi we have∫
�x

αi = c(x),
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7490 A. Izosimov and B. Khesin

where �x = π−1(x). Furthermore, from the relation J ∗αi = −dHi(F), it follows that if αi

is linearly dependent with dF at some point Z lying on a non-singular level π−1(x), then

α ≡ 0 on π−1(x), and thus c(x) = 0. Therefore, αi and dF are independent at all points of

M \ π−1(Ṽ) (the latter also follows from a more general formula (12) above).

Moreover, using Proposition 4.17, we extend the forms αi to a form α defined

on the whole M which is linearly independent with dF at all points of M \ π−1(Ṽ) and
satisfies dα = Fω. For any interior point x ∈ �, we have

∫
�x

α = c(x),

where �x = π−1(x). By Lemma 4.14 one obtains sign ∂Hi/∂F(f (x)) = −sign c(x) for any

x ∈ Ui \ {xi}. Therefore, descending the forms dHi from π−1(Ui) to Ui, one obtains a

family of one-forms βi satisfying the condition of Proposition 4.20. So, there exists a

one-form β on � which does not vanish in � \ Ṽ , coincides with βi in a neighborhood

of xi ∈ Ṽ , and such that the form f β is exact. Lifting the form β back to M , we obtain

a form γ which does not vanish in M \ π−1(Ṽ), coincides with dHi in the neighborhood

of the fiber π−1(xi), and such that the form Fγ is exact. Now, we extend almost complex

structures Ji to a global almost complex structure J by setting J ∗α := −γ , J ∗γ := α.

Further, define a metric g onM be setting g(u1,u2) := ω(u1, Ju2). Then, from the formula

d(J ∗α) = −dγ = 0 it follows that α is co-closed. For the fluid velocity field u = α�, we

have

Lu[α] = [iudα] = [Fiuω] = −[FJ ∗α] = [Fγ ] = 0,

so [α] is a steady solution of the Euler equation lying on the orbit O, as desired (we have

[α] ∈ O since dα = Fω, and the circulation function corresponding to [α] coincides, by
construction, with the prescribed function c). �

Remark 4.22. Themetrics obtained for steady solutions via the above construction are

usually hyperbolic near saddle points. Also it is worth mentioning that while the above

steady solutions have stream functions near all critical points of F , they might not glue

into a univalued stream function on the whole surface M .

Finally note that Theorem 4.4 can be extended to the cases of arbitrary (non-

simple) Morse functions and to certain cases of Morse functions with critical points on

the boundary. �
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Steady Solutions to the 2D Euler Equation 7491

Fig. 8. A maximal directed path � starting at a three-valent vertex v.

4.3 Steady flows on closed surfaces

Definition 4.23. Let � be a measured Reeb graph with no boundary vertices, and let c

be a circulation function on �. We say that c is totally negative if for any three-valent

vertex v of �, the limits c0(v), c1(v), c2(v) of c at v are negative. �

Remark 4.24. Total negativity in particular implies that c(x) < 0 at any interior point

x ∈ � \ V(�). Indeed, for any edge e ∈ � the total negativity condition and the Kirchhoff

condition (5) at one-valent vertices imply that c(x) has non-positive limits at endpoints

of e. At the same time, from property (4) of circulation functions and the monotonicity

of f along e it follows that the function c restricted to e is concave down. Therefore, we

indeed have c < 0 at all points of e. �

It turns out that for closed surfaces Theorem 4.4 can be reformulated in the

following way:

Theorem 4.25. Let (M ,ω) be a closed connected symplectic surface, and let O ⊂
svect∗(M) be a Morse-type coadjoint orbit. Then O admits a steady flow if and only if

the corresponding circulation function is totally negative. �

Proof. It suffices to show that if � is ameasured Reeb graphwith no boundary vertices,

then a circulation function c on � is balanced if and only if it is totally negative. Clearly,

if c is totally negative, then it is balanced. Let us prove the converse statement. Let c be a

balanced circulation function on �. Assume that there exists a three-valent vertex v ∈ �
such that ci(v) > 0 for i = 0, 1, 2. Let us first assume that f (v) ≥ 0. Consider anymaximal

directed path � in � starting at the vertex v (see Figure 8). Then f ≥ 0 at points of the

path �, and the circulation function c has non-negative limits at endpoints of �, since it
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7492 A. Izosimov and B. Khesin

“integrates" f along �. However, at the top endpoint the circulation function tends to 0.

