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The Balmer spectrum of a tame stack

Jack Hall

Let X be a quasicompact algebraic stack with quasifinite and separated diagonal.
We classify the thick ®-ideals of Dgc(X)¢. If X is tame, then we also compute
the Balmer spectrum of the ®-triangulated category of perfect complexes on X.
In addition, if X admits a coarse space X, then we prove that the Balmer spectra
of X and X are naturally isomorphic.

1. Introduction

Let X be a quasicompact and quasiseparated scheme. Let Perf(X) be the ®-triangu-
lated category of perfect complexes on X. A celebrated result of Thomason [1997,
Theorem 3.15], extending the work of Hopkins [1987, Section 4] and Neeman
[1992a, Theorem 1.5], is a classification of the thick ®-ideals of Perf(X) in terms
of the Thomason subsets of | X |, which are those subsets Y C | X| expressible as a
union Uy Y, such that | X |\ Y, is quasicompact and open.

If X is a quasicompact and quasiseparated algebraic space, Deligne—Mumford
stack, or algebraic stack, then it is also natural to consider the ®-triangulated cate-
gory Perf(X) of perfect complexes on X (see [Hall and Rydh 2014, Section 4] for
precise definitions).

In general, Thomason’s classification of thick ®-ideals of Perf(X) fails for alge-
braic stacks (Example 3.2). If one instead works with the ®-ideal Dy (X)© € Perf(X)
of compact perfect complexes, then the first main result of this article is that the
classification goes through without change.

Theorem 1.1 (classification of thick ®-ideals). If X is a quasicompact algebraic
stack with quasifinite and separated diagonal, then there is a bijective and inclu-
sion preserving correspondence between the thick ®-ideals of Dqc (X)© and the
Thomason subsets of | X|.

Some special cases of Theorem 1.1 are the following:

o If k is a field and G is a finite group, then D”(ProjkG) has no nontrivial
®-ideals.
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« If Y is a quasiprojective scheme over a field k£ with a proper action of an affine
group scheme G, then the thick ®-ideals of D(QCoh%(Y))¢ are in bijective
correspondence with the G-invariant Thomason subsets of X.

The first special case is easy to prove directly and is well-known (for example,
[Benson et al. 2011, Proposition 2.1]). In some sense, this makes our results or-
thogonal to those of [Benson et al. 2011]. The second special case was only known
in characteristic O when Y was normal or quasi-affine [Krishna 2009, Theorem 7.8]
or in characteristic p when G is finite of order prime to p and X is smooth [Dubey
and Mallick 2012, Theorem 1.2].

We prove Theorem 1.1 using tensor nilpotence with parameters (Theorem 2.3),
which extends [Thomason 1997, Theorem 3.8] and [Hopkins 1987, Theorem 10ii]
(compare [Neeman 1992a, 1.1]) to quasicompact algebraic stacks with quasifinite
and separated diagonal. As should be expected, stacks of the form [Y/G], where
Y is an affine variety over a field k and G is a finite group with order divisible by
the characteristic of k, are the most troublesome. This is dealt with in Lemma 2.6,
which relies on some results developed in Appendix A.

If 7 is a ®-triangulated category, then Balmer [2005] has functorially con-
structed from J a locally ringed space Spg,(J), the Balmer spectrum. A fun-
damental result of Balmer [2005, Theorem 5.5], which was extended by Buan,
Krause and Solberg [Buan et al. 2007, Theorem 9.5] to the non-noetherian setting,
is that if X is a quasicompact and quasiseparated scheme, then there is a naturally
induced isomorphism

X — Spg, (Perf(X)).

An algebraic stack is tame if its stabilizer groups at geometric points are finite
linearly reductive group schemes [Abramovich et al. 2008, Definition 2.2]. Every
scheme and algebraic space is tame. Moreover, in characteristic zero, a stack is
Deligne-Mumford if and only if is tame. In characteristic p > 0, there are nontame
Deligne—-Mumford stacks (e.g., Bf » (Z/pZ)) and tame stacks that are not Deligne—
Mumford (e.g., Br,up). Nagata’s theorem [Hall and Rydh 2015, Theorem 1.2] pro-
vides a classification of finite linearly reductive group schemes over fields, which
allows one to determine whether a given algebraic stack is tame. Our definition
of tame stack is substantially weaker than that what appears in [Abramovich et al.
2008, Definition. 3.1] (see Appendix A).

