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Abstract. Using notions of homogeneity we give new proofs of M. Artin’s

algebraicity criteria for functors and groupoids. Our methods give a more

general result, unifying Artin’s two theorems and clarifying their differences.

Introduction

Classically, moduli spaces in algebraic geometry are constructed using either
projective methods or by forming suitable quotients. In his reshaping of the foun-
dations of algebraic geometry half a century ago, Grothendieck shifted focus to
the functor of points and the central question became whether certain functors
are representable. Early on, he developed formal geometry and deformation the-
ory, with the intent of using these as the main tools for proving representability.
Grothendieck’s proof of the existence of Hilbert and Picard schemes, however, is
based on projective methods. It was not until ten years later that Artin completed
Grothendieck’s vision in a series of landmark papers. In particular, Artin vastly
generalized Grothendieck’s existence result and showed that the Hilbert and Pi-
card schemes exist—as algebraic spaces—in great generality. It also became clear
that the correct setting was that of algebraic spaces—not schemes—and algebraic
stacks.

In his two eminent papers [Art69b, Art74], M. Artin gave precise criteria for
algebraicity of functors and stacks. These criteria were later clarified by B. Conrad
and J. de Jong [CJ02] using Néron–Popescu desingularization, by H. Flenner [Fle81]
using Exal, and the first author [Hal17] using coherent functors. The criterion
in [Hal17] is very streamlined and elegant and suffices to deal with most problems.
It does not, however, supersede Artin’s criteria as these are more general. Another
conundrum is that Artin gives two different criteria—the first [Art69b, Thm. 5.3] is
for functors and the second [Art74, Thm. 5.3] is for stacks—but neither completely
generalizes the other.

The purpose of this paper is to use the ideas of Flenner and the first author to give
a new criterion that supersedes all present criteria. We also introduce several new
ideas that broaden the criteria and simplify the proofs of [Art69b, Art74, Fle81]. In
positive characteristic, we also identify a subtle issue in Artin’s algebraicity criterion
for stacks. With the techniques that we develop, this problem is circumvented. We
now state our criterion for algebraicity.
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Main Theorem. Let S be an excellent scheme. Then a category X, fibered in
groupoids over the category of S-schemes, Sch/S, is an algebraic stack, locally of
finite presentation over S, if and only if it satisfies the following conditions:

(1) X is a stack over (Sch/S)fppf ;
(2) X is limit preserving (Definition 1.7);
(3) X is weakly effective (Definition 9.1);
(4) X is Arttriv-homogeneous (Definition 1.3, also see below);

(5a) X has bounded automorphisms and deformations (Conditions 6.1(i)–6.1(ii));
(5b) X has constructible automorphisms and deformations (Conditions 6.3(i)–

6.3(ii));
(5c) X has Zariski local automorphisms and deformations (Conditions 6.4(i)–

6.4(ii));

(6b) X has constructible obstructions (Condition 6.3(iii), or 7.3); and
(6c) X has Zariski local obstructions (Condition 6.4(iii), or 7.4).

In addition,

(α) if S is Jacobson, then conditions (5c) and (6c) are superfluous;
(β) if X is DVR-homogeneous (Notation 2.14), then conditions (5c) and (6c)

are superfluous and condition (6b) may be replaced with Condition 8.3;
(γ) conditions (1) and (4) can be replaced with

(1′) X is a stack over (Sch/S)Ét and

(4′) X is Artinsep-homogeneous; and
(δ) if the residue fields of S at points of finite type are perfect, then (4) and

(4′) are equivalent.

In particular, if S is a scheme of finite type over SpecZ, then conditions (5c) and
(6c) are superfluous and (1) can be replaced with (1′).

The Arttriv-homogeneity (resp. Artinsep-homogeneity) condition is the follow-
ing Schlessinger–Rim condition: for every diagram of local artinian S-schemes of
finite type [SpecB ← SpecA ↪→ SpecA′], where A′ � A is surjective and the
residue field extension B/mB → A/mA is trivial (resp. purely inseparable), the
natural functor

X(Spec(A′ ×A B))→ X(SpecA′)×X(SpecA) X(SpecB)

is an equivalence of categories.
Perhaps the most striking difference between our conditions and Artin’s condi-

tions is that our homogeneity condition (4) only involves local artinian schemes
and that we do not need any conditions on étale localization of deformation and
obstruction theories. If S is Jacobson, e.g., of finite type over a field, then we do
not even need compatibility with Zariski localization. There is also no condition
on compatibility with completions for automorphisms and deformations. We will
give a detailed comparison between our conditions and other versions of Artin’s
conditions in Section 11.

All existing algebraicity proofs, including ours, consist of the following four steps:

(i) existence of formally versal deformations;
(ii) algebraization of formally versal deformations;
(iii) openness of formal versality; and
(iv) formal versality implies formal smoothness.
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Step (i) was eloquently dealt with by Schlessinger [Sch68, Thm. 2.11] for functors
and by Rim [SGA7, Exp. VI] for groupoids. This step uses conditions (4) and (5a)
(Arttriv-homogeneity and boundedness of tangent spaces). Step (ii) begins with the
effectivization of formally versal deformations using condition (3). One may then
algebraize this family using either Artin’s results [Art69a, Art69b] or B. Conrad and
J. de Jong’s result [CJ02]. In the latter approach, Artin approximation is replaced
with Néron–Popescu desingularization, and S is only required to be excellent. This
step requires condition (2).

The last two steps are more subtle and it is here that [Art69b, Art74, Fle81,
Sta06, Hal17] and our present treatment diverge—both when it comes to the criteria
themselves and the techniques employed. We begin with discussing step (iv).

Formal versality implies formal smoothness. It is readily seen that our crite-
rion is weaker than Artin’s two criteria [Art69b, Art74] except that, in positive char-
acteristic, we need X to be a stack in the fppf topology, or otherwise strengthen (4).
This is similar to [Art69b, Thm. 5.3] where the functor is assumed to be an fppf-
sheaf. In [Art69b, Thm. 5.3], Artin deftly uses the fppf sheaf condition to deduce
that formally universal deformations are formally étale [Art69b, pp. 50–52], settling
step (iv) for functors. This argument relies on the existence of universal deforma-
tions and thus does not extend to stacks with infinite or non-reduced stabilizers.
Using a different approach, we extend this result to fppf stacks in Lemma 1.9.

In his second paper [Art74], Artin only assumes that the groupoid is an étale
stack. His proof of step (iv) for groupoids [Art74, Prop. 4.2], however, does not treat
inseparable extensions. We do not understand how this problem can be overcome
without strengthening the criteria and assuming that either (1) the groupoid is
a stack in the fppf topology or (4′) requiring (semi)homogeneity for inseparable
extensions (see Lemmas 1.9 and 2.2). We wish to emphasize that if S is of finite
type over SpecZ or a perfect field, then the main result of [Art74] holds without
change. See Remark 2.8 for further discussion. Flenner does not discuss formal
smoothness, and in [Hal17] formal smoothness is obtained by strengthening the
homogeneity condition (4).

Openness of formal versality. Step (iii) uses constructibility, boundedness, and
Zariski localization of deformations and obstruction theories (Theorem 4.4). In our
treatment, localization is only required when passing to non-closed points of finite
type. Such points only exist when S is not Jacobson, e.g., if S is the spectrum of a
discrete valuation ring. Our proof is very similar to Flenner’s proof. It may appear
that Flenner does not need Zariski localization in his criterion, but this is due to
the fact that his conditions are expressed in terms of deformation and obstruction
sheaves.

As in Flenner’s proof, openness of versality becomes a matter of simple alge-
bra. It comes down to a criterion for the openness of the vanishing locus of half-
exact functors (Theorem 3.3) that easily follows from the Ogus–Bergman Nakayama
Lemma for half-exact functors (Theorem 3.7). Flenner proves a stronger statement
that implies the Ogus–Bergman result (Remark 3.8).

At first, it seems that we need more than Arttriv-homogeneity to even make
sense of conditions (5a)–(6c). This will turn out to not be the case. Using steps (ii)
and (iv), we prove that conditions (1)–(4) and (5a) at fields guarantee that we
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have homogeneity for arbitrary integral morphisms (Lemma 10.4). It follows that
AutX/S(T,−), DefX/S(T,−) and ObsX/S(T,−) are additive functors.

Applications. We believe that a distinct advantage of the criterion in the present
paper contrasted with all prior criteria is the dramatic weakening of the homogene-
ity. Whereas the criteria [Hal17] and [Art69b] require Aff -, and DVR-homogeneity
respectively, involving knowledge of the functor over non-noetherian rings, we only
need homogeneity for artinian rings. This is particularly useful for more subtle
moduli problems such as Angéniol’s Chow functor [Ang81, 5.2], which is difficult
to define over non-noetherian rings.

The ideas in this paper have also led to a criterion for a half-exact functor
to be coherent [HR12]. Although both the statement and the proof bear a close
resemblance to the Main Theorem, this coherence criterion does not follow from
any algebraicity criterion.

Outline. The technical results of the paper are summarized by Proposition 10.2.
The Main Theorem follows from Proposition 10.2 by a bootstrapping process and
the relationship between automorphisms, deformations, obstructions and exten-
sions. A significant part of the paper (§§5–9) is devoted to making this relationship
precise. Sections §§1–4 form the technical heart of the paper. We now briefly
summarize the contents of the paper in more detail.

In Section 1 we recall the notions of homogeneity, limit preservation and exten-
sions from [Hal17]. We also introduce homogeneity that only involves artinian rings
and show that residue field extensions are harmless for stacks in the fppf topology.
In Section 2 we then relate formal versality, formal smoothness and vanishing of
Exal.

In Section 3 we study additive functors and their vanishing loci. This is applied
in Section 4 where we give conditions on Exal that assure that the locus of formal
versality is open. The results are then assembled in Theorem 4.4.

In Section 5 we repeat the definitions of automorphisms, deformations and min-
imal obstruction theories from [Hal17]. In Section 6, we give conditions on Aut,
Def and Obs that imply the corresponding conditions on Exal needed in Theo-
rem 4.4. In Section 7 we introduce n-step obstruction theories. In Section 8 we
formulate the conditions on obstructions without using linear obstruction theories,
as in [Art69b]. In Section 9, we discuss effectivity. Finally, in Section 10 we prove
the Main Theorem. Comparisons with other criteria are given in Section 11.

Notation. We follow standard conventions and notation. In particular, we adhere
to the notation of [Hal17]. Recall that if T is a scheme, then a point t ∈ |T | is
of finite type if Specκ(t) → T is of finite type. Points of finite type are locally
closed. A point of a Jacobson scheme is of finite type if and only if it is closed. If
f : X → Y is of finite type and x ∈ |X| is of finite type, then f(x) ∈ |Y | is of finite
type.

Acknowledgment. We would like to thank M. Artin for encouraging comments
and L. Moret–Bailly for answering a question on MathOverflow about Jacobson
schemes. We would also especially like to thank the referees for their patience,
support and a number of useful comments.
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1. Homogeneity, limit preservation, and extensions

Fix a scheme S. An S-groupoid is a category X together with a functor aX : X →
Sch/S that is fibered in groupoids. A 1-morphism of S-groupoids Φ: (Y, aY ) →
(Z, aZ) is a functor between categories Y and Z that commutes strictly over Sch/S.
We will typically refer to an S-groupoid (X, aX) as “X”.

A closed immersion of schemes j : V ↪→ V ′ is nilpotent if there exists an integer
n > 0 such that Jn = 0, where J is the quasi-coherent sheaf of ideals defining j. A
closed immersion of schemes is locally nilpotent if fppf-locally it is nilpotent.

If X is an S-groupoid and [SpecB ← SpecA
j−→ SpecA′] is a diagram of S-

schemes, where j is a nilpotent closed immersion, then the condition that the
functor

X(Spec(B ×A A′))→ X(SpecB)×X(SpecA) X(SpecA′)

is an equivalence for a collection of diagrams has been a feature of deformation
theory since Schlessinger [Sch68] and Rim [SGA7, Exp. VI]. Consequently, these
are typically called Schlessinger–Rim conditions.

In this section, we review the concept of homogeneity—a variation of the Schlessinger–
Rim conditions that we attribute to J. Wise [Wis11, §2]—in the formalism of [Hal17,
§§1–2]. We will also briefly discuss limit preservation and extensions.

Let X be an S-groupoid. An X-scheme is a pair (T, σT ), where T is an S-scheme
and σT : Sch/T → X is a 1-morphism of S-groupoids. A morphism of X-schemes
U → V is a morphism of S-schemes f : U → V (which canonically determines a
1-morphism of S-groupoids Sch/f : Sch/U → Sch/V ) together with a 2-morphism
α : σU ⇒ σV ◦Sch/f . The collection of all X-schemes forms a 1-category, which we
denote by Sch/X. It is readily seen that Sch/X is an S-groupoid and that there is a
natural equivalence of S-groupoids Sch/X → X. For a 1-morphism of S-groupoids
Φ: Y → Z there is an induced functor Sch/Φ: Sch/Y → Sch/Z.

Notation 1.1. Frequently, we will be interested in the following classes of mor-
phisms of S-schemes:

Nil – locally nilpotent closed immersions,
Cl – closed immersions,

rNil – morphisms X → Y such that there exists (X0 → X) ∈ Nil with the
composition (X0 → X → Y ) ∈ Nil,

rCl – morphisms X → Y such that there exists (X0 → X) ∈ Nil with the
composition (X0 → X → Y ) ∈ Cl,

Artfin – morphisms between local artinian schemes of finite type over S,
Artsep – Artfin-morphisms with separable residue field extensions,

Artinsep – Artfin-morphisms with purely inseparable residue field extensions,
Arttriv – Artfin-morphisms with trivial residue field extensions,

Fin – finite morphisms,
Int – integral morphisms and
Aff – affine morphisms.
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We certainly have a containment of classes of morphisms of S-schemes:

rNil ⊆ rCl ⊆ Int ⊆ Aff .

Nil ⊆

⊆

Cl ⊆

⊆

Fin

⊆

Arttriv

⊆
⊆⊆ Artinsep ⊆ Artfin

⊆

Note that for a morphism X → Y of locally noetherian S-schemes, the properties
rNil and rCl simply mean that Xred → Y is Nil and Cl respectively. Note that
the classes of morphisms above are all closed under composition.

Let P be a class of morphisms of S-schemes. In [Hal17, §1], P -nil pairs and
P -homogeneity were defined. In the present article, it will be necessary to consider
some natural refinements of these notions.

Definition 1.2. Fix a scheme S, a class P of morphisms of S-schemes, an S-

groupoid X and an X-scheme V . A P -nil pair over X at V is a pair (V
p−→ T, V

j−→
V ′), where p and j are morphisms of X-schemes, p ∈ P and j ∈ Nil. A P -nil
square over X at V is a commutative diagram of X-schemes

(1.1) V_�

j

��

p // T

i

��
V ′

p′ // T ′,

where the pair (V
p−→ T, V

j−→ V ′) is P -nil over X at V . A P -nil square over X at
V is cocartesian if it is cocartesian in the category of X-schemes. A P -nil square
over X at V is geometric if p′ is affine, i is a locally nilpotent closed immersion,
and there is a natural isomorphism

OT ′ → i∗OT ×p′∗j∗OV p
′
∗OV ′ .

Note that every geometric P -nil square is cartesian [Fer03, Lem. 1.3c]. Moreover
if P ⊆ Aff , then every cocartesian P -nil square is geometric [Hal17, Lem. 1.5(1)].

Definition 1.3 (P -Homogeneity). Fix a scheme S and a class P of morphisms
of S-schemes. A 1-morphism of S-groupoids Φ: Y → Z is P -homogeneous at a
Y -scheme V if the following two conditions are satisfied:

(V HP
1 ) a P -nil square over Y at V is cocartesian if and only if the induced P -nil

square over Z at V is cocartesian; and
(V HP

2 ) if a P -nil pair over Y at V can be completed to a cocartesian P -nil square
over Z at V , then it can be completed to a P -nil square over Y at V .

We also say that Φ is P -homogeneous if it is P -homogeneous at every Y -scheme
V . Similarly, Φ satisfies (HP

1 ) (resp. (HP
2 )) if it satisfies (V HP

1 ) (resp. (V HP
2 )) for

every Y -scheme V . An S-groupoid X is P -homogeneous at V if its structure 1-
morphism is P -homogeneous at V and is P -homogeneous if its structure morphism
is P -homogeneous. If Z satisfies (HP

1 ), then Y satisfies (HP
1 ) if and only if Φ has

P -homogeneous diagonal after pull-back to schemes, see Lemma B.2.
If we only assume (V HP

2 ) in the above, then we obtain the weaker notion of
P -semihomogeneity . This notion was used in the work of Artin and Flenner.

Remark 1.4. In [Hal17], a number of results are established for 1-morphisms of
P -homogeneous S-groupoids Φ: Y → Z. With trivial modifications, most of these
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results hold using the more refined notion of P -homogeneity at a Y -scheme V . We
will use this observation frequently and without further comment.

By [Wis11, Prop. 2.1], every algebraic stack is Aff -homogeneous. Also, rNil-
homogeneity at an artinian scheme V is equivalent to Arttriv-homogeneity at V .