So, the same argument as in Example 4.6 shows that c must change sign at some three-

valent vertex w ∈ �, which contradicts the fact that c is balanced. Similarly, if f (v) ≤ 0,

then one considers a maximal directed path ending at v and applies the same argument

to obtain a contradiction. So, we indeed have ci(v) < 0 for all three-valent vertices v ∈ �,
q.e.d. �

Example 4.26. Consider the circulation graph (�, f ,μ, c) for a Morse-type coadjoint

orbit O ⊂ svect∗(T2) on a torus depicted in Figure 4, cf. Example 3.13. Let

ai :=
∫
ei

fdμ.

The space of circulation functions on � is one-dimensional and the numbers ai satisfy

the relation a1 + a2 + a3 + a4 = 0 by Proposition 3.12.

The set of totally negative circulation functions on � is described by linear

inequalities

z < 0, a1 − z < 0, a2 + z < 0, a1 + a3 − z < 0,

that is, the circulation function c is totally negative if and only if z ∈ I1 ∩ I2, where I1, I2

are open intervals I1 = (a1, 0), I2 = (a1+a3,−a2). Using that f is monotonous along edges

of � and the zero average condition a1+a2+a3+a4 = 0, one can easily prove that a1 < 0,

and a1 + a3 < −a2, so that the intervals I1, I2 are non-empty. However, these intervals

do not need to intersect, so depending on ai’s, the set of totally negative circulation

functions on � may be empty. Furthermore, even if intervals I1, I2 do intersect, the set of

totally negative circulation functions on � is only a bounded interval, while the set of

all circulation functions is a line R
1. The latter implies that, roughly speaking, most of

Morse-type coadjoint orbits of SDiff(T2) corresponding to the graph in Figure 4 do not

admit steady solutions of the Euler equation. �

The following theorem generalizes the conclusion of Example 4.26:

Theorem 4.27. Assume that (�, f ,μ) is a measured Reeb graph with no boundary ver-

tices. Then the set of totally negative circulation functions on � is a (possibly empty)

open convex polytope in the affine space of all circulation functions. In particular, the

set of totally negative circulation functions on � is bounded. �
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Steady Solutions to the 2D Euler Equation 7493

Proof. It is obvious from the definition that the set of totally negative circulation func-

tions on � is an open convex polyhedron. So, it suffices to prove that the latter set is

bounded. Since a circulation function c is uniquely determined by numbers c+(e) (recall

that the notation c+(e) stands for the limit of the circulation function c(x) as x tends to

the endpoint of the edge e along e), it suffices to show that for any edge e ∈ � there exist

numbersm,M ∈ R such that for any totally negative circulation function c on � we have

m ≤ c+(e) ≤ M .

Consider the following poset structure on the set of edges of �. Say that e1 ≤ e2

if there exists a directed path � in � whose first edge is e1, and whose last edge is e2. Let

us also define the height h(e) of an edge e ∈ � as the maximal length (i.e., the number of

edges) of a directed path whose last edge is e. Using properties of circulation functions,

the total negativity condition, and induction by height, it can be easily shown that for

any edge e ∈ � and any totally negative circulation function c on � one has

c+(e) ≥
∑
e′≤e

∫
e′
fdμ.

At the same time, by total negativity condition one has c+(e) ≤ 0, so the set of totally

negative circulation functions on � is indeed bounded, q.e.d. �

Corollary 4.28. Assume that M is a closed connected symplectic surface of genus ≥1.
Let also (�, f ,μ) be a measured Reeb graph compatible withM and satisfying the condi-

tion
∫
�
fdμ = 0. Then the set of coadjoint orbits of SDiff(M) corresponding to the graph

� and admitting steady solutions of the Euler equation is an open convex polytope in

the affine space of all coadjoint orbits of SDiff(M) corresponding to �. �

Remark 4.29. Loosely speaking, Corollary 4.28 states that if M is of genus ≥1, then
“most” Morse-type coadjoint orbits of SDiff(M) do not admit steady solutions of the