Tame stacks are precisely those stacks with quasifinite diagonal such that the
compact objects of Dgc (X) coincide with the perfect complexes. In particular, for
tame stacks Dgc (X)¢ contains a monoidal unit and so becomes a ®-triangulated
category. Using Theorem 1.1, we extend the result of [Buan et al. 2007] to tame
stacks.
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Theorem 1.2. Let X be a quasicompact algebraic stack with quasifinite and sepa-
rated diagonal. If X is tame, then there is a natural isomorphism of locally ringed
spaces:

(1X1, Oxz,) = Spga (Perf(X)),

where Oy, is the Zariski sheaf U — I'(U, Ox).

Theorem 1.2 implies that the Balmer spectrum cannot be used to reconstruct
locally separated algebraic spaces [Knutson 1971, Example 2]. Balmer [2013] has
recently initiated the study of unramified monoids in ®-triangulated categories and
Neeman [2015] has classified them in the case of a separated noetherian scheme.
It is hoped that a refinement of the Balmer spectrum can be constructed from un-
ramified monoids, which would — at least — permit the reconstruction of algebraic
spaces.

If X is an algebraic stack with finite inertia (e.g., a separated Deligne—Mumford
stack), then X admits a coarse space m : X — X [Keel and Mori 1997; Rydh
2013], which is the universal map from X to an algebraic space. If X has finite
inertia, then X has separated diagonal. Thus we can also establish the following.

Theorem 1.3. Let X be a quasicompact, quasiseparated algebraic stack with finite
inertia and coarse space w : X — Xs. If X is tame, then

SPpa(L7™) : Sppa (Perf(X)) — Spgy (Perf(Xcs))

is an isomorphism of ringed spaces.

Krishna [2009, Theorem 7.10] proved Theorem 1.3 when X is of the form
[W/G], where W is quasiprojective and normal or quasi-affine, and G is a linear
algebraic group in characteristic 0 acting properly on W. Dubey and Mallick [2012,
Theorem 1.2] proved a similar result in positive characteristic, but required W to
be smooth and G a finite group with order not divisible by the characteristic of the
ground field. In particular, Theorem 1.3 is stronger than all existing results and
Theorems 1.1 and 1.2 are new.

Assumptions and conventions. A priori, we make no separation assumptions on
our algebraic stacks. However, all stacks used in this article will be, at the least, qua-
sicompact and quasiseparated. Usually, they will also have separated diagonal. If
X is an algebraic stack, then let | X| denote its associated Zariski topological space
[Laumon and Moret-Bailly 2000, Section 5]. For derived categories of algebraic
stacks, we use the conventions and notations of [Hall and Rydh 2014, Section 1].
In particular, if X is an algebraic stack, then Mod(X) is the abelian category of Ox-
modules on the lisse-€tale site of X and Dgc (X) denotes the unbounded derived
category of Ox-modules with quasicoherent cohomology sheaves. If f: X — Y is
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a morphism of algebraic stacks, then there is always an adjoint pair of unbounded

derived functors

R(fge)x
Dge (X) &—= Dy (V).

qc

If f is quasicompact, quasiseparated and representable, then R( fyc)« agrees with
R f%, the unbounded derived functor of f, : Mod(X) — Mod(Y) [Hall and Rydh
2014, Lemma 2.5(3) and Theorem 2.6(2)]. If f is smooth, then L fci“c agrees with
the unique extension of the exact functor f*: Mod(Y) — Mod(X) to the unbounded
derived category.

2. Tensor nilpotence with parameters

Definition 2.1. Let X be an algebraic stack and let £ : M — N be a morphism
in Dyc (X). Let Z C | X| be a subset. We say that & vanishes at the points of Z if
for every algebraically closed field & and morphism z : Spec k — X that factors
through Z, then Lzzcé is the zero map in Dy (Spec k).

This definition is connected to a more familiar notion for schemes.

Lemma 2.2. Let X be a scheme and let§ : M — N be a morphism in Dy (X). If
Z C |X| is a subset, then & vanishes at the points of Z if and only if & ®(ij Kk(2) is
the zero map in D(k (z)) for every z € Z, where k() denotes the residue field of z.