If P is Zariski local (e.g., P is listed in Notation 1.1), then P -homogeneity of an
S-groupoid X that is a stack over (Sch/S)Ét is equivalent to the functor:

(1.2) X(Spec(B ×A A′))→ X(SpecB)×X(SpecA) X(SpecA′)

being an equivalence for every P -nil pair (SpecA→ SpecB, SpecA→ SpecA′) over
S [Hal17, Lem. 1.5(4)]. If X has representable diagonal, then the functor above
is always fully faithful for all Aff -nil pairs over S—even if X is not necessarily
Aff -homogeneous (Lemma B.2).

The main computational tools that P -homogeneity bring are contained in [Hal17,
Lem. 1.5], an important part of which we now recall.

Lemma 1.5. Let S be a scheme and let P ⊆ Aff be a class of morphisms. Let X

be an S-groupoid that is P -homogeneous at an X-scheme V . If (V
p−→ T, V

j−→ V ′)
is a P -nil pair at V , then there exists a cocartesian and geometric P -nil square at
V as in (1.1). Moreover if P is listed in Notation 1.1, then p′ is P .

Proof. The main claim is [Hal17, Lem. 1.5(3)]. What remains is trivial except for
P ∈ {Nil,Cl,Fin, Int}. In these cases, however, it is known [Fer03, 5.6 (3)]. �

Remark 1.6. Let S be a noetherian scheme. If (SpecA → SpecB, SpecA ↪→
SpecA′] is a Fin-nil pair, where SpecB is of finite type over S, then Spec(B×AA′)
is of finite type over S. This follows from the fact that B ×A A′ ⊆ B × A′ is an
integral extension [AM69, Prop. 7.8]. On the other hand, if SpecA → SpecB is
only affine, then Spec(B ×A A′) is typically not of finite type over S. For exam-
ple, if B = k[x], A = k[x, x−1] and A′ = k[x, x−1, y]/y2, then B′ = B ×A A′ =
k[x, y, yx−1, yx−2, . . . ]/(y, yx−1, . . . )2 which is not of finite type over S = Spec k.

We also recall the following definition (cf. [Art74, §1] and [Hal17, §3]).

Definition 1.7. Let X be a stack over (Sch/S)Ét. We say that X is limit preserving
if for every inverse system of affine S-schemes {SpecAj}j∈J with inverse limit
SpecA, the natural functor:

lim−→
j

X(SpecAj)→ X(SpecA)

is an equivalence of categories.

If X is an algebraic stack, then X is limit preserving if and only if X → S is
locally of finite presentation [LMB, Prop. 4.15].

By Lemmas B.2 and B.3, if X is a limit preserving stack over (Sch/S)Ét with rep-
resentable diagonal and S is locally noetherian, then rCl-homogeneity is equivalent
to Artin’s semihomogeneity condition [Art74, 2.2(S1a)] for X.

Homogeneity supplies an S-groupoid with a quantity of linear data, which we
now recall from [Hal17, §2]. An X-extension is a square zero closed immersion
of X-schemes i : T ↪→ T ′. The collection of X-extensions forms a category, which
we denote by ExalX . There is a natural functor ExalX → Sch/X that takes
(i : T ↪→ T ′) to T .
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We denote by ExalX(T ) the fiber of the category ExalX over the X-scheme
T—we call these the X-extensions of T . There is a natural functor:

ExalX(T )◦ → QCoh(T ), (i : T ↪→ T ′) 7→ ker(i−1OT ′ → OT ).

We denote by ExalX(T, I) the fiber category of ExalX(T ) over the quasi-coherent
OT -module I—we refer to these as the X-extensions of T by I. Denote the set of
isomorphism classes of the category ExalX(T, I) by ExalX(T, I).

Let W be a scheme and let J be a quasi-coherent OW -module. We let W [J ]
denote the W -scheme Spec

W
(OW [J ]) with structure morphism rW,J : W [J ] → W .

If W is an X-scheme, we consider W [J ] as an X-scheme via rW,J . The X-extension
W ↪→W [J ] is thus trivial in the sense that it admits an X-retraction.

By [Hal17, Prop. 2.4], if the S-groupoid X is Nil-homogeneous at T , then the
groupoid ExalX(T, I) is a Picard category. Thus, we have additive functors

DerX(T,−) : QCoh(T )→ Ab, I 7→ AutExalX(T,I)(T [I]); and

ExalX(T,−) : QCoh(T )→ Ab, I 7→ ExalX(T, I).

We now record here the following easy consequences of [Hal17, 2.3–2.6 & 3.4].

Lemma 1.8. Let S be a scheme, let X be an S-groupoid, and let T be an X-scheme.

(1) Let I be a quasi-coherent OT -module. Then ExalX(T, I) = 0 if and only if
every X-extension i : T ↪→ T ′ of T by I admits an X-retraction.

(2) Let P be a class of a morphisms of S-schemes and let p : V → T be an affine
morphism in P . If X is P -homogeneous at V , then for every N ∈ QCoh(V )
there is a natural functor

p# : ExalX(V,N)→ ExalX(T, p∗N).

(3) If X is rNil-homogeneous at T , then the functor M 7→ ExalX(T,M) is
half-exact.

(4) Suppose that X is Nil-homogeneous at T and limit preserving. If T is of
finite presentation over S, then the functor M 7→ ExalX(T,M) preserves
direct limits.

(5) Let p : U → T be an affine étale morphism and let N be a quasi-coherent OU -
module. Then there is a natural functor ψ : ExalX(T, p∗N)→ ExalX(U,N).
If (i : T ↪→ T ′) ∈ ExalX(T, p∗N) with image (j : U ↪→ U ′) ∈ ExalX(U,N),
then there is a cartesian diagram of X-schemes

U �
� j //

p
��

U ′

p′��
T �
� i // T ′,

which is cocartesian as a diagram of S-schemes. If X is Aff -homogeneous
at U , then ψ is an equivalence.

Proof. The claim (1) is [Hal17, Lem. 2.3].
For (2), if j : V ↪→ V ′ is an X-extension of V by N , then there is an induced

P -nil pair (V
p−→ T, V

j−→ V ′) over X at V . Since X is P -homogeneous at V , by
Lemma 1.5, there functorially exists a cocartesian and geometric P -nil square over
X at V as in (1.1) completing the P -nil pair. The resulting morphism i : T ↪→ T ′

is an X-extension of T by p∗N and we have thus defined the functor p#.
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The claim (3) is [Hal17, Cor. 2.5]. The claim (4) is [Hal17, Prop. 3.4(2)]. The
claim (5) is [Hal17, Cor. 2.6]. �

Finally, we give conditions that imply Artsep- and Artfin-homogeneity.

Lemma 1.9. Let S be a scheme and let X be an S-groupoid that is Arttriv-
homogeneous. Consider the following conditions on X.

(1) X is a stack in the fppf topology.
(2) X is a stack in the étale topology and Artinsep-homogeneous.
(3) X is a stack in the étale topology and S is a Q-scheme.
(4) X is a stack in the étale topology.

Then any of the conditions (1), (2) or (3) imply that X is Artfin-homogeneous and
condition (4) implies that X is Artsep-homogeneous.

Proof. We begin by noting that trivially (3) implies (2). Next, let (SpecA →
SpecB, SpecA ↪→ SpecA′) be an Artfin-nil pair over S. Let SpecB′ = Spec(A′×A
B) be the pushout of this diagram in the category of S-schemes. We have to prove
that the functor

ϕ : X(SpecB′)→ X(SpecA′)×X(SpecA) X(SpecB)

is an equivalence. If X is a stack in either the fppf or étale topology, then the
equivalence of ϕ is a local question for the respective topology on B′ since fiber
products of rings commute with flat base change.

Now there is a finite (resp. finite separable) field extension K/kB such that the
residue fields of kA ⊗kB K are trivial (resp. purely inseparable) extensions of K.

There is then a local artinian ring B̃′ and a finite flat (resp. finite étale) extension

B′ ↪→ B̃′ with kB̃′ = K [EGA, 0III.10.3.2]. Let Ã = A⊗B′ B̃′, Ã′ = A′ ⊗B′ B̃′ and

B̃ = B⊗B′ B̃′. Then Ã, Ã′, B̃ are artinian rings such that all residue fields equal K

(resp. are purely inseparable extensions of K). However, Ã and Ã′ need not be local.

Now let Ã =
∏n
i=1 Ãi and Ã′ =

∏n
i=1 Ã

′
i be decompositions such that Ã′ � Ãi

factors through Ã′i. Then B̃′ = (Ã′1 ×Ã1
B̃)×B̃ (Ã′2 ×Ã2

B̃)×B̃ · · · ×B̃ (Ã′n ×Ãn B̃)
is an iterated fiber product of local artinian rings.

If X is Arttriv-homogeneous (resp. Artinsep-homogeneous) and a stack for the
fppf (resp. étale) topology, it follows that ϕ is an equivalence. If the Artfin-nil pair
that we started with was an Artsep-nil pair and X is a stack for the étale topology,
then it also follows that ϕ is an equivalence. This proves the result. �

2. Formal versality and formal smoothness

In this section we address a subtle point about the relationship between formal
versality and formal smoothness. We begin by recalling and refining some results
of [Hal17, §4].

Definition 2.1. Let S be a scheme, let X be an S-groupoid, and let T be an
X-scheme. Consider the following lifting problem in the category of X-schemes:

given a pair of morphisms of X-schemes (V
p−→ T, V

j−→ V ′), where j is a locally
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nilpotent closed immersion, complete the following diagram so that it commutes:

(2.1) V
_�

j

��

p // T

V ′.

>>

The X-scheme T is:

formally smooth if the lifting problem can always be solved Zariski-locally on V ′;
formally smooth at t ∈ |T | if the lifting problem can always be solved whenever

the X-schemes V and V ′ are local artinian, with closed points v and v′,
respectively, such that p(v) = t, and the field extension κ(t) ⊆ κ(v) is finite;

formally versal at t ∈ |T | if the lifting problem can always be solved whenever the
X-schemes V and V ′ are local artinian, with closed points v and v′, re-
spectively, such that p(v) = t, and the field extension κ(t) ⊆ κ(v) is an
isomorphism.

We certainly have the following implications:

formally smooth =⇒ formally smooth at all t ∈ |T |
=⇒ formally versal at all t ∈ |T |.

Formal smoothness and formal versality at all t ∈ |T | are not obviously equivalent.
Even for morphisms of finite type between noetherian schemes, it is a non-trivial
result that they are equivalent [EGA, IV.17.14.2] (also see [Stacks, Tag 02HX] and
Corollary 2.5).

Formal smoothness at t and formal versality at t are also not obviously equivalent.
Moreover without stronger assumptions, it is not obvious to the authors that formal
smoothness or formal versality is smooth-local on the source. We will see, however,
that these subtleties vanish whenever the S-groupoid is Artfin-homogeneous. For
formal versality and formal smoothness at a point, it is sufficient that liftings exist
when κ(v) ∼= j−1 ker(OV ′ → OV ).

The goal of this section is to give sufficient conditions for a family, formally versal
at all closed points, to be formally smooth. In Artin’s papers, Artin approximation
is used to address this. With our formulation, excellence (or related) assumptions
are irrelevant. For some further discussion on Artin’s approach, see Remark 2.8.

There is a tight connection between formal smoothness (resp. formal versality)
and X-extensions in the affine setting. Most of the next result was proved in [Hal17,
Lem. 4.3], which utilized arguments similar to those of [Fle81, Satz 3.2].

Lemma 2.2. Let S be a scheme, let X be an S-groupoid, and let T be an affine
X-scheme. Let t ∈ |T | be a point. Consider the following conditions.

(1) The X-scheme T is formally smooth at t.
(2) The X-scheme T is formally versal at t.
(3) X is Nil-homogeneous at T and ExalX(T, κ(t)) = 0.

Then (1) =⇒ (2) and if X is Artfin-semihomogeneous and t is of finite type, then
(2) =⇒ (1). If X is Cl-homogeneous, T is noetherian and t is a closed point, then
(2) =⇒ (3). If X is rCl-homogeneous and t is a closed point, then (3) =⇒ (2).

Thus, assuming that an S-groupoid X is rCl-homogeneous, we can reformulate
formal versality of an affine X-scheme T at a closed point t ∈ |T | in terms of

http://stacks.math.columbia.edu/tag/02HX
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the triviality of the abelian group ExalX(T, κ(t)). Understanding the set of points
U ⊆ |T | where ExalX(T, κ(u)) = 0 for u ∈ |U | will be accomplished in the next
section.

Remark 2.3. If X is Aff -homogeneous and ExalX(T,−) ≡ 0, then T is formally
smooth [Hal17, Lem. 4.3] but we will not use this. If ExalX commutes with Zariski
localization, that is, if for every open immersion of affine schemes U ⊆ T the
canonical map ExalX(T,M)⊗Γ(OT ) Γ(OU )→ ExalX(U,M |U ) is bijective, then the
implications (2) =⇒ (3) and (3) =⇒ (2) also hold for non-closed points. This is
essentially what Flenner proves in [Fle81, Satz 3.2] as his Ex(T → X,M) is the
sheafification of the presheaf U 7→ ExalX(U,M |U ).

Proof of Lemma 2.2. The implication (1) =⇒ (2) follows from the definition. The
implications (2) =⇒ (3) and (3) =⇒ (2) are proved in [Hal17, Lem. 4.3]. The
implication (2) =⇒ (1) follows from a similar argument: assume that T is formally
versal at t and fix a lifting problem as in diagram (2.1), where j : V → V ′ is a
closed immersion of local artinian schemes with closed points v and v′, respectively,
such that p(v) = t and κ(v)/κ(t) is a finite extension. Let W be the image of
V → Spec(OT,t). Then W is a local artinian scheme with residue field κ(t). As X

is Artfin-semihomogeneous, the Artfin-nil pair (V → W,V
j−→ V ′) over X can be

completed to a geometric Artfin-nil square over X:

V � _

��

// W� _
��

V ′ // W ′,

where W ↪→ W ′ is a closed immersion of local artinian schemes. Since the closed
point of W has the same residue field as that of t, by formal versality, we obtain a
lift of W → T to W ′ → T over X. The result follows. �

Lemma 2.2 is already quite powerful. In the following Proposition, we give a
simple proof of [EGA, 0IV.22.1.4] in the case of a finitely generated or separable
extension of residue fields (also see [Stacks, Tag 02HT]).

Proposition 2.4. Let f : T → X be a morphism of locally noetherian schemes and
let t ∈ |T | with image x = f(t). Consider the following conditions.

(1) The ring homomorphism OX,x → OT,t is preadically formally smooth [EGA,
0IV.19.3.1].

(2) f is formally smooth at t.
(3) f is formally versal at t.

Then (1) =⇒ (2) ⇐⇒ (3). If κ(x) ⊆ κ(t) is finitely generated or separable, then
(3) =⇒ (1).

Proof. We recall [EGA, 0IV.19.3.1] for our situation. The preadic topology on
a noetherian local ring has as a basis of open neighborhoods the powers of the
maximal ideal. A local ring homomorphism (A,m) → (B, n), where A and B are
noetherian and preadically topologized, is smooth for the preadic topologies if for
every discrete and continuous A-algebra C and nilpotent ideal I ⊆ C, all continuous
A-algebra homomorphisms B → C/I factor continuously as B → C → C/I. Since
A and B have their preadic topologies, this means that we can choose n� 0 such

http://stacks.math.columbia.edu/tag/02HT
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that A → C factors through A → A/mn and B → C factors through B → B/nn.
Note that both A/mn and B/nn are local artinian. Hence, (1) =⇒ (2) =⇒ (3).

For (3) =⇒ (2): we may assume that X = SpecOX,x and T = SpecOT,t. In
particular, t ∈ |T | is a finite type point and X is Artfin-homogeneous. By Lemma
2.2, the claim follows.

To prove (3) =⇒ (1) we will take (A,m) = (OX,x,mx) and (B, n) = (OT,t,mt)
and consider the lifting problem described above. Take D = im(B → C/I), which
is a local artinian ring with residue field K = B/n. Next take E = D ×C/I C.
Then E → D is surjective and E ⊆ C. It remains to show that there is a lifting
B → E. If E was artinian, then we would be done by formal versality. But E need
not be noetherian and we will instead construct an A-subalgebra E0 ⊆ E which
is artinian and such that E0 → E → D is surjective with nilpotent kernel. Then
B → D factors via A-homomorphisms B → E0 → E → D by formal versality.

Let k = A/m and first assume that k → K is a finitely generated extension. Since
E → D → K is surjective we may choose t1, . . . , tr ∈ E such that k(t1, . . . , tr) = K.
Further choose u1, . . . , us ∈ E such that their images in D generate the maximal
ideal. Let E0 be the total quotient ring of the A-subalgebra of E generated by
t1, . . . , tr, u1, . . . , us. Then E0 ⊆ E is local artinian, E0 → D is surjective, and by
formal versality we have the required lift.