Euler equation. The conclusion of Corollary 4.28 remains true for the sphere as well;

however, in this case the affine space of all coadjoint orbits of SDiff(M) corresponding

to � is a point (i.e., there is a one-to-one correspondence between coadjoint orbits and

measured Reeb graphs), so the statement of Corollary 4.28 becomes trivial. �

Example 4.30. Figures 1, 9, and 10 show several vorticity functions on a pretzel with

different measured Reeb graphs �F , as well as the corresponding polytopes of totally

negative circulation functions. The numbers at edges are integrals
∫
e fdμ. In Figures 1

and 10, the set of circulation functions on �F is parametrized by limits c1(v), c2(v) at
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7494 A. Izosimov and B. Khesin

Fig. 9. An example of a vorticity F on a pretzel, its measured Reeb graph, and the corresponding

polytope of totally negative circulation functions.

Fig. 10. A vorticity F on a pretzel with a different measured Reeb graph and the corresponding

polytope of totally negative circulation functions.

branches of the vertex v. In Figure 9, the set of circulation functions is parametrized by

limits c1(v1), c1(v2) at left branches of the vertices v1, v2. �

Appendix 1: Proof of the Classification of Generic Coadjoint Orbits

In this appendix we prove Theorem 3.19 on the classification of generic coadjoint orbits

in the group SDiff(M).

Theorem A.1. (=3.19) LetM be a compact-connected symplectic surface. Then Morse-

type coadjoint orbits of SDiff(M) are in one-to-one correspondence with circulation

graphs (�, f ,μ, c) compatible withM . In other words, the following statements hold:
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Steady Solutions to the 2D Euler Equation 7495

(i) For a symplectic surface M Morse-type cosets [α], [β] ∈ svect∗(M) lie in the

same orbit of the SDiff(M) coadjoint action if and only if circulation graphs

�[α] and �[β] corresponding to these cosets are isomorphic.

(ii) For each circulation graph � which is compatible with M , there exists a

Morse-type [α] ∈ svect∗(M) such that �[α] = (�, f ,μ, c). (See Definition 3.7 for

compatibility of a graph and a surface.) �

We start with the following preliminary lemma.

Lemma A.2. Let M be a connected oriented surface possibly with boundary, and let F

be a simple Morse function onM . Assume that [γ ] ∈ H1(M ,R) is such that the integral of

γ over any F-level vanishes. Then there exists a C∞ function H : M → R constant on the

boundary ∂M such that the one-form HdF is closed, and its cohomology class is equal to

[γ ]. Moreover,H can be chosen in such away that the ratioH/F is a smooth function. �

The proof follows that of Lemma 4.8 in [11].

Proof of Theorem A.1. For the first statement, it is immediate by construction, that if

cosets [α] and [β] lie in the same SDiff(M)-orbit then their circulation graphs �[α] and �[β]
are isomorphic. To prove the converse statement let φ : �[α] → �[β] be an isomorphism of

circulation graphs. By Theorem 3.8, φ can be lifted to a symplectomorphism � : M → M

that maps the function F = curl[α] to the function G = curl[β]. Therefore, the one-form γ

defined by γ := �∗β − α is closed.

Assume that � : M → M is a symplectomorphism which maps the function F to

itself and is isotopic to the identity. Then the composition �̃ = � ◦�−1 maps F to G, and

[�̃∗β − α] = [�∗β −�∗α] = [γ ] − [�∗α − α].

We claim that � can be chosen in such a way that �̃∗β − α is exact, that is, one has the

equality of the cohomology classes [�∗α − α] = [γ ]. We construct � using a version of

the Moser path method. Let us show that there exists a time-independent symplectic

vector field X which is tangent to the boundary ∂M , preserves F , and satisfies

[�∗t α − α] = t[γ ], (A.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2017/24/7459/2580437 by U
N

IVER
SITY O

F AR
IZO

N
A user on 20 O

ctober 2018



7496 A. Izosimov and B. Khesin

where �t is the phase flow of X . Differentiating (A.1) with respect to t, we get in the

left-hand side

[�∗t LXα] = [LXα] = [iXdα] = [F · iXω],

since LXα is closed and �∗t does not change its cohomology class. Thus

[F · iXω] = [γ ]. (A.2)

Since � preserves the circulation function, the integrals of γ over all F-levels vanish.