Proof. We immediately reduce to the situation where X = Spec « and « is a field.
It now suffices to prove that if ¥ C k is a field extension, where k is algebraically
closed, then £ ® k is the zero map in D(k) if and only if £ is the zero map in D(«).
This is obvious. U

If K € Dy (X), then the cohomological support of K is defined to be the subset
supph(K) = {J supp(#"(K)) < |X|.

neZ
For the basic properties of cohomological support, see [Hall and Rydh 2014, Lemma
4.8], which extends [Thomason 1997, Lemma 3.3] to algebraic stacks. The main
result of this section is the following theorem.

Theorem 2.3 (tensor nilpotence with parameters). Let X be a quasicompact alge-
braic stack with quasifinite and separated diagonal. Let  : E — F be a morphism
in Dy (X), where E € Dy (X)“. Let K € Perf(X). If Y vanishes at the points
of supph(K), then there exists a positive integer n such that K ®('5X W) =0in
Dgc (X).

The following example demonstrates that Theorem 2.3 cannot be weakened to
the situation where E € Perf(X).
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Example 2.4. Let X = By, (Z/27), which is a quasicompact, nontame Deligne—
Mumford stack with finite diagonal. Consider the adjunction morphism

n:0x — x,0f,,

where x : SpecF, — X is the usual cover. Since coker(n) = Oy, the cone of 5
induces a natural map v : Ox — Ox[1]. For all positive integers n, ¥®" = 1.
Clearly, ¥ vanishes at the points of | X| (because x*7 is split). If ¢ = ¥®" =0 for
some n, it is easily determined that this implies that Ox € Dy (X)¢, which is false.

Proof of Theorem 2.3. Let E be the category of representable, quasifinite, flat
and separated morphisms of finite presentation over X. Let D C E be the full
subcategory whose objects are those (U 5 x ) such that there exists an integer
n > 0 with p*(K ®gx (¥®")) = 0. It suffices to prove that D = E. By the induction
principle (Theorem B.1), it is sufficient to verify the following three conditions:

1) If (U — W) € E is an open immersion and W € D, then U € D.

(I2) If (V — W) € E is finite and surjective, where V is an affine scheme, then
W eD.

(I3) If (U i> w), (W’ i) W) € E, where j is an open immersion and f is étale
and an isomorphism over W \ U, then W € D whenever U, W' € D.

Now condition (I1) is trivial and condition (I3) is Lemma 2.5. For condition (I12),
by Lemma 2.6, it remains to prove that every affine scheme belongs to D. By
Lemma 2.2 and [Thomason 1997, Lemma 3.14] (or [Neeman 1992a, Lemma 1.2]),
the result follows. U

Lemma 2.5. Consider a 2-cartesian diagram of algebraic stacks

U“L> w’

ol

U——WwW

where W is quasicompact and quasiseparated, j is a quasicompact open immer-
sion and f is representable, étale, finitely presented and an isomorphism over
WA\U. Let  : E — F be a morphism in Dy (W) and let K € Dy (W). For each
integer n > 0, let ¢, = K ®'@W W) If f*¢p, =0 and j*¢, =0, then ¢, =0.

Proof. To simplify notation, we let E,, = K ®('5W E® and F, = K ®gw Fen,
We will argue similarly to [Thomason 1997, Theorem 3.6], but using the Mayer—
Vietoris triangle for étale neighbourhoods of stacks developed in [Hall and Rydh
2014, Lemma 5.7(1)] instead of [Thomason 1997, Lemma 3.5]. Let k = f o j'. By
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[Hall and Rydh 2014, Lemma 5.7(1)], there is a distinguished triangle in Dqc (W):

Fy —— Rjuj* Fy ® Rfx F*Fy —— Rkuk* F, — F,[1].