If instead k → K is separable, then there exists a Cohen A-algebra A′ such that
A′ ⊗A k = K. Recall that A′ is a complete local noetherian ring and that A→ A′

is preadically formally smooth [EGA, 0IV.19.8.2]. Since E → D → K is surjective
with nilpotent kernel, we obtain a factorization A → A′ → E such that A′ → E
induces an isomorphism on residue fields. We can now take E0 as the A′-subalgebra
of E generated by u1, . . . , us. �

We now obtain the following well-known corollary (cf. [EGA, IV.17.14.2]).

Corollary 2.5. Let f : T → X be a locally of finite type morphism of locally noe-
therian schemes. Let t ∈ |T |. The following are equivalent.

(1) f is smooth at t [EGA, IV.17.3.7].
(2) f is formally smooth at t ∈ |T |.
(3) f is formally versal at t ∈ |T |.

Proof. Since f is locally of finite type, κ(f(t)) ⊆ κ(t) is a finitely generated ex-
tension. By Proposition 2.4, it follows that conditions (2) and (3) are equivalent
to OX,f(t) → OT,t being preadically formally smooth. By [EGA, IV.17.5.3], we
have the claim. We can also argue as follows: the natural map ExalX(T, κ(t)) →
ExalX(SpecOT,t, κ(t)) is an isomorphism. Indeed, the cotangent complex of the
morphism SpecOT,t → T vanishes. By Lemma 2.2, formal versality implies that
ExalX(SpecOT,t, κ(t)) ∼= 0. By [Hal17, Lem. 5.4], the functor on quasi-coherent
OT -modules ExalX(T,−) is coherent and limit preserving. By [Hal14, Cor. 7.7],
there is thus an affine open neighborhood j : U ⊆ T of t such that the functor
ExalX(T, j∗(−)) vanishes. But ExalX(T, j∗(−)) ' ExalX(U,−), so U → X is for-
mally smooth [Hal17, Lem. 4.3(1)]. �

Corollary 2.6. Let S be a locally noetherian scheme and let X be a limit preserving
S-groupoid. Let T be an X-scheme that is locally of finite type over S and let t ∈ |T |
be a point such that:

(1) T is formally smooth at t ∈ |T | as an X-scheme and
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(2) the morphism T → X is representable by algebraic spaces.

If W is an X-scheme, then the morphism T×XW →W is smooth in a neighborhood
of every point over t. In particular, if T → X is formally smooth at every point of
finite type, then T → X is formally smooth.

Proof. By a standard limit argument, we can assume that W → S is of finite type.
It is then enough to verify that T ×X W → W is smooth at closed points in the
fiber of t. Let u : U → T ×X W be an étale and surjective morphism, where U is
a scheme. Then U → W is formally smooth at closed points in the fiber of t. By
Corollary 2.5, the composition U → W is smooth at every point over t, and we
deduce the claim. The last statement follows from the fact that every closed point
of T ×X W maps to a point of finite type of T . �

Combining Lemma 2.2 and Corollary 2.6 we obtain the following key result.

Corollary 2.7. Let S be a locally noetherian scheme and let X be a limit preserving
and Artfin-semihomogeneous S-groupoid. If T is an X-scheme such that

(1) T → S is locally of finite type,
(2) T → X is formally versal at all points of finite type, and
(3) T → X is representable by algebraic spaces,

then T → X is formally smooth.

Remark 2.8. To establish algebraicity of a functor or groupoid in the spirit of Artin’s
criteria, one must provide conditions for an algebraic family that is formally versal
at all points of finite type to be formally smooth. In the present paper, this is Corol-
lary 2.7, where we use Artfin-semihomogeneity. This result was known to several
experts. In Artin’s paper for functors, this is [Art69b, Lem. 5.4], where the functor
is assumed to be an fppf sheaf and Arttriv-homogeneous. By Lemma 1.9, the fppf
stack condition together with Arttriv-homogeneity imply Artfin-homogeneity, so
the results of our paper recover Artin’s. As discussed in the Introduction, Artin’s
arguments for functors do not extend to groupoids.

In Artin’s paper for groupoids, the relationship between formal versality and
smoothness is established in [Art74, Prop. 4.2]. The relevant standing assumption
is rCl-semihomogeneity. Assuming rCl-homogeneity makes no difference to our
discussion below. We feel that it is worthwhile to digress into some of the tech-
nicalities that arise here. We wish to assure the reader that, as mentioned in the
Introduction, if S is of finite type over SpecZ or a perfect field, then the proof of
the main result of [Art74] is essentially correct, with only minor modifications to
the arguments necessary.

Our interpretation of Artin’s definition of formal smoothness [Art74, p. 173] is
that it coincides with ours given in Definition 2.1. In particular, in the notation
of [Art74, p. 173], to verify formal smoothness the residue fields of A are uncon-
strained. But the proof of [Art74, Prop. 4.2] relies on [Art74, Thm. 3.3], which
requires that the residue field of A is equal to the residue field of R (here both A
and R are henselian local rings). If the residue field extension is separable, then
it is possible to conclude using [Art74, Prop. 4.3], which uses étale localization of
obstruction theories (also see Proposition 2.9). We do not know how to complete
the argument if the residue field extension is inseparable. The essential problem is
the verification that formal versality is smooth-local.
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It was suggested by a referee that Artin’s definition of formal smoothness can be
interpreted as follows. In the notation of [Art74, p. 173], the morphism SpecA →
SpecR should induce an isomorphism of residue fields at every point of finite type
over S. With this definition of formal smoothness, Artin’s proof of [Art74, Prop. 4.2]
is correct. This definition of formal smoothness seems too limited to prove his main
result [Art74, Cor. 5.2] without further assumptions, however. Indeed, it is essential
in [Art74, Cor. 5.2] that formal smoothness is stable under base change. Artin
omits the proof of this stability under base change and we were unable to prove it
ourselves. Again, it is the presence of inseparable field extensions that complicates
matters. Note that our definition of formal smoothness is obviously stable under
base change.

2.1. Étale localization. We also obtain the following result showing that, under
mild hypotheses, formal versality is stable under étale-localization. This improves
[Art74, Prop. 4.3], which requires the existence of an obstruction theory that is
compatible with étale localization.

Proposition 2.9. Let S be a scheme and let X be an Artsep-semihomogeneous
S-groupoid (cf. Lemma 1.9). Let T be an X-scheme. If (U, u)→ (T, t) is a pointed
étale morphism of S-schemes, then formal versality at t ∈ |T | implies formal ver-
sality at u ∈ |U |.

Proof. To see that formal versality at t ∈ |T | implies formal versality at u ∈ |U |, it
is enough to show that the lifting property holds for T and a square-zero extension
of local artinian schemes V ↪→ V ′ such that κ(v) = κ(u). This follows from an
identical argument as in the proof of Lemma 2.2(2) =⇒ (1). �

Using Lemma 2.2, one can show that Proposition 2.9 admits a partial converse.
Indeed, if u ∈ |U | and t ∈ |T | are closed, X is rCl-homogeneous, U and T are
affine and noetherian, and T → X is representable by algebraic spaces, then formal
versality at u ∈ |U | implies formal versality at t ∈ |T |. This will not be used,
however.

Remark 2.10. The conditions on obstruction theories in the criteria for algebraicity
are used to prove that formal versality is an open condition. Proposition 2.9 proves
that it is enough to find suitable obstruction theories étale-locally. This idea is
present in [Art74, 4.9–4.11]. We do not understand the given arguments, however,
as they rely on [Art74, Prop. 4.3], which requires the existence of a global obstruc-
tion theory. But these are isolated remarks, having no bearing on the main results
of the article.

2.2. Zariski localization. Next, we give a condition that ensures that if an X-
scheme T is formally versal at all closed points, then it is formally versal at all
points of finite type.

Condition 2.11. Let X be Nil-homogeneous and let T be an affine X-scheme.
The extensions of X are Zariski local at T if for every open immersion p : U →
T of affine X-schemes and every point u ∈ |U | of finite type, the natural map:

ExalX(T, κ(u))→ ExalX(U, κ(u))
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is surjective. The extensions of X are Zariski local if they are Zariski local at
every affine X-scheme that is locally of finite type over S.

Note that Lemma 1.8(5) implies that if an S-groupoid X is Aff -homogeneous, then
its extensions are Zariski local. As the following lemma shows, it is also satisfied
whenever S is Jacobson.

Lemma 2.12. Let X be a Nil-homogeneous Zariski S-stack and let p : U → T be
an open immersion of affine X-schemes. If u ∈ |U | is a point that is closed in T ,
then the natural map:

ExalX(T, κ(u))→ ExalX(U, κ(u))

is an isomorphism. In particular, if S is Jacobson, then extensions of X are Zariski
local (Condition 2.11).

Proof. We construct an inverse by taking an X-extension U ↪→ U ′ of U by κ(u) to
the gluing of U ′ and T \ {u} along U ′ \ {u} ∼= U \ {u}. If S is Jacobson and T → S
is locally of finite type, then T is Jacobson and every point of finite type u ∈ |U | is
closed in T so Condition 2.11 holds. �

We now extend the implication (3) =⇒ (2) of Lemma 2.2 to points of finite type.

Proposition 2.13. Fix a scheme S, an rCl-homogeneous S-groupoid X and an
affine X-scheme T , locally of finite type over S. Assume that extensions of X
are Zariski local at T (Condition 2.11). If t ∈ |T | is a point of finite type and
ExalX(T, κ(t)) = 0, then the X-scheme T is formally versal at t.

Proof. Finite type points are locally closed so there exists an open affine neighbor-
hood U ⊆ T of t such that t ∈ |U | is closed. By Condition 2.11, 0 = ExalX(T, κ(t)) �
ExalX(U, κ(t)), so the X-scheme U is formally versal at t by Lemma 2.2. It then
follows, from the definition, that the X-scheme T also is formally versal at t. �

2.3. DVR-homogeneity. In this subsection, we will increase our homogeneity
assumption instead of assuming that Exal commutes with localization.

Recall that a geometric discrete valuation ring is a discrete valuation ring D
such that SpecD → S is essentially of finite type and the residue field is of finite
type over S [Art69b, p. 38].

Notation 2.14. Let DVR ⊆ Aff be the class of morphisms (SpecK → SpecD)
such that D is a geometric discrete valuation ring with fraction field K.

Artin’s condition [4a] of [Art69b, Thm. 3.7] implies DVR-semihomogeneity
and Artin’s conditions [5′](b) and [4′](a,b) of [Art69b, Thm. 5.3] imply DVR-
homogeneity. We conclude this section by showing that DVR-homogeneity implies
that formal smoothness is stable under generizations. This is accomplished by the
following lemma, which is a generalization of [Art69b, Lem. 3.10] from functors to
categories fibered in groupoids. To guarantee sufficiently many geometric discrete
valuation rings, we assume that we are over an excellent base.

Lemma 2.15. Let S be an excellent scheme and let X be a limit preserving DVR-
homogeneous S-groupoid. If T is an X-scheme such that

(1) T → S is locally of finite type,
(2) T → X is representable by algebraic spaces, and
(3) T → X is formally smooth at a point t ∈ |T | of finite type,
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then T → X is formally smooth at every generization t′ ∈ |T | of t.

Proof. Consider a diagram of X-schemes

Z0
_�

��

g // T

��
Z //

>>

X

where Z0 ↪→ Z is a closed immersion of local artinian schemes and the image
t′ = g(z0) of the closed point z0 ∈ |Z0| is a generization of t ∈ T and κ(z0)/κ(t′) is
finite. We have to prove that every such diagram admits a lifting as indicated by
the dashed arrow.

As X is limit preserving, we can factor Z → X as Z → W → X where W is an
S-scheme of finite type. Let h : T ×XW → T denote the first projection. The pull-
back T ×X W → W is smooth at every point of the fiber h−1(t) by Corollary 2.6.
Let Tt denote the local scheme Spec(OT,t). It is enough to prove that T×XW →W
is smooth at every point of h−1(Tt).

Let y ∈ |T ×X W | be a point of h−1(Tt). It is enough to prove that Y = {y}
contains a point at which T ×X W →W is smooth. By Chevalley’s theorem, h(Y )
contains a constructible subset. Thus, there is a point t1 ∈ h(Y )∩Tt such that the

closure T1 = {t1} in the local scheme Tt is of dimension 1. By Corollary 2.6, it is
enough to show that T → X is formally smooth at t1. Thus, consider a diagram

SpecK ′
_�

��

g // T

��
SpecK ′′ //

;;

X

of X-schemes where K ′′ � K ′ is a surjection of local artinian rings such that
g(η) = t1 and κ(η)/κ(t1) is finite. Let D ⊆ K = κ(η) be a geometric DVR
dominating OT1,t (which exists since OT1,t is excellent). We may then, using DVR-
homogeneity, extend the situation to a diagram

SpecK ′
_�

��

// SpecD′
_�

��

// T

��
SpecK ′′ // SpecD′′ //

;;

X

where D′ = D×K K ′ and D′′ = D×K K ′′ so D′ � D and D′′ � D have nilpotent
kernels. Now, by Corollary 2.6, the pullback T ×X SpecD′′ → SpecD′′ is smooth
at the image of SpecD′ so there is a lifting as indicated by the dashed arrow. Thus
T → X is formally smooth at t1 and hence also at t′. �

In Lemma 10.4 we will show that under mild hypotheses, DVR-homogeneity
actually implies Aff -homogeneity and thus also Condition 2.11.

Remark 2.16. If we replace geometric DVRs with all DVRs in DVR-homogeneity,
then it is enough that S is noetherian instead of excellent and t need not be of finite
type.
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3. Vanishing loci for additive functors

Let T be a scheme. In this section we will be interested in additive functors
F : QCoh(T )→ Ab. It is readily seen that the collection of all such functors forms an
abelian category, with all limits and colimits computed “pointwise”. For example,
given additive functors F , G : QCoh(T ) → Ab as well as a natural transformation
ϕ : F → G, then kerϕ : QCoh(T )→ Ab is the functor

(kerϕ)(M) = ker(F (M)
ϕ(M)−−−→ G(M)).

Next, we set A = Γ(OT ). Note that the natural action of A on the abelian category
QCoh(T ) induces for everyM ∈ QCoh(T ) an action ofA on the abelian group F (M).
Thus we see that the functor F is canonically valued in the category Mod(A). It
will be convenient to introduce the following notation: for a quasi-compact and
quasi-separated morphism of schemes g : W → T and a functor F : QCoh(T )→ Ab,
define FW : QCoh(W ) → Ab to be the functor FW (N) = F (g∗N). If F is additive
(resp. preserves direct limits), then the same is true of FW . The vanishing locus of
F is the following subset [Hal14, §7.2]:

V(F ) = {t ∈ |T | : F (M) = 0 ∀M ∈ QCoh(T ), supp(M) ⊆ Spec(OT,t)}
= {t ∈ |T | : FSpec(OT,t) ≡ 0} (if T is quasi-separated).

The main result of this section, Theorem 3.3, which gives a criterion for the set
V(F ) to be Zariski open, is essentially due to H. Flenner. In [Fle81, Lem. 4.1], for
an S-groupoid X and an affine X-scheme V , locally of finite type over S, a specific
result about the vanishing locus of the functor M 7→ ExalX(V,M) is proved. In
[Fle81], a standing assumption is that the S-groupoid X is semihomogeneous, thus
the functor M 7→ ExalX(T,M) is only set-valued, which complicates matters. Since
we are assuming Nil-homogeneity of X, the functor M 7→ ExalX(T,M) takes values
in abelian groups. As we will see, this simplifies matters considerably.

We now make the following trivial observation.

Lemma 3.1. Let T be a scheme and let F : QCoh(T )→ Ab be an additive functor.
Then the subset V(F ) ⊆ |T | is stable under generization.

By Lemma 3.1, we thus see that the subset V(F ) ⊆ |T | will be Zariski open if we
can determine sufficient conditions on the functor F and the scheme T such that
the subset V(F ) is (ind)constructible. We make the following definitions.

Definition 3.2. Let T = SpecA be an affine scheme and let F : QCoh(T ) → Ab
be an additive functor.

• The functor F is bounded if the scheme T is noetherian and F (M) is finitely
generated for every finitely generated A-module M .

• The functor F is weakly bounded if the scheme T is noetherian and for every
integral closed subscheme T0 ↪→ T , the Γ(OT0

)-module F (OT0
) is finitely

generated.
• The functor F is GI (resp. GS, resp. GB) if there exists a dense open subset
U ⊆ |T | such that for all points u ∈ |U | of finite type, the natural map

F (OT )⊗A κ(u)→ F (κ(u))

is injective (resp. surjective, resp. bijective).
• The functor F is CI (resp. CS, resp. CB) if for every integral closed sub-

scheme T0 ↪→ T , the functor FT0
is GI (resp. GS, resp. GB).
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In the above definition, GI (resp. GS, resp. GB) is an acronym for generically
injective (resp. surjective. resp. bijective). Similarly, CI (resp. CS, resp. CB) is an
acronym for constructibly injective (resp. surjective, resp. bijective).

We can now state the main result of this section.

Theorem 3.3 (Flenner). Let T be an affine noetherian scheme and let F : QCoh(T )→
Ab be a half-exact, additive, and bounded functor that commutes with direct limits.
If the functor F is CS, then the subset V(F ) ⊆ |T | is Zariski open.