Therefore, by Lemma A.2, there exists a smooth function H such that [γ ] = [HdF ]. Now

we set X := (H/F) ω−1dF . It is easy to see that the vector field X is symplectic, preserves

the levels of F , and satisfies the equation (A.2). Therefore, its phase flow satisfies the

equation (A.1), and then for the symplectomorphism �̃ = �◦�−11 , where� is the time-one

map �1, we have �̃∗[β] = α, as desired.

Now, let us prove the second statement. By Theorem 3.8, there exists a simple

Morse function F : M → R such that the measured Reeb graph of F is (�, f ,μ). Since the

graph � admits a circulation function, from Proposition 3.12 and Remark 3.14 it follows

that the function F lies in the image of the mapping curl, that is, there exists a one-form

α ∈ �1(M) such that curl[α] = F . Further, if γ is a closed one-form, then curl[α+γ ] = F as

well. For any one-form α̃ such that curl[α̃] = F , let cα̃ denote the corresponding circulation

function on �. Consider the mapping ρ : H1(M ,R)→ H1(�, ∂�,R) given by

ρ[γ ] := ch(cα+γ )− ch(cα),

where ch(c) is given by (6). Let us show that the homomorphism ρ is surjective. Indeed,

ρ can be written as

ρ[γ ] =
∑
e

(∫
�(e)
γ

)
e,

where �(e) = π−1(xe) and xe ∈ e is any interior point of the edge e. Therefore, the kernel

of the homomorphism ρ consists of those cohomology classes which vanish on cycles

homologous to regular F-levels, and hence dimKer ρ = κ, where κ is the genus of the

surfaceM . On the other hand, comparing the dimensions of the spaces involved, we have

dimH1(M ,R) =
⎧⎨⎩2κ, if M is closed,

2κ + k − 1, if M is not closed,
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Steady Solutions to the 2D Euler Equation 7497

Fig.A1. Constructing a steady flow near a hyperbolic fiber.

where k is the number of boundary components of M or, equivalently, the number of

boundary vertices of �. Further, from the exact sequence of the pair (�, ∂�) we find that

dimH1(�, ∂�,R) =
⎧⎨⎩κ, if k = 0,

κ + k − 1, if k > 0.

Since dimH1(M ,R) − dimH1(�, ∂�,R) = κ, by the dimensional argument the

homomorphism ρ is indeed surjective. This implies that one can find a closed one-form

γ such that ρ[γ ] = ch(c) − ch(cα), where c is a given circulation function on �, and

therefore cα+γ = c, as desired. �

Appendix 2: Existence of Steady Triples in the Vicinity of Hyperbolic Levels

In this appendix we prove technical Proposition 4.16 that near any figure-eight level of

the vorticity function there exists a steady triple.

Proposition A.3. (=4.16) Let (M ,ω) be a compact symplectic surface, possibly with

boundary, and let F : M → R be a simple Morse function on M . Let also E be a figure-

eight level of F . Then there exists a steady F-triple (α, J ,H) in the neighborhood of E .
Moreover, for any non-zero numbers c1, c2 ∈ R having the same sign, the triple (α, J ,H)

can be chosen in such a way that
∫
�i
α = ci, where �i are the loops constituting the level

E (see Figure A1). �
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7498 A. Izosimov and B. Khesin

Fig.A2. Region V = U1 ∪ R1 ∪ R3.

Proof. First, we apply Lemma 4.15 to construct an F-steady triple (α, J ,H) such that

sign (dH/dF) = ε := −sign c1 = −sign c2 in the neighborhood U of the singular point

O ∈ E . Since H is a function of F , it extends to the neighborhood of E in a unique way.