By applying the homological functor Homg,, (E,, —) to the distinguished triangle
above, we find that there exists a morphism ¢ : E,, — Rk,k*F,[—1] such that
8(t) = ¢n, where § is the boundary map induced by d. But there is a commutative
diagram

(Rkuk* F,[~1]) ®F, E®"

t®Id S@y "
Id ®1/f®n
E ®©W E®n Fn ®(I5W Foen
t®1//®"
\ l %

(Rkyk* Fy[—1]) @5, F®"

so it remains to prove that the vertical map above is zero. To see this, the projection
formula [Hall and Rydh 2014, Corollary 4.12] implies that we have a commutative
diagram

(Rk,k* Fy[—1]) ®5, E®" —— Rk, k*(K ®F, F&" ®%  E®"[—1])
Id ®w®”l Rk*k*(F®”®¢n[—l])l

(Rkok* Fy[—1]) ®F, F®" —— Rk.k*(K @5, F®" ®g, FO'[—1])

Since k*¢,, = 0, the result follows. O

The following lemma is similar to a special case of [Elagin 2011, Theorem 7.3
and Corollary 9.6]. Also, see [Krishna 2009, proof of Proposition 7.6; Dubey and
Mallick 2012, Lemma 3.8].

Lemma 2.6. Let W be an algebraic stack and let v : V — W be a finite and
faithfully flat morphism of finite presentation, where V is an affine scheme. Let
VY . E — F be a morphism in Dgc (W), where E € Dgc (W)“. Let K € Perf(W). If
v*(K ®g, ¥) =0inDqc (V), then K @ ¥ =0 in Dgc (W).

Proof. By [Hall and Rydh 2014, Corollary 4.15], R(vqc)* admits a right adjoint v
and there is a functorial isomorphism v (Ow) ®@V Lv (M) ~v*(M) for every
M € Dy (W). In particular, if v* (K ®@W Y¥)=01in Dgc (V), then v (K ®@W V) =
in Dy (V). By adjunction, it follows that the induced composition

R(vqc)*vX(K ®I6W E)—> K ®I(,§W E— K ®I(,§W F
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vanishes in Dg. (W). Thus it suffices to prove that
R(vqc)*vX(K ®%W E)—> K ®%W E

admits a section. Since E € Dy (W) and K € Perf(W), it follows that K ®€'§W E lies
in Dgc (W), Hence, we need only prove that if M € Dy (W)€, the trace morphism
Trp : R(vge)«v ™ (M) — M admits a section. By Lemma A.1, M is quasi-isomorphic
to a direct summand of R(vgc)« P, where P € Perf(V). Thus we are reduced to
proving that Trr(y,,), p admits a section. This is trivial and the result follows. [

3. The classification of thick ®-ideals

If 7 is a ®-triangulated category and S C 7 is a subset, then define (S)g € T to
be the smallest thick ®-ideal of I containing S.
To prove Theorem 1.1, we require this analogue of [Thomason 1997, Lemma 3.14]:

Lemma 3.1. Ler X be a quasicompact algebraic stack with quasifinite and sepa-
rated diagonal. If P, Q € Dy (X)© and supph(P) C supph(Q), then (P)g C (Q)g.

Proof. Argue exactly as in [Thomason 1997, Lemma 3.14] (cf. [Neeman 1992a,
Lemma 1.2]), but using Theorem 2.3 instead of Thomason’s Theorem 3.8. ]

The following example shows Lemma 3.1 cannot be extended to P, Q € Perf(X)
when X is nontame. It also shows that Thomason’s classification (Theorem 1.1)
does not hold for Perf(X) in this case too.

Example 3.2. Let x : SpecF, — X be as in Example 2.4. Let P = Oy and let
O = x40specr,. Then P, Q € Perf(X) and supph(P) = supph(Q). Note that
QO € Dge (X)¢ and P ¢ Dyc (X)°. Since Dgc (X)€ is a thick ®-ideal of Perf(X),
it follows that (Q)g € Dgc (X)°. Butif (P)g = (Q)g, then P € Dy (X)°. But
P ¢ Dgc (X)€; thus we have a contradiction.

Following Thomason [1997, Theorem 3.15] (or Neeman [1992a, Theorem 1.5]),
given Lemma 3.1, we can prove Theorem 1.1.

Proof of Theorem 1.1. If Y C | X| is a Thomason subset, then define
Iy ={P € Dg. (X)° : supph(P) C Y}.
Clearly, $y is a thick ®-ideal of Dgc (X)°. If J is a thick ®-ideal of Dy (X)¢, then
define
¢(T) = U supph(Q).