Functors of the above type occur frequently in algebraic geometry.

Example 3.4. Let T be an affine noetherian scheme and let Q ∈ D−Coh(T ). Then,

for all i ∈ Z, the functors on quasi-coherent OT -modules given byM 7→ ExtiOT (Q,M)

and M 7→ TorOTi (Q,M) are additive, bounded, half-exact, commute with direct
limits, and CB.

Example 3.5. Let T be an affine noetherian scheme and let p : X → T be a
morphism that is projective and flat. Then the functor M 7→ Γ(X, p∗M) is CB.
Indeed, one interpretation of the Cohomology and Base Change Theorem asserts
that the functor M 7→ Γ(X, p∗M) is of the form given in Example 3.4.

Example 3.6. Let T be an affine noetherian scheme. An additive functor F : QCoh(T )→
Ab, commuting with direct limits, is coherent [Aus66] if there exists a homomor-
phism M → N of coherent OT -modules such that

F (−) = coker
(

HomOT (N,−) −→ HomOT (M,−)
)
.

It is easily seen that a coherent functor is CB and bounded. Indeed, bounded-
ness is obvious and if i : T0 ↪→ T is an integral closed subscheme, then F |T0 =
coker(HomOT0

(i∗N,−)→ HomOT0
(i∗M,−)) and after passing to a dense open sub-

scheme, we may assume that i∗N and i∗M are flat. Then F |T0
(−) = coker((i∗N)∨ →

(i∗M)∨)⊗OT0
(−) commutes with all tensor products. It is well-known, and easily

seen, that the functors of the previous two examples are coherent.
Conversely, let F : QCoh(T )→ Ab be a half-exact bounded additive functor that

commutes with direct limits and is CS. Then for every integral closed subscheme
T0 ↪→ T , there is an open dense subscheme U0 ⊆ T0 such that F |U0

is coherent.
In particular, for half-exact bounded additive functors that commute with direct
limits, CS implies CB.

The main ingredient in the proof of Theorem 3.3 is a remarkable Nakayama
Lemma for half-exact functors, due to A. Ogus and G. Bergman [OB72, Thm. 2.1].
We state the following amplification, which follows from the mild strengthening
given in [Hal14, Cor. 7.5] and Lemma 3.1.

Theorem 3.7 (Ogus–Bergman). Let T be an affine noetherian scheme and let
F : QCoh(T ) → Ab be a half-exact, additive, and bounded functor that commutes
with direct limits. Then

V(F ) = {t ∈ |T | : F (κ(t)) = 0}.
In particular, if F (κ(t)) = 0 for all closed points t ∈ |T |, then F ≡ 0.

Remark 3.8. Let F be as in Theorem 3.7 and let I ⊆ A be an ideal. Then Flenner
proves that the natural map F (M) ⊗A Â/I → lim←−n F (M/InM) is injective for

every finitely generated A-module M . In fact, this is the special case X = Y =
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SpecA of [Fle81, Kor. 6.3]. The Ogus–Bergman Nakayama lemma is an immediate
consequence of the injectivity of this map.

Before we address vanishing loci of functors, the following simple application of
Lazard’s Theorem [Laz64], which appeared in [Hal14, Prop. 7.2], will be a conve-
nient tool to have at our disposal.

Proposition 3.9. Let T = SpecA be an affine scheme and let F : QCoh(T )→ Ab
be an additive functor that commutes with direct limits. Let M and L be A-modules.
If L is flat, then the natural map:

F (M)⊗A L→ F (M ⊗A L)

is an isomorphism. In particular, for every A-algebra B and every flat B-module
L, the natural map:

F (B)⊗B L→ F (L)

is an isomorphism.

We may now prove Flenner’s theorem.

Proof of Theorem 3.3. The subset V(F ) ⊆ |T | is open if and only if it is closed
under generization and its intersection with any irreducible closed subset T0 ⊆ |T |
contains a non-empty open subset of T0 or is empty [EGA, IV.1.10.1]. By Lemma
3.1, we have witnessed the stability under generization. Thus it remains to address
the latter claim.

Let T0 ↪→ T be an integral closed subscheme. If |T0| ∩ V(F ) 6= ∅, then the
generic point η ∈ |T0| belongs to V(F ) (Lemma 3.1), thus F (κ(η)) = 0. Since by
assumption the functor F is CS, there exists a dense open subset U0 ⊆ |T0| such
that the map FT0

(OT0
)⊗Γ(OT0

) κ(u)→ F (κ(u)) is surjective for all u ∈ U0 of finite
type.

As κ(η) is a quasi-coherent and flat OT0
-module, the natural map FT0

(OT0
)⊗Γ(OT0

)

κ(η) → F (κ(η)) is an isomorphism by Proposition 3.9. But η ∈ V(F ), thus the
finitely generated Γ(OT0)-module FT0(OT0) is torsion. Hence there is a dense open
subset U0 ⊆ |T0| with the property that if u ∈ U0 is of finite type, then F (κ(u)) = 0.
Using Theorem 3.7 we infer that U0 ⊆ V(F ) ∩ |T0|. �

We record for future reference a useful lemma.

Lemma 3.10. Let T = SpecA be an affine noetherian scheme and let F : QCoh(T )→
Ab be an additive functor.

(1) If the functor F is half-exact, then F is bounded if and only if F is weakly
bounded.

(2) If the functor F is (weakly) bounded, then every additive sub-quotient func-
tor of F is (weakly) bounded.

(3) If F is GS (resp. CS), then so is every additive quotient functor of F .
(4) If F is weakly bounded and CI, then so is every additive subfunctor of F .
(5) Consider an exact sequence of additive functors QCoh(T )→ Ab:

H1
// H2

// H3
// H4.

(a) If H1 and H3 are CS and H4 is CI and weakly bounded, then H2 is
CS.

(b) If H1 is CS, H2 and H4 are CI, and H4 is weakly bounded, then H3 is
CI.
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If T is reduced, then (4), (5a), and (5b) hold with GI and GS instead of CI and
CS.

Proof. For claim (1), note that every coherent OT -module M admits a finite fil-
tration whose successive quotients are of the form i∗OT0 , where i : T0 ↪→ T is an
integral closed subscheme. Induction on the length of the filtration, combined with
the half-exactness of the functor F , proves the claim. Claims (2) and (3) are trivial.
For (4), it is sufficient to prove the claim about GI and we can assume that T is a
disjoint union of integral schemes. Fix an additive subfunctor K ⊆ F , then there
is an exact sequence of additive functors: 0 → K → F → H → 0. By (2) we see
that H is weakly bounded and so H(OT ) is a finitely generated A-module. As A
is reduced, generic flatness implies that there is a dense open subset U ⊆ |T | such
that H(OT )u is a flat A-module ∀u ∈ U . Thus, for all u ∈ U the sequence:

0 // K(OT )⊗A κ(u) // F (OT )⊗A κ(u) // H(OT )⊗A κ(u) // 0

is exact. Since F is GI, we may further assume that the map F (OT ) ⊗A κ(u) →
F (κ(u)) is injective for all points u ∈ U of finite type after shrinking U . We then
conclude that K is GI from the commutative diagram:

K(OT )⊗A κ(u) �
� //

��

F (OT )⊗A κ(u)
_�

��
K(κ(u))

� � // F (κ(u)).

Claims (5a) and (5b) follow from a similar argument and the 4-Lemmas. �

We conclude this section with a criterion for a functor to be GI (and consequently
a criterion for a functor to be CI). This will be of use when we express Artin’s criteria
for algebraicity without obstruction theories in Section 8.

Proposition 3.11. Let T = SpecA be an affine and integral (i.e., reduced and
irreducible) noetherian scheme with function field K. Let F : QCoh(T )→ Ab be an
additive functor that commutes with direct limits. If F (OT ) is a finitely generated
A-module, then F is GI if and only if the following condition is satisfied:

(†) for every f ∈ A, every free Af -module M of finite rank, and ω ∈ F (M)
such that for all non-zero A-module maps ε : M → K we have ε∗ω 6= 0 in
F (K), there exists a dense open subset Vω ⊆ D(f) ⊆ |T | such that for every
non-zero A-module map γ : M → κ(v), where v ∈ Vω is of finite type, we
have γ∗ω 6= 0 in F (κ(v)).

Proof. Let M be a free Af -module of finite rank and let M∨ = HomAf (M,Af ).
Then the canonical homomorphism F (A)f ⊗Af M → F (M) is an isomorphism
(Proposition 3.9) so there is a one-to-one correspondence between elements ω ∈
F (M) and homomorphisms ω : M∨ → F (A)f . Moreover, ω is injective if and only
if ω⊗AK : M∨ ⊗AK → F (A)⊗AK = F (K) is injective and this happens exactly
when ε∗ω 6= 0 in F (K) for every non-zero map ε : M → K.

Let t ∈ |T | and let δt : F (A) ⊗A κ(t) → F (κ(t)) denote the natural map. Then
condition (†) can be reformulated as: for every free Af -module M of finite rank and
every injective homomorphism ω : M∨ → F (A)f , there exists a dense open subset
Vω ⊆ D(f) such that δt ◦

(
ω⊗A κ(t)

)
is injective for all points t ∈ Vω of finite type.

To show that (†) implies that F is GI, choose f ∈ A \ 0 such that F (A)f is
free, let M = F (A)∨f and let ω ∈ F (M) correspond to the inverse of the canonical
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isomorphism F (A)f →M∨. If (†) holds, then there exists an open subset Vω such
that δt is injective for all t ∈ Vω, i.e., F is GI.

Conversely, if F is GI, then there is an open subset V such that δt is injective
for all t ∈ V of finite type. Given a finite free Af -module M and ω ∈ F (M), we
let Vω = V ∩W where W ⊆ D(f) is an open dense subset over which the cokernel
of ω is flat. If ω is injective, it then follows that δt ◦

(
ω ⊗A κ(t)

)
is injective for all

t ∈ Vω of finite type, that is, condition (†) holds. �

4. Openness of formal versality

As the title suggests, we now address the openness of the formally versal locus.
Let S be a scheme. We isolate the following conditions for an S-groupoid X.

Condition 4.1. Let T be an affine X-scheme. The extensions of X are
bounded at T if X is Nil-homogeneous at T and the functor M 7→ ExalX(T,M)
is bounded. The extensions of X are bounded if X has bounded extensions at
every affine X-scheme T , locally of finite type over S.

Condition 4.2. Let T be an affine X-scheme. The extensions of X are con-
structible at T ifX is Nil-homogeneous at T and the functorM 7→ ExalX(T,M)
is CS. The extensions of X are constructible if X has constructible extensions
at every affine X-scheme T , locally of finite type over S.

That these conditions are plausible is implied by the following lemma.

Lemma 4.3. Let S be a locally noetherian scheme, let X be an algebraic S-stack,
and let T be an affine X-scheme. If both X and T are locally of finite type over S,
then the functors M 7→ DerX(T,M) and M 7→ ExalX(T,M) are bounded and CB.

Proof. By [Ols06, Thm. 1.1] there is a complex LT/X ∈ D−Coh(T ) such that for
all quasi-coherent OT -modules M , there are natural isomorphisms DerX(T,M) ∼=
Ext0

OT
(LT/X ,M) and ExalX(T,M) ∼= Ext1

OT
(LT/X ,M). The result now follows

from a consideration of Example 3.4. �

In their current form, Conditions 4.1 and 4.2 are difficult to verify. In §6, this
will be rectified. Nonetheless, we can now prove the following.

Theorem 4.4. Let S be a locally noetherian scheme, let X be an S-groupoid and
let T be an affine X-scheme, locally of finite type over S. Assume, in addition, that

(1) X is limit preserving,
(2) X is rCl-homogeneous,
(3) X has bounded extensions at T (Condition 4.1),
(4) X has constructible extensions at T (Condition 4.2) and
(5) X has Zariski local extensions at T (Condition 2.11).

Let t ∈ |T | be a closed point. If T is formally versal at t ∈ |T |, then T is formally
versal at every point of finite type in a Zariski open neighborhood of t. In particular,
if X is also Artfin-homogeneous and T → X is representable by algebraic spaces,
then T is formally smooth in a Zariski open neighborhood of t.

Proof. By Condition 4.1 and Lemma 1.8, the functorM 7→ ExalX(T,M) is bounded,
half-exact, and preserves direct limits. Condition 4.2 now implies that the functor
M 7→ ExalX(T,M) satisfies the criteria of Theorem 3.3. Thus, V(ExalX(T,−)) ⊆
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|T | is a Zariski open subset. By Lemma 2.2(2) =⇒ (3) and Theorem 3.7, we have
that t ∈ V(ExalX(T,−)). So, there exists an open neighborhood t ∈ U ⊆ |T | with
ExalX(T, κ(u)) = 0 for all u ∈ U . By Proposition 2.13, every point u ∈ U of finite
type is formally versal. The last assertion follows from Corollary 2.7. �

5. Automorphisms, deformations, and obstructions

In this section, we introduce a deformation-theoretic framework that makes it
possible to verify Conditions 2.11, 4.1 and 4.2. To do this, we recall the formulation
of deformations and obstructions given in [Hal17, §6].

Let S be a scheme and let Φ: Y → Z be a 1-morphism of S-groupoids. Define
the category DefΦ to have objects the pairs (i : T ↪→ T ′, r : T ′ → T ), where i is a
Y -extension and r is a Z-retraction of i, with the obvious morphisms. Graphically,
it is the category of completions of the following diagram:

T
_�

��

// Y

Φ

��
T [J ]

η

==

// Z.

Forgetting the retraction, there is a natural functor DefΦ → ExalY . If T is
a Y -scheme, then we denote the fiber of this functor over ExalY (T ) ⊆ ExalY by
DefΦ(T ). It follows that there is an induced functor DefΦ(T )→ QCoh(T )◦, whose
fiber over a quasi-coherent OT -module I we denote by DefΦ(T, I). Note that the
category DefΦ(T, I) is naturally pointed by the trivial Y -extension iT,J of T by
J . Denote the set of isomorphism classes of DefΦ(T, J) by DefΦ(T, J) and let
AutΦ(T, J) denote the set AutDefΦ(T,J)(iT,J).

If Y and Z are Nil-homogeneous at T , then the groupoid DefΦ(T, J) is a Picard
category [Hal17, Prop. 6.5]. Thus we obtain Γ(T,OT )-linear functors

DefΦ(T,−) : QCoh(T )→ Ab, J 7→ DefΦ(T, J); and

AutΦ(T,−) : QCoh(T )→ Ab, J 7→ AutDefΦ(T,J)(iT,J).

The lemma that follows is an easy consequence of [Hal17, Lem. 6.4].

Lemma 5.1. Let S be a scheme and let Φ: Y → Z be a 1-morphism S-groupoids.
Let i : W ↪→ T be a closed immersion of Y -schemes and let N be a quasi-coherent
OW -module. If Y and Z are Cl-homogeneous at W , then the natural maps:

AutΦ(T, i∗N)→ AutΦ(W,N) and DefΦ(T, i∗N)→ DefΦ(W,N)

are bijective.

We recall the exact sequence of [Hal17, Prop. 6.7], which is our fundamental
computational tool.

Proposition 5.2. Let S be a scheme and let Φ: Y → Z be a 1-morphism of S-
groupoids. Let T be a Y -scheme and let J be a quasi-coherent OT -module. If Y
and Z are Nil-homogeneous at T , then there is a natural 6-term exact sequence of
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abelian groups:

0 // AutΦ(T, J) // DerY (T, J) // DerZ(T, J)

// DefΦ(T, J) // ExalY (T, J) // ExalZ(T, J).

If Y and Z are Nil-homogeneous at T and J is a quasi-coherent OT -module,
then we let

ObsΦ(T, J) = coker
(
ExalY (T, J)→ ExalZ(T, J)

)
.

This defines a Γ(T,OT )-linear functor

ObsΦ(T,−) : QCoh(T )→ Ab, J 7→ ObsΦ(T, J),

the minimal obstruction theory of Φ at T (see §7). If Y and Z are rNil-homogeneous
at T , then AutΦ(T,−) and DefΦ(T,−) are half-exact [Hal17, Cor. 6.6]. There is
no reason to expect that ObsΦ(T,−) is half-exact, however. We have the following
analogues of Lemmas 1.8(2) and 5.1 for obstructions.

Lemma 5.3. Let S be a scheme and let P be a class of morphisms of S-schemes.
Let Φ: Y → Z be a 1-morphism of S-groupoids. Let p : V → T be an affine mor-
phism of Y -schemes that is P . If Y and Z are P -homogeneous at V and Nil-
homogeneous at T , then there is a natural map p# : ObsΦ(V,N)→ ObsΦ(T, p∗N),
which is injective and functorial in N .

Proof. The existence of p# follows immediately from Lemma 1.8(2). That p# is
injective is obvious. �

Lemma 5.4. Let S be a scheme, and let Φ: Y → Z be a 1-morphism of Cl-
homogeneous S-groupoids. Let i : W ↪→ T be a closed immersion of affine noether-
ian Y -schemes and let N be a quasi-coherent OW -module. If ObsΦ(T, i∗N) is a
finitely generated Γ(T,OT )-module, then there exists an infinitesimal neighborhood

in : Wn → T of W in T , i.e., a factorization of i as W
j−→ Wn

in−→ T , where j is a
locally nilpotent closed immersion, such that

(in)# : ObsΦ(Wn, j∗N)→ ObsΦ(T, i∗N)

is an isomorphism.