Consider points Z1,Z2,Z3,Z4 ∈ U ∩ E depicted in Figure A1. In U we have

ω−1(α, dH) = ω−1(J ∗α,α) = g−1(α,α),

where g is the Riemannian metric given by g(u1,u2) = ω(u1, Ju2). Therefore, we have

ω−1(α, dH) > 0 at all points except the point O. In particular, the forms α and dH are

linearly independent at the points Zi. The latter implies that there exist functions Gi

in neighborhoods of points Zi which form a positive coordinate system with F (i.e.,

(dGi ∧ dF)/ω > 0) and such that α = Ai(F ,Gi)dGi for certain smooth functions Ai.

Let Ri be a small rectangle in (F ,Gi) coordinates near Zi. Taking, if necessary,

a smaller neighborhood of E , we may assume that the complement to Ri, i = 1, . . . , 4 in

this neighborhood consists of three regions U0,U1,U2 where O ∈ U0 (see Figure A1).

Consider the region V = U1 ∪ R1 ∪ R3. Extend the functions G1 and G3 (maybe

shifting one of them by a constant) from R1 and R3 to a function G defined in the region

V in such a way that (G,F) is a positive coordinate system in U1. (This means that

the orientation defined by dG ∧ dF coincides with the symplectic orientation or the

function G decreases along �1.) In coordinates (G,F), the region V is a rectangle depicted

in Figure A2. Our aim is to extend the one-form α defined in R1, R3 to V . First, note that

in regions R1,R3 we have

ω−1(α, dF) = Ai(F ,G) ω
−1(dG, dF) = −Ai(F ,G) {F ,G},

where {F ,G} is the Poisson bracket associated with the symplectic structure ω. This,

in particular, implies that signAi = sign (dH/dF) = ε. We first extend the functions

A1(F(O),G) and A3(F(O),G) (where F(O) is the value of F at the level E ) defined on arcs
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Steady Solutions to the 2D Euler Equation 7499

�1∩R1 and �1∩R3 to a functionA0(G) defined on �1∩V and such that signA0 = signAi = ε.
Now define a function

A(F ,G) := A0(G)+
F∫

F(O)

F

{F ,G}dF .

We claim that this function coincides with Ai in the regions Ri. Indeed, by taking the

exterior differential in the equation α = Ai(F ,Gi)dGi, we get Fω = ∂

∂F A1(F ,G)dF ∧ dG,

that is, F = ∂

∂F A1(F ,G) · {F ,G}. Then the corresponding derivatives coincide:

∂

∂F
A1(F ,G) = F

{F ,G} =
∂

∂F
A(F ,G), (A.3)

and together with A(F(O),G) = A0(G) = A1(F(O),G), equation (A.3) implies that A = A1

in the region R1. Similarly, A = A3 in R3. Now, we extend the one-form α to V by setting

α := AdG. Then dα = Fω, as desired. Repeating the same procedure for the region

Ṽ = U2 ∪ R2 ∪ R4, we obtain a one-form α defined in the whole neighborhood of E and

satisfying dα = Fω. Furthermore, in V we have

ω−1(α, dH) = dH

dF
A(F ,G) ω−1(dG, dF) > 0

in a sufficiently small neighborhood of E ∩ V and, similarly, for E ∩ Ṽ . This allows one

to extend the almost complex structure J to a neighborhood of E by setting J ∗α :=
−dH , J ∗dH := α. Thus, the first statement is proved.

To prove the second statement denote byWi the intersection point of �1 and the

common boundary of the regions Ri and U1 (see Figures A1 and A2). Then

W3∫
W1

α =
G(W3)∫

G(W1)

A0(G)dG. (A.4)

By using ambiguity in the choice of a smooth function A0(G) extending the functions

Ai(F(O),G) and satisfying signA0 = ε, one can choose it so that the integral (A.4) is

equal to any c (note that G(W1) > G(W3)) provided that sign c = −ε. Furthermore, by

moving the points Z1,Z3 closer to O and shrinking the regions R1,R3, one can make the

integral (A.4) arbitrary close to
∫
�1
α. Since sign c1 = −ε, this implies that one can choose

α such that
∫
�1
α = c1 . The proof for �2 is analogous. �
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7500 A. Izosimov and B. Khesin

Appendix 3: Casimir Invariants of the 2D Euler Equation

Above we classified coadjoint orbits of the group SDiff(M) in terms of graphs with some

additional structures, see Theorem 3.19. However, for applications, it is important to

describe numerical invariants of the coadjoint action, that is, Casimir functions. We

begin with the description of such invariants for functions on symplectic surfaces.