QeTJ

By [Hall and Rydh 2014, Lemma 4.8(3)], ¢(J) is a Thomason subset of | X|. It
suffices to prove that $,) = J and ¢($y) =Y.
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Obviously, I C $, 7). For the reverse inclusion, if P € 4, then

supph(P) < J supph(Q).
Q€T
Since supph(P) and supph(Q) are constructible for every O € 7, it follows that
there is a finite subset J C J such that

supph(P) S QU, supph(Q) = supph(ges Q).
(S
By Lemma 3.1, (P)g € (®0csQ)e S T. Thus P € T and Fyq) = T.
Obviously, Y D ¢($y). Since Y is Thomason, it is expressible as a union U, Y,
such that | X |\ Y, is quasicompact and open. By [Hall and Rydh 2014, Theorem A],
for every « there is a compact complex Q, with support Y,,. It follows thatif y € Y,
then y € supph(Qy) C Y for some «. In other words, y € ¢($y), so ¥ =p($y). U

4. The Balmer spectrum of a tame stack

We will prove Theorem 1.2 using [Buan et al. 2007, Proposition 6.1].

Proof of Theorem 1.2. Let s : (| X|, supph) — (| Spgy (Perf(X))|, Gx) be the uniquely
induced morphism of support data, where ox denotes the universal support da-
tum. Since X is tame, it has finite cohomological dimension [Hall and Rydh 2015,
Theorem 2.1(2)]; hence, Dy (X)¢ = Perf(X) [Hall and Rydh 2014, Remark 4.6].
By Theorem 1.1, (|X|, supph) is classifying and by [Laumon and Moret-Bailly
2000, Corollaries 5.6.1 and 5.7.2] we know that | X| is spectral. By [Buan et al.
2007, Proposition 6.1], s is a homeomorphism. By definition, Osp, (perf(x)) 18 the
sheafification of the presheaf

(j : U S X) > Endpers(x), ker(j*)nPerf(x) (*Ox).

Since | X| has a basis consisting of quasicompact open subsets, it is sufficient to
identify Endperf(x)/ ker(j*)nPerf(x) (J*Ox) When j is a quasicompact open immersion.
By [Hall and Rydh 2014, Lemma 6.7(2)], ker(j*) is the localising envelope of a set
of objects with compact image in Dy (X). By Thomason’s localisation theorem
(e.g., [Hall and Rydh 2014, Theorem 3.10] or [Neeman 1992b, Theorem 2.1]),
Perf(U) is the thick closure of Perf(X)/ker(j*) N Perf(X). Since there are natural
isomorphisms

Endperf(x)/ ker(j*)nPerf(x) (J *Ox) = Endperf(y (Oy) = Endg, (Oy) =T'(U, Ox),
the result follows. (]

Proof of Theorem 1.3. Since X has finite inertia, it has separated diagonal. By
[Rydh 2013, Theorem 6.12], = is a separated universal homeomorphism, so X is a
quasicompact and quasiseparated algebraic space. By [Rydh 2013, Theorem 6.12],
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the natural map (| X|, Ox,, ) = (| Xcsl. O(x.,)z.,) 15 an isomorphism of locally ringed
spaces. By Theorem 1.2, the result follows. U

Appendix A: Tame stacks and coarse spaces

We establish here some basic results about R(7rqc)«, where w : X — X is the
coarse space of a quasiseparated algebraic stack X with finite inertia. Our first
result, however, is a useful lemma that characterises the compact objects on a
certain class of algebraic stacks, which includes BG for all finite groups G. This is
likely known, though we are unaware of a reference for this result in the generality
required.

Lemma A.1. Let W be an algebraic stack and let v : V — W be a finite and
faithfully flat morphism of finite presentation, where V is an affine scheme. If
M € Dgc (W)€, then M is quasi-isomorphic to a direct summand of R(vg)« P for
some P € Perf(V).

Proof. If P € Perf(V), then R(vqc)« P € Dgc (W)“ [Hall and Rydh 2014, Corol-
lary 4.15 and Example 3.8]. Thus, let I € Dgc (W) be the subcategory with objects
those N € Dy (W)“ that are quasi-isomorphic to direct summands of R(vgc)« P for
some P € Perf(V). Clearly, J is closed under shifts and direct summands. We
now prove that 7 is triangulated. Thus let f : N/ — N be a morphism in J and
complete it to a distinguished triangle

f ¢

N’ N N’ —25 N'[1].