Proof. Given an obstruction ω ∈ ObsΦ(T, i∗N), we can realize it as a Z-extension
k : T ↪→ T ′ of T by i∗N . The ideal sheaf k∗i∗N ⊆ OT ′ is then annihilated by the
ideal sheaf I defining the closed immersion k ◦ i : W ↪→ T ′. Thus, by the Artin–
Rees lemma, we have that (k∗i∗N) ∩ In = 0 for some n. Let W ′1 and W1 be the
closed subschemes of T ′ defined by In and In+k∗i∗N . Then the morphisms in the
diagram:

W
� � j1 // W1

� � i1 //
_�

��

T
_�

��
W ′1
� � // T ′

are closed immersions and the square is cartesian and cocartesian in the category
of Z-schemes (because Z is Cl-homogeneous at W1). If we let ω1 = [W1 ↪→ W ′1] ∈
ObsΦ(W1, (j1)∗N) denote the obstruction to lifting W ′1 to a Y -scheme; then ω =
(i1)#(ω1).
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We have thus shown that every element ω ∈ ObsΦ(T, i∗N) is in the image of
ObsΦ(Wl, (jl)∗N) for some infinitesimal neighborhood jl : W ↪→ Wl, depending on
ω. Since ObsΦ(T, i∗N) is a finitely generated Γ(T,OT )-module and T is affine and
noetherian, it follows that there exists an infinitesimal neighborhood j : W ↪→ Wn

such that ObsΦ(Wn, j∗N)→ ObsΦ(T, i∗N) is an isomorphism. �

6. Relative conditions

Let S be a locally noetherian scheme. In this section, we introduce a number
of conditions for a 1-morphism of S-groupoids Φ: Y → Z. These are the relative
versions of the conditions that appear in (5a), (5b), (5c), (6b) and (6c) of the
Main Theorem. For any of the conditions given in this section, an S-groupoid
X is said to have that condition if the structure 1-morphism X → Sch/S has
the condition. These conditions are stated “relatively” for two reasons. The first
reason is to make it clear that this paper subsumes the results of [Sta06] on the
stability of Artin’s criteria under composition. This follows immediately from the
exact sequence of [Hal17, Prop. 6.13] and Lemma 3.10. Secondly, and of most
importance, is that the relative formulation permits a process of bootstrapping the
diagonal. This is an important and subtle point of this paper, which we will discuss
in more detail when we prove the Main Theorem in Section 10.

Condition 6.1. Let T be an affine Y -scheme. Assume that Y and Z are
Nil-homogeneous at every closed subscheme of T . Automorphisms (resp. de-
formations, resp. obstructions) of Φ are bounded at T if for every integral closed
subscheme i : T0 ↪→ T , condition (i) (resp. (ii), resp. (iii)) below holds:

(i) AutΦ(T0,OT0
) is a finitely generated Γ(OT0

)-module;
(ii) DefΦ(T0,OT0) is a finitely generated Γ(OT0)-module;

(iii) ObsΦ(T, i∗OT0) is a finitely generated Γ(OT0)-module.

Automorphisms (resp. deformations, resp. obstructions) of Φ are bounded if
they are bounded at every affine Y -scheme T , locally of finite type over S.

Morphisms of S-groupoids typically have bounded obstructions (Condition 6.1(iii)).
For example, if Y is Nil-homogeneous and Z is algebraic, then Z has bounded
extensions (Condition 4.1) and Φ has bounded obstructions.

Lemma 6.2. Let S be a locally noetherian scheme and let Φ: Y → Z be a 1-
morphism of rCl-homogeneous S-groupoids with bounded deformations (Condition
6.1(ii)) at an affine Y -scheme T , locally of finite type over S. If Z has bounded
extensions at T (Condition 4.1), then so does Y .

Proof. By Lemma 1.8(3) the functor M 7→ ExalY (T,M) is half-exact. Thus, by
Lemma 3.10(1), it is sufficient to prove that for every integral closed subscheme
i : T0 ↪→ T , the Γ(OT0

)-module ExalY (T, i∗OT0
) is finitely generated. Now, by

Proposition 5.2, there is an exact sequence:

DefΦ(T, i∗OT0
) // ExalY (T, i∗OT0

) // ExalZ(T, i∗OT0
).

By Condition 4.1, the Γ(OT0
)-module ExalZ(T, i∗OT0

) is finitely generated. By
Lemma 5.1, DefΦ(T, i∗OT0) ∼= DefΦ(T0,OT0), which is also a finitely generated
Γ(OT0

)-module by Condition 6.1(ii). The result now follows from the exact sequence
above. �
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Similarly, to enable the verification that an S-groupoid has constructible exten-
sions (Condition 4.2), we introduce the following conditions.

Condition 6.3. Let T be an affine Y -scheme. Assume that Y and Z are
Nil-homogeneous at every closed subscheme of T . Automorphisms (resp. de-
formations, resp. obstructions) of Φ are constructible at T if for every closed
subscheme T1 ⊆ T , such that T1 is irreducible and i : T0 ↪→ T1 denotes the
reduction, condition (i) (resp. (ii), resp. (iii)) below holds:

(i) AutΦ(T0,−) : QCoh(T0)→ Ab is GB;
(ii) DefΦ(T0,−) : QCoh(T0)→ Ab is GB;

(iii) ObsΦ(T1, i∗−) : QCoh(T0)→ Ab is GI.

Automorphisms (resp. deformations, resp. obstructions) of Φ are constructible
if they are constructible at every affine Y -scheme T , locally of finite type
over S.

We now proceed to Zariski local extensions (Condition 2.11). Note that the
following condition trivially holds when S is Jacobson. Indeed, in that case, U1 =
T1 = {η}.

Condition 6.4. Let T be an affine Y -scheme. Assume that Y and Z are
Nil-homogeneous at every closed subscheme of T . Automorphisms (resp. de-
formations, resp. obstructions) of Φ are Zariski local at T if for every closed
subscheme T1 ⊆ T and non-empty open subscheme U1 ⊆ T1, such that T1 is
irreducible and the generic point η ∈ |T1| is of finite type over S, and U0 ⊆ T0

denotes the reductions, condition (i) (resp. (ii), resp. (iii)) below holds:

(i) the natural map AutΦ(T0, κ(η))→ AutΦ(U0, κ(η)) is bijective;
(ii) the natural map DefΦ(T0, κ(η))→ DefΦ(U0, κ(η)) is bijective;

(iii) the natural map ObsΦ(T1, κ(η))→ ObsΦ(U1, κ(η)) is injective.

Automorphisms (resp. deformations, resp. obstructions) of Φ are Zariski local
if they are Zariski local at every affine Y -scheme T , locally of finite type over S.

The following proposition is one of the major results of the article.

Proposition 6.5. Let S be a locally noetherian scheme. Let Φ: Y → Z be a 1-
morphism of Cl-homogeneous S-groupoids with bounded obstructions at an affine
Y -scheme T , locally of finite type over S (Condition 6.1(iii)).

(1) Assume, in addition, that Φ has constructible deformations and obstruc-
tions at T (Conditions 6.3(ii)–6.3(iii)). If Z has constructible extensions
at T (Condition 4.2), then so does Y .

(2) Assume, in addition, that Φ has Zariski local deformations and obstructions
at T (Conditions 6.4(ii)–6.4(iii)). If Z has Zariski local extensions at T
(Condition 2.11), then so does Y .

Proof. We prove (1). By Proposition 5.2 there is an exact sequence of additive
functors QCoh(T )→ Ab:

DefΦ(T,−) // ExalY (T,−) // ExalZ(T,−) // ObsΦ(T,−) // 0.

Let i : T0 ↪→ T be an integral closed subscheme. By Lemma 5.1 we have that
DefΦ(T0,−) = DefΦ(T, i∗(−)). Condition 6.3(ii) gives that DefΦ(T0,−) is GS,
so the functor DefΦ(T,−) is CS. Condition 4.2 says that ExalZ(T,−) is CS. The
remaining two conditions together with Lemma 5.4 imply that ObsΦ(T,−) is CI
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and weakly bounded. In fact, for every integral closed subscheme i : T0 ↪→ T ,
there is an infinitesimal neighborhood j : T0 ↪→ T1 such that ObsΦ(T1, j∗OT0) ∼=
ObsΦ(T, i∗OT0) and ObsΦ(T1, κ(t)) ↪→ ObsΦ(T, κ(t)) is injective for all t ∈ |T0|. It
now follows from Lemma 3.10(5a) that the functor ExalY (T,−) is CS.

The proof of (2) is similar: let u ∈ U ⊆ T be as in Condition 2.11, use the exact

sequence above, take T0 = {u}, and apply Lemmas 5.1 and 5.4 as before. �

7. Obstruction theories

Throughout this section, we let S be a locally noetherian scheme and let Φ: Y →
Z be a 1-morphism of Nil-homogeneous S-groupoids. In this section, we will expand
the conditions on obstructions given in the previous sections to obtain more readily
verifiable conditions. We begin with recalling the definition of an n-step relative
obstruction theory given in [Hal17, Defn. 6.8].

An n-step relative obstruction theory for Φ, denoted {ol(−,−),Ol(−,−)}nl=1, is
for each Y -scheme T , a sequence of additive functors (the obstruction spaces):

Ol(T,−) : QCoh(T )→ Ab, J 7→ Ol(T, J), l = 1, . . . , n

as well as natural transformations of functors (the obstruction maps):

o1(T,−) : ExalZ(T,−)⇒ O1(T,−)

ol(T,−) : ker ol−1(T,−)⇒ Ol(T,−) for l = 2, . . . , n,

such that the natural transformation of functors:

ExalY (T,−)⇒ ExalZ(T,−)

has image ker on(T,−). Furthermore, we say that the obstruction theory is

• (weakly) bounded, if for every affine Y -scheme T , locally of finite type over
S, the obstruction spaces M 7→ Ol(T,M) are (weakly) bounded functors;

• Zariski- (resp. étale-) functorial if for every open immersion (resp. étale
morphism) of affine Y -schemes g : V → T , and l = 1, . . . , n, there is a
natural transformation of functors:

Clg : Ol(T, g∗(−))⇒ Ol(V,−),

which for every quasi-coherent OV -module N , make the following diagrams
commute:

ExalX(T, g∗N) //

��

O1(T, g∗N)

��

ker ol−1(T, g∗N) //

��

Ol(T, g∗N)

��
ExalX(V,N) // O1(V,N) ker ol−1(V,N) // Ol(V,N).

Here the leftmost map is the map ψ of Lemma 1.8 (5). We also require for
every open immersion (resp. étale morphism) of affine schemes h : W → V ,
an isomorphism of functors:

αlg,h : Clh ◦ Clg ⇒ Clgh.

Remark 7.1 (Comparison with Artin’s obstruction theories). An obstruction theory
in the sense of [Art74, 2.6] is a 1-step bounded obstruction theory “that is functorial
in the obvious sense”. We take this to mean étale-functorial in the above sense. Ob-
struction theories are usually half-exact and functorial for every morphism, but Exal
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is only contravariantly functorial for étale morphisms so the condition above does
not make sense for arbitrary morphisms. On the other hand, for Aff -homogeneous
stacks, Exal is covariantly functorial for every affine morphism (Lemma 1.8(2)) and
the minimal obstruction theory ObsΦ is étale-functorial (Lemma 1.8(5)).

We have the following simple lemma.

Lemma 7.2. Let S be a locally noetherian scheme and let Φ: Y → Z be a 1-
morphism of Nil-homogeneous S-groupoids. Let {ol,Ol}nl=1 be an n-step relative

obstruction theory for Φ. Let Õl(T,M) ⊆ Ol(T,M) be the image of ol(T,M) for l =

1, . . . , n. Then {ol, Õl}nl=1 is an n-step relative obstruction theory for Φ. Moreover,

let Obsl(T,−) = ExalZ(T,−)/ ker ol and Obs0(T,−) = 0. Then Obsn(T,−) =
ObsΦ(T,−) and we have exact sequences

0 // Õl(T,−) // Obsl(T,−) // Obsl−1(T,−) // 0

for l = 1, 2, . . . , n. In particular, if the obstruction theory is (weakly) bounded, then
so is the minimal obstruction theory ObsΦ(T,−).

We now introduce variations of Conditions 6.3(iii) and 6.4(iii) (constructible and
Zariski local obstructions) in terms of an n-step relative obstruction theory.

Condition 7.3 (Constructible obstructions II). There exists a weakly bounded
n-step relative obstruction theory for Φ, {ol(−,−),Ol(−,−)}nl=1, such that for
every affine irreducible Y -scheme T that is locally of finite type over S, the
obstruction spaces Ol(T,−)|T0

: QCoh(T0)→ Ab, are GI for l = 1, . . . , n where
T0 = Tred.

Condition 7.4 (Zariski local obstructions II). There exists a functorial, n-step
relative obstruction theory for Φ, {ol(−,−),Ol(−,−)}nl=1, such that for every
affine irreducible Y -scheme T that is locally of finite type over S and whose
generic point η ∈ |T | is of finite type, and for every open subscheme U ⊆ T ,
the canonical maps Ol(T, κ(η))→ Ol(U, κ(η)) are injective for l = 1, . . . , n.

Lemma 7.5. Let S be a locally noetherian scheme and let Φ: Y → Z be a 1-
morphism of Nil-homogeneous S-groupoids.

(1) (Constructibility) Φ has bounded and constructible obstructions (Condi-
tions 6.1(iii) and 6.3(iii)) if and only if Φ satisfies Condition 7.3.

(2) (Zariski localization) Φ has Zariski local obstructions (Condition 6.4(iii))
if and only if Φ satisfies Condition 7.4.

Proof. If Φ has bounded deformations and obstructions (Conditions 6.1(iii) and 6.3(iii)),
then the minimal obstruction theory satisfies Condition 7.3. Conversely, assume
that we are given an obstruction theory Ol(−,−) as in Condition 7.3. Let T be
an affine irreducible Y -scheme that is locally of finite type over S. Then the sub-

functors Õl(T,−)|T0
⊆ Ol(T,−)|T0

of Lemma 7.2 are also GI and weakly bounded

by Lemma 3.10(4). Since ObsΦ(T,−) is an iterated extension of the Õl(T,−)’s, it
follows that ObsΦ(T,−)|T0 is GI and weakly bounded by Lemma 3.10(5b)—thus Φ
has bounded and constructible obstructions (Conditions 6.3(iii) and 6.1(iii)).

If Condition 6.4(iii) holds then the minimal obstruction theory satisfies 7.4. That
Condition 7.4 implies Condition 6.4(iii) follows from Lemma 7.2. �
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8. Conditions on obstructions without an obstruction theory

In this section we give conditions without reference to linear obstruction theories,
just as in [Art69b, Thm. 5.3 [5′c]] and [Sta06]. In the comparison we provide
between our conditions on obstructions we use Aff -homogeneity, while Artin uses
DVR-homogeneity and Starr uses homogeneity along localization morphisms (not
just Zariski localizations). Starr’s localization-homogeneity is stronger than DVR-
homogeneity, but weaker than Aff -homogeneity. However, we make our assumption
because shortly we will prove that DVR-homogeneity—in all cases of relevance to
the proof of the Main Theorem—implies Aff -homogeneity (Lemma 10.4).

Definition 8.1 ([Art69b, 5.1], [Sta06, Defn. 2.1]). By a deformation situation for
Φ: Y → Z, we will mean data (T ↪→ T ′,M), where T is an irreducible affine
Y -scheme that is locally of finite type over S, where M is a quasi-coherent OTred

-
module, and where T ↪→ T ′ is an Z-extension of T by M . We say that the de-
formation situation is obstructed if the Z-extension T ↪→ T ′ cannot be lifted to a
Y -extension T ↪→ T ′.

Notation 8.2. For a deformation situation (T ↪→ T ′,M), let T0 = Tred, let
η0 = SpecK0 denote the generic point of T0, let η = Spec(OT,η0

), and let η′ =
Spec(OT ′,η0

). Thus η ↪→ η′ is a Z-extension of η by Mη = M ⊗OT0
K0.

Condition 8.3 (Constructible obstructions III). Given a deformation situa-
tion such that M is a free OT0 -module of finite rank and such that for every
non-zero OT0-module map ε : Mη → K0, the resulting Z-extension η ↪→ η′ε of
η by K0 is obstructed, then there exists a dense open subset U0 ⊆ |T0| such
that for all points u ∈ U0 of finite type, and all non-zero OT0

-module maps
γ : M → κ(u), the resulting Z-extension T ↪→ T ′γ of T by κ(u) is obstructed.

Lemma 8.4. Let S be a locally noetherian scheme and let Φ: Y → Z be a 1-
morphism of limit preserving, Aff -homogeneous S-groupoids. If Φ has bounded
obstructions (Condition 6.1(iii)), then Φ has constructible obstructions (Condi-
tion 6.3(iii)) if and only if Φ satisfies Condition 8.3.