Let (M ,ω) be a compact-connected symplectic surface, possibly with boundary,

and let F be a simpleMorse function onM . With each edge e of the measured Reeb graph

�F = (�, f ,μ), one can associate an infinite sequence of moments

mi,e(F) =
∫
e
f i dμ =

∫
Me

Fi ω,

where i = 0, 1, 2, . . . , andMe = π−1(e) for the natural projection π : M → �. Obviously, the

moments mi,e(F) are invariant under the action of SDiff(M) on simple Morse functions.

Moreover, they form a complete set of invariants in the following sense:

Theorem A.4. Let (M ,ω) be a compact connected symplectic surface, possibly with

boundary, and let F and G be simple Morse functions on M . Assume that φ : �F →
�G is an isomorphism of abstract-directed graphs which preserves moments on all

edges. Then �F and �G are isomorphic as measured Reeb graphs, and there exists a

symplectomorphism � : M → M such that �∗F = G. �

Proof. Consider an edge e = [v,w] ∈ �F . Pushing forward the measure μ on e by means

of the homeomorphism f : e→ [f (v), f (w)] ⊂ R, we obtain a measure μf on the interval

If = [f (v), f (w)], whose moments coincide with the moments of μ at e. Repeating the

same construction for themeasure on�G, we obtain anothermeasureμg, which is defined

on the interval Ig = [g(φ(v)),g(φ(w))] and has the same moments as μf .

Now, consider any closed interval I ⊂ R which contains both If and Ig. Then

the measures μf , μg may be viewed as measures on the interval I supported at If and

Ig, respectively. The moments of the measures μf ,μg on I coincide, so, by the unique-

ness theorem for the Hausdorff moment problem, we have μf = μg, which implies the

proposition. �

The above theorem allows one to describe Casimirs of the 2D Euler equation on

M , that is, invariants of the coadjoint action of the symplectomorphism group SDiff(M).

Let F be a Morse vorticity function of an ideal flow with velocity v on a surface M ,

possibly with boundary, and let � be its Reeb graph. The correspondingmomentsmi,e(F)
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Steady Solutions to the 2D Euler Equation 7501

Fig.A3. Modifying the measure on the edges.

for this vorticity are natural to call generalized enstrophies. Then group coadjoint orbits

in the vicinity of an orbit with the vorticity function F are singled out as follows.

Corollary A.5. A complete set of Casimirs of a 2D Euler equation in a neighborhood of a

Morse-type coadjoint orbit is givenby themomentsmi,e for each edge e ∈ �, i = 0, 1, 2, . . . ,

and all circulations of the velocity v over cycles in the singular levels of F on M . �

The (finite) set of required circulations can be sharpened by considering fewer

quantities needed to describe the circulation function, as in Section 3.3.

Remark A.6. As invariants of the coadjoint action of SDiff(M), one usually considers

total moments

mi(F) =
∫
M
Fi ω =

∫
�

f i dμ ,

where F = curl[α] is the vorticity function, and (�, f ,μ) is the measured Reeb graph of F .

However, the latter moments do not form a complete set of invariants even in the case

of a sphere or a disk.

Consider, for example, the measured Reeb graph (�, f ,μ) depicted in Figure A3.

Let μ′ be any smooth measure on R supported in [a,b]. Define a new measure μ̃ on � by

“moving some density from one branch to another", i.e. by setting

μ̃ :=
⎧⎨⎩μ+ f ∗(μ′) in I1,

μ− f ∗(μ′) in I2,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2017/24/7459/2580437 by U
N

IVER
SITY O

F AR
IZO

N
A user on 20 O

ctober 2018



7502 A. Izosimov and B. Khesin

and μ̃ := μ elsewhere. Then (�, f , μ̃) is a again a measured Reeb graph. Moreover, for all

total moments we have ∫
�

f k dμ =
∫
�

f k dμ̃.

However, the graphs (�, f ,μ) and (�, f , μ̃) are not isomorphic and thus correspond to

two different coadjoint orbits of SDiff(S2). �
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