We now prove that N” € J. By assumption, there are P, P’ € Perf(V) and C,
C’ € Dyc (W)€ and quasi-isomorphisms N @ C 2~ R(vgc)« P, N’ ® C" >~ R(vge)« P’
It follows that there is a distinguished triangle

c@idc 0 0®pern

0
Neoc 2 Nec N'&Ca®Cl —Y N & C1].

where pcipip: C @ C'[1] — C’[1] is the natural projection. In particular, we are
reduced to the situation where N’ = R(vgc)« P’ and N = R(vgc)«P. In this case,
the morphism f : N’ — N by duality induces a morphism f:P - V*R(vge) s P.
It follows that the composition R(vgc)« P’ —f> R(vge)s P — R(vge)« v R(vge)« P is
the map R(vge)« f. Now form a distinguished triangle

P L R P — s K 2 P

Since the morphism R(vgc)« P — R(vge)«v ™ R(vge)« P admits a retraction, there
exista Q € Dy (W) and a quasi-isomorphism R(vge) v R(vge)« P = R(vge)« P @ O.
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There is an induced morphism of distinguished triangles

| R(vge)s f » R(vge) sk R(vge)s8 ,
R(vge)« P" —— R(vge) x v R(vge) « P —— R(vge)« K ——— R(vge)« P[1]

P U

cdid
2 N"® 0~ R(vge), P11

. f®0
R(vge)x P ——— R(vge)« P & Q

It follows that R(vee)«xK >~ N” @ Q and so N” € J. By [Hall and Rydh 2014,
Example 6.5 and Proposition 6.6], Dqc (W) is compactly generated by v,Oy. But
Thomason’s Theorem [Neeman 1992b, Theorem 2.1] implies that Dgc (W)€ is the
smallest thick subcategory containing v,Oy. The result follows. U

Let F : ¥ — J be a triangulated functor between triangulated categories. As-
sume that ¥ and J admit 7-structures. We say that F' is left (resp. right) t-exact if
F($2% € 729 (resp. F(¥=Y) € 7=0)). We say that F is t-exact if it is both left
and right r-exact. The following result was suggested to us by David Rydh.

Theorem A.2. If X be a quasiseparated algebraic stack with finite inertia and
coarse space 7w : X — Xcs, then the restriction of R(1gc)« to Dgc (X)€ is t-exact.

Proof. By [Hall and Rydh 2014, Lemma 1.2(4)], this may be checked étale-locally
on Xs. Thus, we may assume that X is an affine scheme. Since r is a universal
homeomorphism, it follows that X is quasicompact. Also, since X has finite inertia,
it has quasifinite and separated diagonal. By Theorem B.5, there exist morphisms
of algebraic stacks V % w & X such that V is an affine scheme, v is finite, faith-
fully flat and finitely represented and p is a representable, separated and finitely
presented Nisnevich covering. By [Rydh 2013, Proposition 6.5], we may further
assume that p is fixed-point reflecting. We now apply [Rydh 2013, Theorem 6.10]
to conclude that the diagram
w X
Pes

Wcs — Xcs

)4
—

is cartesian and p.s is representable, separated, étale and of finite presentation.
Thus, it suffices to prove the result on W.

Clearly R(mgc)« is left z-exact, so it remains to address the right 7-exactness.
Take M € Dgc (W) N DC?CO(W). By Lemma A.1, we may assume that there exists a
map i : M — R(vgc)« P, where P € Perf(V), that admits a retraction r. It follows
that the composition M N R(vge)« P — t>OR(vqc)*P is the zero map. Therefore
the induced map R(wqgc)«+M — R(a)qc)*r>0R(vqc)*P is the zero map. But v and
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w o v are affine, so there is a natural quasi-isomorphism I>OR(a)qC)*R(vqc)* P~
R(wqe)«T"°R(vgc)« P. The resulting map

r>OR(qu)*M — T>OR(wqc)* R(vqc)*P

is 0 and also coincides with 1:>0R(wqc)* (i), which admits a retraction T >OR(a)qC)* (r).
In particular, t>OR(wqc)*M 2~ 0 and the result follows. O

Abramovich et al. [2008] work with a more restrictive definition of tame, render-
ing the following corollary a tautology. Indeed, they assume that X has finite inertia
and is locally of finite presentation over a base scheme S and that 7 : X — X is
such that 7, is exact on quasicoherent sheaves. In our case, we make none of these
assumptions, rendering it nontrivial.