Proof. Fix an irreducible affine Y -scheme T and let T0 be its reduction. To see
that Conditions 6.3(iii) and 8.3 are equivalent we will use condition (†) of Propo-
sition 3.11 for F (−) = ObsΦ(T,−)|T0 . Some care is needed, though, as these two
conditions are not quite equivalent for a fixed T .

Consider a deformation situation (T ↪→ T ′,M) as in Condition 8.3 and let
ω ∈ F (M) = ObsΦ(T,M) be the obstruction of the deformation situation. Then
for every non-zero ε : M → K0, the element ε∗ω ∈ F (K0) is non-zero since its image
under F (K0) = ObsΦ(T,K0) → ObsΦ(Tη,K0) is non-zero. If F is GI, then condi-
tion (†) is satisfied for F , M and ω. Thus, there is an open dense subset U0 ⊆ |T0|
such that γ∗ω ∈ F (κ(u)) is non-zero for all u ∈ U0 of finite type and non-zero maps
γ : M → κ(u), that is, Condition 8.3 holds.

Conversely, let f , M and ω be as in condition (†) for F (−). Let V0 = Spec(Af ) ⊆
T0 = SpecA and let V ⊆ T denote the corresponding open subscheme. Since Y
and Z are Aff -homogeneous, the natural morphism F (−)|Af = ObsΦ(T,−)|V0 →
ObsΦ(V,−)|V0

is an isomorphism (Lemma 1.8(5)). Since M is an Af -module, we
may thus consider ω ∈ F (M) as an obstruction class in ObsΦ(V,M). This class can
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be realized by a deformation situation (V ↪→ V ′,M). We assume that Condition 8.3
holds for this deformation situation.

Since Y and Z are Aff -homogeneous, we also have an isomorphism ObsΦ(T,−)|η0 →
ObsΦ(η,−)|η0

. In particular, for all ε : Mη → K0, the resulting Z-extension η ↪→ η′ε
of η by K0 is obstructed. Thus, there exists a dense open subset U0 ⊆ |V0| such that
for all points u ∈ U0 of finite type and maps γ : M → κ(u), the induced Z-extension
(V ↪→ V ′γ , κ(u)) is obstructed. In particular, γ∗ω ∈ F (κ(u)) = ObsΦ(T, κ(u)) =
ObsΦ(V, κ(u)) is non-zero. Thus, Condition (†) holds for the given f , M and ω
with Vω = U0.

Thus, if for a given T , Condition 8.3 holds for all deformation situations (V0 ↪→
V,M) where V ⊆ T is an open subscheme, then F is GI. �

Remark 8.5. If S is of finite type over a Dedekind domain as in [Art69b] (or Jacob-
son), then in Condition 8.3 it is enough to consider closed points u ∈ U . Indeed, in
the proof of the lemma above, we are free to pass to open dense subsets and every
S-scheme of finite type has a dense open subscheme which is Jacobson.

9. Effectivity

We begin with the following definition.

Definition 9.1. Let X be a category fibered in groupoids over the category of
S-schemes. We say that X is weakly effective (resp. effective) if for every local noe-
therian ring (B,m), such that B is m-adically complete, with an S-scheme structure
SpecB → S such that the induced morphism Spec(B/m) → S is locally of finite
type, the natural functor:

X(SpecB)→ lim←−
n

X(Spec(B/mn+1))

is dense and fully faithful (resp. an equivalence). Here dense means that for every
object (ξn)n≥0 in the limit and for every k ≥ 0, there exists an object ξ ∈ X(SpecB)
such that its image in X(Spec(B/mk+1)) is isomorphic to ξk.

If X is an algebraic stack, then the functor X(SpecB)→ lim←−nX(Spec(B/mn+1))

is an equivalence of categories—thus every algebraic stack is effective. Also, it is
clear that effectivity implies weak effectivity. We will see in Proposition 9.3 that
the converse holds under mild hypotheses.

The following lemma is well-known, with the difficult parts attributed to Sch-
lessinger [Sch68] and Rim [SGA7, Exp. VI].

Lemma 9.2. Let S be a noetherian scheme and let X be an S-groupoid. Let Speck
be an X-scheme, locally of finite type over S, such that k is a field. If X is

(1) Arttriv-homogeneous,
(2) weakly effective and
(3) has bounded deformations at Speck (Condition 6.1(ii)),

then there exists a pointed and affine X-scheme (T, t) such that:

(a) the point t ∈ |T | is closed and the X-schemes Speck and Specκ(t) are
isomorphic;

(b) the X-scheme T is formally versal at t ∈ |T |; and
(c) T is affine, local, noetherian and complete.
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Proof. By Schlessinger–Rim (e.g., [Stacks, Tag 06IW]), there exists an affine, lo-
cal, noetherian and complete scheme (T = SpecR,m) and an object (ηn)n≥0 ∈
lim←−nX(Tn), where Tn = Spec(R/mn+1), which is a formally versal deformation (in

the sense of Schlessinger–Rim) of the X-scheme structure on Spec k. Since X is
weakly effective, there exists ξ ∈ X(T ) such that ξ|T1

≡ η1 in X(T1). By formal
versality, there exists a map of X-schemes φ : T → T which restricts to the identity
map on T1. It is well-known that such maps are isomorphisms, hence ξ is formally
versal. �

We now have the main result of this section.

Proposition 9.3. Let S be a noetherian scheme. Let X be an S-groupoid that is

(1) Arttriv-homogeneous,
(2) weakly effective and
(3) has bounded deformations at every X-scheme Speck, locally of finite type

over S, such that k is a field (Condition 6.1(ii)).

Let (B,m) be a local noetherian ring, complete with respect to its m-adic topology,
such that Spec(B/m) → S is locally of finite type. If {Jn}n≥0 is an m-stable
filtration of B (e.g., Jn = mn+1), then the natural functor

X(SpecB)→ lim←−
n

X(Spec(B/Jn))

is an equivalence. In particular, X is effective.

Proof. Since m-stable filtrations of B have bounded difference [AM69, Lem. 10.6]
(in particular, there exists an n0 such that Jn+n0

⊆ mn+1 for all n ≥ 0), it is
sufficient to prove the result when Jn = mn+1. In this case, the functor above is
already assumed to be fully faithful; thus, it remains to establish that it is essentially
surjective. To see this, let (ξn)n≥0 ∈ lim←−nX(Spec(B/mn+1)). Now apply Lemma

9.2 to the X-scheme structure on Spec(B/m) determined by ξ0. This produces an
affine, local, noetherian and complete X-scheme T , formally versal at its closed
point t, such that the X-schemes Specκ(t) and ξ0 are isomorphic. By formal
versality, there exists a compatible system of maps bn : Spec(B/mn+1)→ T lifting
the X-scheme structures ξn. It follows that there is an induced map of schemes
SpecB → T which, by construction, defines an object ξ ∈ X(SpecB) with image
(ξn)n≥0 ∈ lim←−nX(SpecB/mn+1). The result follows. �

10. Proof of Main Theorem

In this section, we prove the Main Theorem. Before we do this, however, there
are several preliminary results that we must prove. Conrad and de Jong [CJ02,
Thm. 1.5] extended Artin’s algebraization theorem [Art69b, Thm. 1.6] to excellent
rings. The following lemma summarizes their result in the language of this paper.

Theorem 10.1. Let S be an excellent scheme and let X be an S-groupoid. Let
Speck be an X-scheme, locally of finite type over S, such that k is a field. If X is

(1) limit preserving,
(2) weakly effective,
(3) Arttriv-homogeneous and
(4) has bounded deformations at Speck (Condition 6.1(ii)),

then there exists a pointed and affine X-scheme (T, t) such that:

http://stacks.math.columbia.edu/tag/06IW
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(a) T is locally of finite type over S;
(b) the point t ∈ |T | is closed and the X-schemes Speck and Specκ(t) are

isomorphic; and
(c) the X-scheme T is formally versal at t ∈ |T |.

We now obtain the following algebraicity criterion for groupoids.

Proposition 10.2. Let S be an excellent scheme. An S-groupoid X is an algebraic
S-stack, locally of finite presentation over S, if and only if

(1) X is a stack over (Sch/S)Ét;
(2) X is limit preserving;
(3) X is weakly effective;
(4) X is Artinsep-homogeneous;
(5) X is rCl-homogeneous;

(6a) X has bounded deformations (Condition 6.1(ii));
(6b) X has constructible extensions (Condition 4.2);
(6c) X has Zariski local extensions (Condition 2.11); and

(7) the diagonal morphism ∆X/S : X → X ×S X is representable by algebraic
spaces.

Proof. The hypotheses imply that for every pair (Speck x−→ S, ξ), where k is a field,
x is a morphism locally of finite type, and ξ ∈ X(x), there exists a pointed and
affine X-scheme (Tξ, t) as in Theorem 10.1. Condition (7) implies that Tξ → X is
representable by algebraic spaces.

As X is rCl-homogeneous and has bounded deformations (Condition 6.1(ii)),
Lemma 6.2 implies that X has bounded extensions (Condition 4.1). Also by
Lemma 1.9, X is Artfin-homogeneous. Since X has Zariski local, bounded and
constructible extensions (Conditions 2.11, 4.1 and 4.2), it follows from Theorem 4.4
that we are free to assume—by passing to an affine open neighborhood of t—that
the X-scheme Tξ is formally smooth.

We finish the proof in the same manner as the proof of [Hal17, Thm. 7.1]: define
K to be the set of all morphisms x : Spec k → S that are locally of finite type,
where k is a field. Set T =

∐
x∈K,ξ∈X(x) Tξ. Then the X-scheme T is representable

by smooth morphisms of algebraic spaces. We will be done if we can prove that
it is representable by surjective morphisms of algebraic spaces. Since X is limit
preserving, this assertion may be verified on affine X-schemes V of finite type over
S. By construction, the image of the morphism T ×X V → V contains all points
of finite type; since the morphism is smooth, this image is also open. The result
follows. �

The following bootstrap result will be applied several times in this section.

Lemma 10.3. Let S be a scheme and let X be an S-groupoid. Let W be an X×SX-
scheme. Let (∆X/S)W : DX/S,W →W be the W -groupoid obtained as the pull-back
of ∆X/S : X → X ×S X along W . This is equivalent to a presheaf on Sch/W .

(1) Let P ⊆ Aff be a class of morphisms and let T be a DX/S,W -scheme. If
X → S is P -homogeneous at T , then DX/S,W → W is P -homogeneous
at T . In particular, if X → S is P -homogeneous, then DX/S,W → W is
P -homogeneous.
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(2) Let T be a DX/S,W -scheme. If X → S is Nil-homogeneous at T , then
DX/S,W →W is Nil-homogeneous at T and there are natural isomorphisms
for every quasi-coherent OT -module M :

Aut(∆X/S)W (T,M) ∼= 0,

Def(∆X/S)W (T,M) ∼= AutX/S(T,M),

Obs(∆X/S)W (T,M) ⊆ DefX/S(T,M).

(3) If X is a stack over (Sch/S)Ét (resp. (Sch/S)fppf), then DX/S,W is a sheaf
over (Sch/W )Ét (resp. (Sch/W )fppf).

(4) If X is limit preserving over S, then DX/S,W is limit preserving over W .
(5) If S is noetherian, W is locally of finite type over S and X is effective over

S, then DX/S,W is effective over W .

Proof. For (1), ifX → S is P -homogeneous at T , then so isX×SX and ∆X/S [Hal17,
Lem. 1.5(5,7,8)]. Thus, DX/S,W →W is P -homogeneous at T [Hal17, Lem. 1.5(6)].
The assertion (2) follows from (1) and [Hal17, Cor. 6.14]. The assertions (3) and
(5) are straightforward. Finally, (4) follows from [Hal17, Lem. 3.2(5,6)]. �

In following lemma, we establish that under very weak boundedness hypothe-
ses, homogeneity at artinian schemes is sufficient to imply many other forms of
homogeneity.

Lemma 10.4. Let S be an excellent scheme. Let X be an S-groupoid that is

(1) a stack over (Sch/S)Ét,
(2) limit preserving,
(3) weakly effective,
(4) Arttriv-homogeneous, and
(5) has bounded automorphisms and deformations at every X-scheme Speck,

locally of finite type over S, such that k is a field (Conditions 6.1(i),6.1(ii)).

The following assertions hold.

(a) X is effective,
(b) X is rCl-homogeneous.
(c) If X is Artfin-homogeneous, then X is Int-homogeneous.
(d) If X is Artfin-homogeneous and DVR-homogeneous and ∆X/S : X →

X ×S X is representable by algebraic spaces, then X is Aff -homogeneous.

Proof. That X is effective is Proposition 9.3. We first establish that if X satisfies
the conditions (1)–(5) and (HrCl

1 ) (resp. (HInt
1 )), then assertion (b) (resp. (c)) holds.

Fix an rCl-nil (resp. Fin-nil) pair (SpecA→ SpecB, SpecA→ SpecA′) such that
B is the completion of an OS-algebra B0 of finite type at a maximal ideal m0 and
A′ → A and B → A are of finite type. By Lemma B.3(5), it is sufficient to prove
that the functor:

X(SpecB′)→ X(SpecB)×X(SpecA) X(SpecA′)

is essentially surjective, where B′ = B ×A A′. Since A is complete and B → A is
finite, A =

∏n
i=1Ai in the category of B-algebras, where each Ai is a finite and

local B-algebra. Arguing as in the proof of Lemma 1.9, we may thus reduce to the
situation where A and A′ are local.

Since B′ → B is surjective with nilpotent kernel and B is local, B′ is local with
maximal ideal m′. For each integer n ≥ 0 let B′n = B′/m′n+1, Bn = B⊗B′B′n, An =
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A⊗B′B′n and A′n = A′⊗B′B′n. The pair (SpecAn → SpecBn,SpecAn → SpecA′n)
is Arttriv-nil (resp. Artfin-nil). Let Cn = Bn ×An A′n. Note that lim←−n Cn =

B ×A A′ = B′ and that for every n ≥ `, the induced map Cn/m
′`+1Cn → C` is

surjective but not necessarily injective. Now Arttriv-homogeneity (resp. Artfin-
homogeneity) implies that

X(SpecCn)→ X(SpecBn)×X(SpecAn) X(SpecA′n)

is an equivalence. By Proposition 9.3, it follows that there is an equivalence

X(SpecB)×X(SpecA) X(SpecA′) ' lim←−
n

(X(SpecBn)×X(SpecAn) X(SpecA′n)).

It remains to prove that the natural functor X(SpecB′) → lim←−nX(SpecCn) is

essentially surjective. To see this, we note that the map B′ → Cn is surjective with
kernel Kn = B′ ∩mn(B ⊕A′). By the Artin–Rees Lemma [AM69, Prop. 10.9], the
filtration {Kn}n≥0 on B′ is m-stable. By Proposition 9.3, the claim follows.

To deduce (b) (resp. (c)) in general, we apply a bootstrapping procedure. By
Lemma B.2(4), to prove thatX satisfies (HrCl

1 ) (resp. (HInt
1 )), it is sufficient to prove

that DX/S,W is rCl-homogeneous (resp. Int-homogeneous) for every affine scheme
W of finite type over S. Fix an affine scheme W of finite type over S. First observe
that W is excellent. By Lemma 10.3, DX/S,W satisfies the hypotheses (1)–(5) and
the hypothesis in (b) (resp. (c)). Indeed, Nil-homogeneity at Spec k is equivalent to
Arttriv-homogeneity at Spec k. Thus it is sufficient to prove the Lemma under the
additional assumption that the diagonal of X → S is a monomorphism. Repeating
this process, we see that it is sufficient to prove the Lemma when X → S is a
monomorphism. In this case, however, the diagonal of X → S is an isomorphism,
thus is representable and consequently satisfies (HAff

1 ). The claim follows.
To establish (d), we note that since X has diagonal representable by algebraic

spaces, X satisfies (HAff
1 ). By Lemma B.3(5), it is thus sufficient to prove that

X(SpecA3)→ X(SpecA2)×X(SpecA0) X(SpecA1)

is essentially surjective for every Aff -nil pair (SpecA0 → SpecA2,SpecA0 →
SpecA1), where A2 is the henselization of a finite type OS-algebra B at a max-
imal ideal m and A2 → A0 and A1 → A0 are of finite type and A3 = A2 ×A0 A1.

Fix (a2, a1, α) ∈ X(SpecA2)×X(SpecA0) X(SpecA1), which we may regard as a
diagram of X-schemes

W0

/�
j ?

p ��

W1

�� ##

W2

/�
?? <<W3

// X,

where Wi = SpecAi, that we must complete. Let k = A2/m; then Speck inherits
an X-scheme structure from SpecA2. Now apply Theorem 10.1 to the X-scheme
Speck, which produces a pointed affine X-scheme (T, t), locally of finite type over
S, which is formally versal at the closed point t. Let W ′i = Wi ×X T for i = 0,
1, 2 and let p′ : W ′0 → W ′2 be the pullback of p : W0 → W2. Since X has diagonal
representable by algebraic spaces, W ′i is an algebraic space, locally of finite type
over Wi, for each i. By construction, the morphism W ′2 →W2 even admits a section
s2 : W2 →W ′2.
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For i = 0, 1, 2 let W ′smi ⊆ W ′i denote the smooth locus of W ′i → Wi, which
is an open subset. By Lemma 2.2, T is formally smooth at t. Since X is DVR-
homogeneous, T is formally smooth at every generization t′ ∈ |T | of t (Lemma 2.15).
Thus W ′smi contains the preimage of Spec(OT,t) under W ′i → T . Let Z2 = p′(W ′0 \
j′
−1

(W ′sm1 )), W ′′2 = W ′sm2 \ Z2, W ′′0 = p′−1(W ′′2 ) and W ′′1 = j′(W ′′0 ), which we
regard as open subsets of W ′smi . We claim that the section s2 : W2 → W ′2 factors
through W ′′2 . To see this, it is sufficient to check that Z2 does not contain any
points above t. But Z2 does not contain any points above Spec(OT,t) and since

every point of Z2 is a specialization of a point in Z2, the claim follows.
By restriction, there is an induced section s0 : W0 → W ′′0 . Since W ′′1 → W1 is

smooth and W0 is affine, the section s0 lifts to a section s1 : W1 →W ′′1 of W ′′1 →W1.
By [Hal17, Lem. A.4], there is a commutative diagram of S-schemes:

W ′′0

��

ww

� � // W ′′1
ww

��
W ′′2

��

� � // W ′′3

��
W0
� � //

ww
W1

ww
W2
� � // W3

where all faces of the cube are cartesian, the top and bottom faces are cocartesian,
and the map W ′′3 → W3 is flat. Since the top square is cocartesian, and there are
compatible maps W ′′i → T for i 6= 3, there is a uniquely induced map W ′′3 → T .
The sections si for i = 0, 1, 2 glue to a section s3 : W3 →W ′′3 of W ′′3 →W3. Taking
the composition W3 →W ′′3 → T → X proves the result. �

We now prove a version of the Main Theorem where we assume that the diagonal
is representable.

Theorem 10.5. Let S be an excellent scheme. Then a category X, fibered in
groupoids over the category of S-schemes, Sch/S, is an algebraic stack, locally of
finite presentation over S, if and only if it satisfies the conditions of the Main
Theorem and

(7) the diagonal ∆X/S : X → X ×S X is representable by algebraic spaces.

Proof. We will use the criteria of Proposition 10.2. Clearly the conditions of limit
preservation (2), weak effectivity (3), bounded deformations (6a) and diagonal rep-
resentable by algebraic spaces (7) of Proposition 10.2 are satisfied. Either of the
stack hypotheses—(1) or (1′)—imply the étale stack condition (1) of Proposition
10.2.

Either the Artinsep-homogeneity hypothesis (4′), or (1) and Arttriv-homogeneity
(4) and Lemma 1.9, imply that X is Artfin-homogeneous. By Lemma 10.4, (1) or
(1′), combined with (2) and (3) and bounded automorphisms and deformations
(5a), implies that X is Int-homogeneous. In particular, (4)–(5) of Proposition 10.2
are satisfied.

Now X has constructible obstructions, by (6b) and Lemma 7.5(1). Since X also
has constructible deformations (5b), it has constructible extensions (Proposition
6.5(1)). Thus, X satisfies (6b) of Proposition 10.2. Similarly by Lemma 7.5(2) and
(6c), X has Zariski local obstructions. Since X also has Zariski local deformations
(5c), Proposition 6.5(2) implies that X satisfies (6c) of Proposition 10.2.
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If S is Jacobson (α), then X satisfies (6c) of Proposition 10.2 (Lemma 2.12),
without assuming (5c) and (6c).

If X is DVR-homogeneous (β), then Lemma 10.4(d) implies that X is Aff -
homogeneous; thus, X satisfies (6c) of Proposition 10.2 (Lemma 1.8(5)), without
assuming (5c) and (6c). Moreover, Lemma 8.4 implies that (6b) may be substituted
for Condition 8.3. The result follows. �

We are now ready to prove the Main Theorem.

Proof of Main Theorem. We will do a bootstrapping process, similar to the proof
of [Hal17, Thm. A]. In this instance, however, we must be more careful because we
are working with a weaker homogeneity assumption.

The hypotheses (1) and (4), or (γ), imply that X is Artfin-homogeneous (Lemma
1.9). By Lemma 10.4, X is effective and Int-homogeneous.

Let W be an X×SX-scheme, affine and locally of finite type over S. By Lemma
10.3, the W -groupoid (∆X/S)W : DX/S,W →W satisfies the conditions of the Main
Theorem. Let V be a DX/S,W ×W DX/S,W -scheme, affine and locally of finite type
over W . By Lemma 10.3, the V -groupoid (∆DX/S,W /W )V : DDX/S,W ,V → V satis-

fies the conditions of the Main Theorem. Note, however, that (∆DX/S,W /W )V is a

monomorphism, so has representable diagonal. By Theorem 10.5, (∆DX/S,W /W )V
is algebraic and locally of finite presentation over V , so (∆X/S)W has diagonal rep-
resentable by algebraic spaces. By Theorem 10.5 again, (∆X/S)W is algebraic and
locally of finite presentation over W ; so X has diagonal representable by algebraic
spaces. A final application of Theorem 10.5 informs us that X is algebraic and
locally of finite presentation over S. �

11. Comparison with other criteria

In this section we compare our algebraicity criterion with Artin’s criteria [Art69b,
Art74], Starr’s criterion [Sta06], the criterion of the first author [Hal17], the crite-
rion in the stacks project [Stacks], and Flenner’s criterion for openness of versal-
ity [Fle81].

11.1. Artin’s algebraicity criterion for functors. In [Art69b, Thm. 5.3] Artin
assumes [0′]=(1) (fppf stack), [1′]=(2) (limit preserving) and [2′]=(3) (effectivity).
Further [4′](b)+[5′](a) is Nil-homogeneity for irreducible schemes, which implies
(4). His [4′](a)+(c) is boundedness, Zariski-localization and constructibility of
deformations (Conditions 6.1(ii), 6.4(ii) and 6.3(ii)). His [5′](c) is Condition 8.3
(constructibility of obstructions). Finally, [5′](b) together with [4′](a) and [4′](b)
implies DVR-homogeneity so we are in the setting of (β). Conditions on auto-
morphisms are of course redundant for functors. Condition [3′](a) is only used to
assure that the resulting algebraic space is locally separated (resp. separated) and
condition [3′](b) guarantees that it is quasi-separated. If one is willing to accept
non quasi-separated algebraic spaces, no separation assumptions are necessary.

11.2. Artin’s algebraicity criterion for stacks. Let us begin with correcting
two typos in the statement of [Art74, Thm. 5.3]. In (1) the condition should be
that (S1′,2) holds for F , not merely (S1,2), and in (2) the canonical map should be
fully faithful with dense image, not merely faithful with dense image. Otherwise it
is not possible to bootstrap and deduce algebraicity of the diagonal.
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Artin assumes that X is a stack for the étale topology, and that X is limit pre-
serving. He assumes (1) that the Schlessinger conditions (S1′,2) hold and bound-
edness of automorphisms. In our terminology, (S1′) is rCl-homogeneity, which
implies Arttriv-homogeneity, our (4). The other two conditions are exactly bound-
edness of automorphisms and deformations (5a). Artin’s condition (2) is our (3)
(effectivity). Artin’s condition (3) is étale localization and constructibility of au-
tomorphisms, deformations and obstructions, and compatibility with completions
for automorphisms and deformations. The constructibility condition is slightly
stronger than our (5b)+(6b) and the étale localization condition implies the much
weaker (5c)+(6c). We do not use compatibility with completions. Finally, Artin’s
condition (4) implies that the double diagonal of the stack is quasi-compact and
this condition can be omitted if we work with stacks without separation condi-
tions. Thus [Art74, Thm. 5.3] follows from our main theorem, except that Artin
only assumes that the groupoid is a stack in the étale topology. This is related to
the issue when comparing formal versality to formal smoothness mentioned in the
introduction and discussed in Remark 2.8.

Remark 11.1. That automorphisms and deformations are sufficiently compatible
with completions for Artin’s proof to go through actually follows from the other
conditions. In fact, let A be a noetherian local ring with maximal ideal m, let
T = SpecA and let T → X be given. Then the injectivity of the comparison map

ϕ : DefX/S(T,M)⊗A Â→ lim←−
n

DefX/S(T,M/mnM)

for a finitely generated A-module M follows from the boundedness of DefX/S(T,−),
see Remark 3.8. If T → X is formally versal, then ϕ is also surjective. In-
deed, from (S1) it follows that DerS(T,M/mnM) → DefX/S(T,M/mnM) is sur-

jective for all n, so the composition DerS(T,M)⊗A Â ∼= lim←−n DerS(T,M/mnM)→
lim←−n DefX/S(T,M/mnM), which factors through ϕ, is surjective.

The variant [Sta06, Prop. 1.1], due to Starr, has the same conditions as [Art74,
Thm. 5.3] except that it is phrased in a relative setting. From Section 6, it is
clear that our conditions can be composed. The salient point is that with rCl-
homogeneity (or even with just (S1), i.e., rCl-semihomogeneity, as in [Fle81]),
there is always a linear minimal obstruction theory. There is further an exact
sequence relating the minimal obstruction theories for the composition of two mor-
phisms [Hal17, Prop. 6.13]. Thus [Sta06, Prop. 1.1] also follows from our main
theorem.

We wish to point out that Starr proves openness of versality [Sta06, Thm. 2.15]
using his formalism of generic extenders [Sta06, Defn. 2.7]. This is similar to our
Condition 8.3 (and Artin’s analogous condition in his algebraicity criterion for func-
tors). The main difference is that he also assumes homogeneity along localizations
(not just Zariski localizations), as opposed to DVR-homogeneity.

11.3. The criterion [Hal17] using coherence. There are two differences be-
tween [Hal17, Thm. A] and our main theorem. The first is that Condition (4)
is strengthened to Aff -homogeneity. As this includes DVR-homogeneity, (5c) and
(6c) become redundant. Zariski localization also follows immediately from Aff -
homogeneity without involving DVR-homogeneity, see the discussion after Condi-
tion 2.11. We thus have the following version of our main theorem.
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Theorem 11.2. Let S be an excellent scheme. Then a category X that is fibered in
groupoids over the category of S-schemes, Sch/S, is an algebraic stack that is locally
of finite presentation over S, if and only if it satisfies the following conditions.

(1′) X is a stack over (Sch/S)Ét.
(2) X is limit preserving.
(3) X is effective.

(4′′) X is Aff -homogeneous.

(5a) Automorphisms and deformations are bounded (Conditions 6.1(i)–6.1(ii)).
(5b) Automorphisms and deformations are constructible (Conditions 6.3(i)–6.3(ii)).

(6b) Obstructions are constructible (Condition 6.3(iii), or 7.3, or 8.3).

The second difference is that (5a), (5b) and (6b) are replaced with the condi-
tion that AutX/S(T,−), DefX/S(T,−), ObsX/S(T,−) are coherent functors. This
implies that the functors are bounded and CB (Example 3.6), hence satisfy (5a),
(5b) and (6b).

11.4. The criterion in the Stacks project. In the Stacks project, the basic
version of Artin’s axiom [Stacks, 07XJ,07Y5] requires that

[0] X is a stack in the étale topology,
[1] X is limit preserving,
[2] X is Artfin-homogeneous (this is the Rim–Schlessinger condition RS),
[3] AutX/S(Spec k, k) and DefX/S(Spec k, k) are finite dimensional,
[4] X is effective, and
[5] X, ∆X and ∆∆X

satisfy openness of versality.

There is also a criterion for when X satisfies openness of versality [Stacks, 07YU]
using naive obstruction theories with finitely generated cohomology groups. This
uses the (RS*)-condition which is our Aff -homogeneity [Stacks, 07Y8]. The ex-
istence of the naive obstruction theory implies that AutX/S(T,−), DefX/S(T,−),
ObsX/S(T,−) are bounded and CB (Example 3.4), hence satisfy (5a), (5b) and (6b)
when T is an affine X-scheme that is locally of finite type over S.

In [Stacks], the condition that the base scheme S is excellent is replaced with
the condition that its local rings are G-rings. In our treatment, excellency enters
at two places: in the application of Néron–Popescu desingularization in Proposi-
tion 10.2 via [CJ02] and in the context of DVR-homogeneity in Lemma 2.15. In
both cases, excellency can be replaced with the condition that the local rings are
G-rings without modifying the proofs.

11.5. Flenner’s criterion for openness of versality. Flenner does not give a
precise analogue of our main theorem, but his main result [Fle81, Satz 4.3] is a
criterion for the openness of versality. In his criterion he has a limit preserv-
ing S-groupoid which satisfies (S1)–(S4). The first condition (S1) is identical to
Artin’s condition (S1), i.e., rCl-semihomogeneity. The second condition (S2) is
boundedness and Zariski localization of deformations. The third condition (S3) is
boundedness and Zariski localization of the minimal obstruction theory. Finally
(S4) is constructibility of deformations and obstructions. The Zariski localization
condition is incorporated in the formulation of (S3) and (S4) which deals with
sheaves of deformation and obstructions modules. His (S2)–(S4) are marginally
stronger than our conditions, for example, treating arbitrary schemes instead of

http://stacks.math.columbia.edu/tag/07XJ
http://stacks.math.columbia.edu/tag/07Y5
http://stacks.math.columbia.edu/tag/07YU
http://stacks.math.columbia.edu/tag/07Y8
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irreducible schemes. Theorem [Fle81, Satz 4.3] thus becomes the first part of The-
orem 4.4, in view of Section 6, except that we assume rCl-homogeneity instead
of rCl-semihomogeneity. This is a pragmatic choice that simplifies matters since
ExalX(T,M) becomes a module instead of a pointed set. Also, in any algebraicity
criterion, we would need homogeneity to deduce that the diagonal is algebraic and,
conversely, if the diagonal is algebraic, then semihomogeneity implies homogeneity.

11.6. Criterion for local constructibility. There is a useful criterion for when
a sheaf (or a stack) is locally constructible, that is, when it corresponds to an étale
algebraic space (or algebraic stack) [Art73, VII.7.2]:

Theorem 11.3. Let S be an excellent scheme. Then a category X that is fibered
in groupoids over Sch/S, is an algebraic stack that is étale over S, if and only if it
satisfies the following conditions.

(1) X is a stack over (Sch/S)Ét.
(2) X is limit preserving.
(3) X(B)→ X(B/m) is an equivalence of categories for every local noetherian

ring (B,m), such that B is m-adically complete, with an S-scheme structure
SpecB → S such that the induced morphism Spec(B/m) → S is of finite
type.

The necessity of the conditions is clear. That the conditions are sufficient can be
proven directly as follows. Let j : (Sch/S)Ét → Sét denote the morphism of topoi
corresponding to the inclusion of the small étale site into the big étale site. It is
enough to prove that j−1j∗X → X is an equivalence. As X is limit preserving, it
is enough to verify that f∗(X|Sét

) → X|Tét
is an equivalence for every morphism

f : T → S locally of finite type, and this can be checked on stalks at points of finite
type. Therefore, it suffices to prove that X(B)→ X(B/m) is an equivalence when
B is the henselization of OT,t, for every t ∈ |T | of finite type. This follows from
general Néron–Popescu desingularization and the three conditions.

A proof more in the lines of this paper goes as follows: from (3) it follows that: X
is Artfin-homogeneous; X is effective; and X → S is formally étale at every point
of finite type. In particular, AutX/S(T,N) = DefX/S(T,N) = ObsX/S(T,N) =
0 for every X-scheme T that is of finite type over S and every quasi-coherent
OT -module N with support that is artinian (use Lemmas 5.1 and 5.4). Thus,
AutX/S(T,−) = DefX/S(T,−) = 0 by Theorem 3.7. Theorem 11.3 would follow
from the main theorem if we also can show that ObsX/S(T,−) = 0. As we do not
yet know that ObsX/S(T,−) is half-exact, it is apparently difficult to deduce that
ObsX/S(T,−) = 0 without invoking Popescu desingularization. A more elementary
approach, that does not rely on the main theorem, is to note that given an X-
scheme T that is locally of finite presentation over S, and a point t ∈ |T | of finite
type, then T → X is formally smooth at t if and only T → S is formally smooth
at t. Thus, openness of formal smoothness for T → X follows.

Appendix A. Approximation of integral morphisms

In this appendix, we give an approximation result for integral homomorphisms
of rings.

Lemma A.1. Let A be a ring, let B be an A-algebra and let C be a B-algebra.
Assume that B and C are integral A-algebras. Then there exists a filtered system
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(Bλ → Cλ)λ of finite and finitely presented A-algebras, with direct limit B → C.
In addition, if A→ B (resp. B → C, resp. A→ C) has one of the properties:

(1) surjective,
(2) surjective with nilpotent kernel,

then the system can be chosen such that the morphisms A → Bλ (resp. Bλ → Cλ,
resp. A→ Cλ) all have the corresponding property.

If we start with a system satisfying the first part of the lemma, then it is not
always the case that the second part holds after increasing λ. Therefore, the ap-
proximation Bλ → Cλ has to be built with the second part in mind.