Corollary A.3. Let X be a quasiseparated algebraic stack with finite inertia and
coarse space @ : X — X¢s. The following are equivalent:

(1) X is tame;

(2) my: QCoh(X) — QCoh(Xy) is exact,
(3) R : DCJ{C (X) — D:{c (X¢s) is t-exact;
(4) R(mge)s : Dge (X) — Dgc (X¢s) is t-exact.

Proof. We begin with some preliminary reductions. The morphism 7 is a separated
universal homeomorphism [Rydh 2013, Theorem 6.12], so X is a quasiseparated
algebraic space and 7 is quasicompact and quasiseparated. Thus by Lemma 1.2(2)
of [Hall and Rydh 2014] we get the implication (3) = (4), and by Theorem 2.6(2)
of the same reference we have that (4) = (3). Clearly, item (1) may be verified after
passing to an affine étale presentation of X5, and similarly for items (2) and (3)
[Hall and Rydh 2014, Lemma 1.2(4) and Lemma 2.2(6)]. We may consequently
assume that X is an affine scheme. Since m has finite diagonal, it has affine
diagonal, so we have (2)<>(3) [Hall et al. 2014, Proposition 2.1]. By [Hall and
Rydh 2015, Theorem C, (1) = (3)], we now obtain that (2) = (1). It remains to
address (1) = (2).

Arguing exactly as in the proof of Theorem A.2, we may further assume that X
admits a finite, faithfully flat and finitely presented cover v: V — X, where V is
an affine scheme. Since X is tame, Ox € Dyc (X). By Theorem A.2, it follows that
the induced morphism Ox — v,0y admits a retraction. If M € QCoh(X), then it
follows immediately that the natural map M — v,v*M admits a retraction. Thus,
if f: M — N is a surjection in QCoh(X), then f is a retraction of the surjection
v, V* f. Since  ov is affine, m, v, v* f is surjective. In particular, 7, f is a retraction
of a surjection, thus is surjective. The result follows. (]
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Appendix B: The induction principle

The induction principle [Stacks 2015, Tag O8GL] for algebraic spaces is closely
related to the étale dévissage results of [Rydh 2011a]. When working with derived
categories, where locality results are often quite subtle, it is often advantageous
to have the strongest possible criteria at your disposal. In this appendix, we will
prove the following induction principle for stacks with quasifinite and separated
diagonal.

Before stating this result, we require some notation. Fix an algebraic stack S.
If Py, ..., P is alist of properties of morphisms of algebraic stacks over §, let
,,,,, p,/s denote the full 2-subcategory of the category of algebraic stacks
over S whose objects are those (x : X — §) such that x has properties P, ..., P,.
The following abbreviations will be used: ét (étale), qff (quasifinite flat), sep (sep-
arated), fp (finitely presented) and rep (representable).

For example, Stackiep sep,qff.fp /s consists of those algebraic stacks x : X — §
such that x is representable, separated, quasifinite flat, and finitely presented. In a
similar way, Stackep sep,¢t,fp/s consists of those algebraic stacks over S, x : X — §,
such that x is representable, separated, étale, and finitely presented. Note that
while every morphism (X’ — X) in Stackiep sep.ét.fp /s 1S Tepresentable, separated,
étale, and finitely presented; in StacKep sep,gff.fp /s they can only be assumed to be
representable, separated, quasifinite, and finitely presented (i.e., there are nonflat
morphisms between objects).

Theorem B.1 (induction principle). Let S be a quasicompact algebraic stack with
quasicompact and separated diagonal. If S has quasifinite diagonal, let

E = StaCkrep,Sep,qff, fp/S>
orif S is Deligne—-Mumford, let
E= StaCkrep,sep,ét,fP /S-

Let D C E be a full subcategory satisfying the following properties:
(1) if (X' — X) € E is an open immersion and X € D, then X' € D;

(I12) if (X' — X) € E is finite, flat, and surjective, where X' is an affine scheme,
then X € D;

I3) if (U EN X)), (X’ 1) X) € E, where j is an open immersion and f is étale and
an isomorphism over X \ U, then X € D whenever U, X' € D.
Then D = E. In particular, S € D.

Proof. Combine Lemma B.3 with Theorem B.5. ([l
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We wish to point out that Theorem B.1 relies on the existence of coarse spaces
for stacks with finite inertia (i.e., the Keel-Mori theorem [Keel and Mori 1997,
Rydh 2013]).

Nisnevich coverings. It will be useful to consider some variants and refinements
of [Krishna and @stvaer 2012, Sections 7-8].

If p: W — X is a representable morphism of algebraic stacks, then a splitting
sequence for p is a sequence of quasicompact open immersions

=X X1 &--CX, =X,

such that p restricted to X; \ X;—;, when given the induced reduced structure,
admits a section for each i = 1,...,r. In this situation, we say that p has a
splitting sequence of length r. An étale and representable morphism of algebraic
stacks p : W — X is a Nisnevich covering if it admits a splitting sequence.

Example B.2. Let X be a quasicompact and quasiseparated scheme. Then there
exists an affine scheme W and a Nisnevich covering p : W — X. Indeed, taking
W = II'_,U;, where the {U;} form a finite affine open covering of X gives the
claim.

The following lemma is proved by a straightforward induction on the length of
the splitting sequence.

Lemma B.3 (Nisnevich dévissage). Let S be a quasicompact and quasiseparated
algebraic stack. Let E be Stackiep ¢ fp /s 07 StacKrep sep.st,fp /s- Let D C E be a full
2-subcategory with the following properties:

(N1) if (X’ — X) € E is an open immersion and X € D, then X' € D;

N2) if (U ER X), (X’ i> X) € E, where j is an open immersion and f is an
isomorphism over X \ U, then X € D whenever U, X' € D.

If p: W — X is a Nisnevich covering in E and W € D, then X € D.
The following lemma will also be useful.
Lemma B.4. Let p : W — X be a Nisnevich covering of algebraic stacks.

(1) If f : X'— X is a morphism of algebraic stacks, then the pull back p': W' — X’
of p along f is a Nisnevich covering.

(2) Let w: W'— W be a Nisnevich covering of finite presentation. If p is of finite
presentation and X is quasicompact and quasiseparated, then pow :W'—X
is a Nisnevich covering.
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Presentations. The following theorem refines [Rydh 2011a, Theorem 7.2] and will
be crucial for the proof of Theorem B.1.

Theorem B.5. Let X be a quasicompact algebraic stack with quasifinite and sep-
arated diagonal. Then there exist morphisms of algebraic stacks

vaSwhx
such that

o V is an affine scheme;
* v is finite, flat, surjective and of finite presentation;
e p is a separated Nisnevich covering of finite presentation.

In addition, if S is a Deligne—Mumford stack, it can be arranged that v is also
étale.

Proof. The proof is similar to [Rydh 2013, Proposition 6.11; 2011a, Theorem 7.3].

By [Rydh 2011a, Theorem 7.1], there is an affine scheme U and a representable,
separated, quasifinite, flat, and surjective morphism u : U — X of finite presen-
tation. Let W = I-I;lb‘;}’f; — X be the subfunctor of the relative Hilbert scheme
parametrising open and closed immersions to U over X. It follows that p : W — X
is étale, representable and separated [Rydh 2011b, Corollary 6.2].

We now prove that p is a Nisnevich covering. To see this, we note that there
exists a sequence of quasicompact open immersions

G=XoC X1 S CX, =X,

such that the restriction of u to Z; = (X; \ X;—1),q fori =1, ..., r is finite, flat
and finitely presented. By definition of p : W — X, it follows immediately that
P |z, admits a section corresponding to u |z and so p is a separated Nisnevich
covering.

Let v: V — W be the universal family, which is finite, flat, surjective and of
finite presentation. Also, V — U is representable, étale and separated [Rydh 2011b,
Corollary 6.2]. Suitably shrinking W, we obtain a separated Nisnevich covering
p: W — X of finite presentation fitting into a 2-commutative diagram

W—X

q

o (B.1)

and ¢ is étale, separated and surjective. By Zariski’s Main Theorem [Laumon and
Moret-Bailly 2000, Theorem A.2], g is quasi-affine. By [Rydh 2013, Theorem 5.3],
W has a coarse space m : W — W, such that W is a quasi-affine scheme and 7 ov
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is affine. By Example B.2 and Lemma B.4, we may further reduce to the situation
where W is an affine scheme. Since 7 o v is affine, the result follows. |
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