Proof of Lemma A.1. Let Λ be the set of finite subsets of B q C, or, if B → C is
surjective, only those of B. For λ = λB ∪ λC ∈ Λ, let B◦λ ⊆ B be the A-subalgebra
generated by λB and let C◦λ ⊆ C be the A-subalgebra generated by λC and the
image of λB in C.

Then B = lim−→λ∈Λ
B◦λ and C = lim−→λ∈Λ

C◦λ and we have homomorphisms B◦λ → C◦λ
for all λ. Moreover, if A→ B (resp. B → C, resp. A→ C) is surjective or surjective
with nilpotent kernel then so is A→ B◦λ (resp. B◦λ → C◦λ, resp. A→ C◦λ) for every λ.

For every λ, let Pλ = A[xi : i ∈ λB ] and Qλ = A[yj : j ∈ λ] be polynomial
rings and let Pλ → B◦λ and Qλ → C◦λ be the natural surjections. We have homo-
morphisms Pλ → Qλ compatible with B◦λ → C◦λ and if B → C is surjective, then
Pλ = Qλ. For a finite subset L ⊆ Λ, let PL =

⊗
λ∈L Pλ and QL =

⊗
λ∈LQλ, where

the tensor products are over A.
For fixed L ⊆ Λ choose finitely generated ideals IL ⊆ ker(PL → B) and ILQL ⊆

JL ⊆ ker(QL → C) and let BL = PL/IL and CL = QL/JL. If A → B (resp.
A→ C) is surjective, then for sufficiently large IL (resp. JL), we have that A→ BL
(resp. A→ CL) is surjective. If B → C is surjective, then by construction PL = QL
so BL → CL is surjective. If, in addition, B → C has nilpotent kernel with
nilpotency index n, then we replace IL with IL+JnL so that BL → CL has nilpotent
kernel.

Consider the set Ξ of pairs ξ = (L, IL, JL) where L ⊆ Λ is a finite subset, and
IL ⊆ PL and JL ⊆ QL are finitely generated ideals as in the previous paragraph.
Then (BL → CL)ξ is a filtered system of finite and finitely presented A-algebras
with direct limit (B → C) which satisfies the conditions of the lemma. �

Lemma A.2. Let f : X → Y be a morphism of affine schemes. Let P be one of
the properties Nil, Cl, rNil, rCl, Int or Aff (cf. Section 1). If f has property
P , then there exists a filtered system (fλ : Xλ → Y )λ with inverse limit f : X → Y
such that every fλ is of finite presentation with property P .

Proof. The result is standard when P ∈ {Cl,Nil, Int,Aff}. For P = rNil (resp.
P = rCl), choose a nilpotent immersion X0 → X such that X0 → X → Y is Nil
(resp. Cl). The lemma then follows from Lemma A.1 with Y = SpecA, X = SpecB
and X0 = SpecC. �

Fix a scheme S and consider the category of diagrams [Y
f←− X

i−→ X ′] of S-

schemes. A morphism of diagrams Φ: [Y1
f1←− X1

i1−→ X ′1] → [Y2
f2←− X2

i2−→ X ′2]
consists of morphisms ΦY : Y1 → Y2, ΦX : X1 → X2 and ΦX′ : X

′
1 → X ′2 such that

the natural diagram is commutative but not necessarily cartesian. We say that
Φ is affine if ΦY , ΦX and ΦX′ are affine. Given an inverse system of diagrams
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with affine bonding maps, the inverse limit exists and is calculated component by
component.

Proposition A.3. Let S be an affine scheme and let P be one of the properties

Nil, Cl, rNil, rCl, Int or Aff . Let W = [Y
f←− X

i−→ X ′] be a diagram of affine
S-schemes where i is Nil, and f is P . Then W is an inverse limit of diagrams

Wλ = [Yλ
fλ←− Xλ

iλ−→ X ′λ] of affine finitely presented S-schemes where iλ is Nil,
and fλ is P . Moreover, if we let Y ′ = Y qX X ′ and Y ′λ = Yλ qXλ X ′λ denote the
push-outs, then Y ′ = lim←−λ∈Λ

Y ′λ.

Proof. We begin by looking at the induced diagram [Y
j−→ Y ′

g←− X ′]. As j is a
nilpotent closed immersion it follows that g has property P . We will write this

diagram as an inverse limit of diagrams [Yλ
jλ−→ Y ′λ

gλ←− X ′λ] of finite presentation
over S where jλ is Nil and gλ has property P . To this end, we begin by writing
(using Lemma A.2):

(1) Y ′ = lim←−Y
′
α where Y ′α → S are affine and of finite presentation;

(2) X ′ = lim←−X
′
β where X ′β → Y ′ are P and of finite presentation; and

(3) Y = lim←−Yγ where Yγ → Y ′ are Nil and of finite presentation.

For every pair (β, γ) there is ([EGA, IV.8.10.5]) an index α0(β, γ), and a cartesian
diagram

Yγ
� � //

��

Y ′

��

X ′β
oo

��
Yα0(β,γ)βγ

� � // Y ′α0(β,γ) X ′α0(β,γ)βγ .
oo

where X ′α0(β,γ)βγ → Y ′α0(β,γ) and Yα0(β,γ)βγ → Y ′α0(β,γ) are morphisms of finite

presentation that are P and Nil respectively.
For every α ≥ α0(β, γ) we also let [Yαβγ → Y ′α ← X ′αβγ ] denote the pull-

back along Y ′α → Y ′α0(β,γ). Let I = {(β, γ, α)} be the set of indices such that

α ≥ α0(β, γ). For every finite subset J ⊆ I, we let

Y ′J =
∏

(β,γ,α)∈J

Y ′α, YJ =
∏

(β,γ,α)∈J

Yαβγ , and X ′J =
∏

(β,γ,α)∈J

X ′αβγ

where the products are taken over S. The finite subsets J ⊆ I form a partially
ordered set under inclusion and the induced morphisms:

Y ′ → lim←−
J

Y ′J , Y → lim←−
J

YJ , and X ′ → lim←−
J

X ′J

are closed immersions. Now, let KYJ = ker(OYJ → (gJ)∗OY ) and similarly for
KY ′J

and KX′J
. Note that KY ′J

OYJ ⊆ KYJ and KY ′J
OX′J ⊆ KX′J

. We then let

Λ = {(J,RYJ , RY ′J , RX′J )} where J ⊆ I is a finite subset and RYJ ⊆ KYJ , RY ′J
⊆

KY ′J
and RX′J ⊆ KX′J

are finitely generated ideals such that RY ′J
OYJ ⊆ RYJ and

RY ′J
OX′J ⊆ RX′J . For every λ ∈ Λ we put

Y ′λ = Spec(OY ′J
/RY ′J

), Yλ = Spec(OYJ/RYJ ), and X ′λ = Spec(OX′J/RX′J )

Then [Y → Y ′ ← X ′] = lim←−λ[Yλ → Y ′λ ← X ′λ]. Finally, we take Xλ = X ′λ×Y ′λ Yλ so

that [Y
f←− X i−→ X ′] = lim←−λ[Yλ

fλ←− Xλ
iλ−→ X ′]. Indeed, X = X ′×Y ′ Y and inverse

limits commute with fiber products.
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For the last assertion, we note that all schemes are affine and that there are
exact sequences

0→ Γ(OY ′)→ Γ(OY )× Γ(OX′)→ Γ(OX)→ 0

0→ Γ(OY ′λ)→ Γ(OYλ)× Γ(OX′λ)→ Γ(OXλ)→ 0, ∀λ ∈ Λ.

Note that Y ′λ can be different from Y ′λ. As direct limits of rings are exact it follows
that Y ′ = lim←−Y

′
λ. �

Appendix B. Bootstrapping homogeneity

The following notation will be useful.

Notation B.1. Fix a scheme S and a 1-morphism of S-groupoids Φ: Y → Z.

• If W is a Y ×Z Y -scheme, let (∆Φ)W : DΦ,W →W denote the W -groupoid
obtained by pulling back ∆Φ : Y → Y ×Z Y along W → Y ×Z Y .
• Fix a class P of morphisms of S-schemes. For a P -nil square over S as in

(1.1), let

ΛY,T ′ : Y (T ′)→ Y (V ′)×Y (V ) Y (T )

denote the natural functor.

The following bootstrapping lemma provides a powerful technique to verify con-
dition (HP

1 ) of Definition 1.3.

Lemma B.2. Fix a scheme S, a class P ⊆ Aff of morphisms of S-schemes and
a 1-morphism of S-groupoids Φ: Y → Z. If Z satisfies (HP

1 ), then the following
conditions are equivalent:

(1) Y satisfies (HP
1 );

(2) for every geometric P -nil square over S as in (1.1), ΛY,T ′ is fully faithful;
(3) for every Y ×Z Y -scheme W , the W -groupoid DΦ,W is P -homogeneous.

In addition, if Y and Z are limit preserving Zariski stacks and P is Zariski local,
then these conditions are equivalent to the following:

(4) Φ satisfies condition (3) for all W affine and of finite presentation over S.

In particular, if ∆Y/S is representable by algebraic spaces, then Y satisfies (HAff
1 ).

Condition (3) is not equivalent to P -homogeneity of ∆Φ unless we a priori know
that Y ×Z Y is P -homogeneous—an uninteresting situation.

Proof. For (1) =⇒ (2), fix a geometric P -nil square over S as in (1.1). We must
prove that the functor ΛY,T ′ is fully faithful, that is, if y1 and y2 are two Y -
scheme structures on T ′ such that ΛY,T ′(y1) ∼= ΛY,T ′(y2), then there is a unique
isomorphism of Y -schemes y1

∼= y2. Since Y satisfies (HP
1 ), any Y -scheme structure

on T ′ makes the resulting P -nil square cocartesian (because geometric P -nil squares
over S are cocartesian). The claim follows.

For (2) =⇒ (3), we fix a Y ×Z Y -scheme W . To establish (HP
1 ) for DΦ,W , it is

sufficient to prove that a geometric P -nil square over DΦ,W as in (1.1) is cocartesian.
There is a canonical map T ′ →W and this corresponds to two maps y1, y2 : T ′ → Y
and a 2-isomorphism τ between Φ ◦ y1 and Φ ◦ y2. If Q is a DΦ,W -scheme with
compatible maps from T and V ′, we obtain a map T ′ → Q over W and hence two
maps T ′ → DΦ,W . These two maps correspond to 2-isomorphisms α, β between
y1 and y2 compatible with τ and such that ΛY,T ′(α) = ΛY,T ′(β). Since ΛY,T ′ is
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faithful, we conclude that α = β and hence that the square is cocartesian over
DΦ,W .

To establish (HP
2 ) for DΦ,W , it is sufficient to prove that every P -nil pair over

DΦ,W may be completed to a P -nil square. Clearly, we can complete such a P -nil
pair to a geometric P -nil square over W as in (1.1). It remains to promote T ′ to
a DΦ,W -scheme. However, T ′ →W → Y ×Z Y factors through Y because ΛY,T ′ is
full, ΛZ,T ′ is faithful, and T ′ comes from a P -nil pair over Y . Thus, T ′ lifts to a
DΦ,W -scheme and the claim follows.

For (3) =⇒ (1), we have to prove that a geometric P -nil square over Y as in
(1.1) is cocartesian. Thus, we must prove that if Q is a Y -scheme that fits into the
following P -nil square

V_�

j

��

p // T

a

��
V ′

b // Q,

then there is a unique compatible map of Y -schemes T ′ → Q. Note that since Z
satisfies (HP

1 ), there is a unique Z-morphism T ′ → Q. Thus, it is sufficient to prove
that the two induced Y -scheme structures on T ′ coincide. So we may regard T ′

as a (Y ×Z Y )-scheme and let DΦ,T ′ → T ′ be the pullback of ∆Y/Z to T ′. Since
DΦ,T ′ is P -homogeneous and (V → T, V → V ′) is a P -nil pair over DΦ,T ′ , it follows
that the geometric P -nil square over Y is uniquely a cocartesian P -nil square over
DΦ,T ′ . The claim follows.

Noting [Hal17, Lem. 1.5(7)], the equivalence (4)⇐⇒ (3) is routine. �

The following lemma (cf. [Hal17, Lem. 1.5(4)]) is particularly useful when com-
bined with Lemma B.2.

Lemma B.3. Fix a scheme S and a limit preserving étale S-stack X. Let P be
one of the properties Nil, Cl, rNil, rCl, Int or Aff . If X satisfies (HP

1 ), then the
following conditions are equivalent.

(1) X is P -homogeneous;
(2) ΛX,T ′ is essentially surjective for every geometric P -nil square over S as

in (1.1) where T , V and V ′ are affine;
(3) Condition (2) holds when T , V and V ′ are of finite presentation over S; or
(4) Condition (2) holds when T is the henselization of an affine scheme of finite

presentation over S at a closed point, and V → T , V → V ′ are of finite
presentation;

If in addition P ⊆ Int and S is excellent, then these conditions are equivalent to
the following:

(5) Condition (2) holds when T ′ is the completion of an affine scheme of finite
type over S at a closed point, and V → T is finite.

In particular, if S is locally noetherian then condition (S1′) of [Art74, 2.3] is equiv-
alent to rCl-homogeneity for X.

Proof. Note that ΛX,T ′ is fully faithful (Lemma B.2) so (1) ⇐⇒ (2) by [Hal17,
Lem. 1.5(4)]. Obviously, (2) =⇒ (3), (4) and (5). To see (3) =⇒ (2), as X is a
Zariski stack we may assume that S = SpecR is affine. By Proposition A.3, every

P -nil pair (V
p−→ T, V

j−→ V ′), where T is affine, may be written as an inverse limit
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of P -nil pairs (Vλ
pλ−→ Tλ, Vλ

jλ−→ V ′λ) of finite presentation over S such that Tλ is
affine. Furthermore, T ′ is the inverse limit of the T ′λ, where T ′λ = Tλ qVλ V ′λ. The
assertion then follows from our assumption that X is limit preserving and [Hal17,
Lem. 1.5(4)].

To see (4) =⇒ (3), we fix a geometric P -nil square over S as in (1.1) with the
properties prescribed by (3). On the small flat site T ′fl, we can consider two fibered
categories that are stacks for étale covers. The first, F1, is just the restriction of X.
The second, F2, over a flat morphism U ′ → T ′ has fiber X(V ′ ×T ′ U ′)×X(V×T ′U ′)
X(T ×T ′ U ′). The functor F1 → F2 is fully faithful (Lemma B.2); it remains to
prove that it is locally surjective. Let t ∈ T be a closed point and let Tht denote
the henselization of T at t. This uniquely lifts to a henselization T ′ht of T ′. By
assumption, F1(T ′ht ) ' F2(T ′ht ). Fix η ∈ F2(T ) and let ηht denote its image in
F2(T ′ht ). It follows that there exists η̃ht ∈ F1(T ′ht ) inducing ηht . Since F1 is limit

preserving, η̃ht is induced by some η̃U
′

t ∈ F1(U ′), where (U ′, u) → (T, t) is étale.
Since F1 → F2 is fully faithful and F2 is limit preserving, we can arrange so that
η̃U
′

t agrees ηt|U ′ . The claim follows.
Finally, to see (5) =⇒ (4), we will argue similarly to (4) =⇒ (3). So we fix a

geometric P -nil square over S as in (1.1) with the properties prescribed by (4).
Since P ⊆ Int, this implies that T ′ is also the henselization of an affine scheme of
finite type over S at a closed point; in particular, T ′ is excellent. Defining F1 and
F2 analogously, we obtain a fully faithful morphism of groupoids φ : F1 → F2 over
T ′fl which are stacks for étale covers. Let T̂ ′ be the completion of T ′ at its unique

closed point, by hypothesis we have that F1(T̂ ′) ' F2(T̂ ′). Since T ′ is excellent,

Néron–Popescu desingularization [Pop86] implies that T̂ ′ is an inverse limit of affine
and smooth T ′-schemes. Now argue just as before to deduce the claim. �
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du Bois Marie 1967-69, Lecture Notes in Mathematics 288 and 340, Springer-Verlag,

1972-73.

[Sta06] J. M. Starr, Artin’s axioms, composition and moduli spaces, 2006, arXiv:math/0602646,
p. 19 pages.

[Stacks] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu.

[Wis11] J. Wise, Obstruction theories and virtual fundamental classes, November 2011,
arXiv:1111.4200.

Department of Mathematics, University of Arizona, Tucson, AZ 85721-0089, USA

E-mail address: jackhall@math.arizona.edu

Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stock-

holm, Sweden

E-mail address: dary@math.kth.se

http://arXiv.org/abs/math/0602646
http://stacks.math.columbia.edu
http://arXiv.org/abs/1111.4200

	Introduction
	1. Homogeneity, limit preservation, and extensions
	2. Formal versality and formal smoothness
	3. Vanishing loci for additive functors
	4. Openness of formal versality
	5. Automorphisms, deformations, and obstructions
	6. Relative conditions
	7. Obstruction theories
	8. Conditions on obstructions without an obstruction theory
	9. Effectivity
	10. Proof of Main Theorem
	11. Comparison with other criteria
	Appendix A. Approximation of integral morphisms
	Appendix B. Bootstrapping homogeneity
	References

