
GAGA THEOREMS

JACK HALL

Abstract. We prove a new and unified GAGA theorem. This recovers all

analytic and formal GAGA results in the literature, and is also valid in the

relative and non-noetherian setting. Our method can also be used to establish
various Lefschetz theorems.

1. Introduction

Let X be a noetherian scheme. Frequently associated to X is a flat morphism
of locally ringed spaces:

c : X→ X,

where X is some type of analytic space with coherent structure sheaf. When X is
proper over SpecR, where R is a suitable noetherian ring (usually connected to the
construction of the analytic object X), there is frequently an induced comparison
isomorphism on cohomology of coherent sheaves:

Hi(X,F ) ' Hi(X, c∗F )

and an equivalence of abelian categories of coherent sheaves:

c∗ : Coh(X) ' Coh(X).

Since Serre’s famous paper [GAGA], such results have been called “GAGA the-
orems”. Restricting these comparison isomorphisms and equivalences to specific
subcategories of sheaves (e.g., vector bundles or finite étale algebras) leads to both
local and global “Lefschetz Theorems” [SGA2]. We briefly recall some examples of
these phenomena below.

1.1. Archimedean analytification. AssumeX is locally of finite type over SpecC.
Naturally associated to X is an analytic space Xan. This consists of endowing the
C-points of X with its Euclidean topology and its sheaf of holomorphic functions.
This is the setting of the original GAGA theorem proved by Serre [GAGA]. This
was all generalized to proper schemes over SpecC in [SGA1, XII.4.4] and to proper
Deligne–Mumford stacks in Toën’s thesis [Toë99, 5.10]. Generalizations have re-
cently been developed for higher derived stacks by Porta–Yu [PY16]. There is also
a relative version for projective morphisms, due to Abramovich–Temkin [AT18,
App. C], which we generalize (Example 9.8). Also if X is a scheme, proper over
SpecR, then there is a notion of a real analytification and suitable GAGA results
due to Huisman [Hui02].
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1.2. Formal completion. Let Z ⊆ X be a closed subscheme. Then we may
form the formal completion X̂/Z of X along Z. The locally ringed space X̂/Z has
underlying topological space Z and sheaf of functions the formal power series along
Z; that is, OX̂/Z = lim←−n OX/I

n, where Z = V (I). There are recent variations of

this in the non-noetherian situation due to Fujiwara–Kato [FK13] and the Stacks
Project [Stacks]. This is also the typical setting for local and global Lefschetz
theorems, which have seen recent interest [Kol13, BJ14, Kol16].

1.3. Non-archimedean analytification. Assume X is separated and locally of
finite type over SpecK, where K is a complete non-archimedean field. Then there
are various analytifications associated to X: the Berkovich XBerk, the adic Xadic

[Hub94], and the rigid Xrig. These constructions are all quite different, but all
have equivalent topoi. There is also a GAGA theorem in this context, due to Köpf
[Köp74]. Also, see the work of Conrad [Con06] for a more recent account. In special
situations, there are even analytifications when X is not locally of finite type—this
is the setting of the Fargues–Fontaine curve [FF18].

1.4. Unification. All of these results have previously been proved separately, though
their general strategies are very similar. Indeed, once the cohomology of line bun-
dles on projective space is completely determined (Cartan’s Theorems A & B),
the results are proved directly for projective morphisms. Using Chow’s Lemma, a
dévissage argument is then used to reduce the case of a proper morphism to the
projective situation.

The main theorem of this article is that these GAGA results are true much more
generally and can be put into a single framework. There is no dévissage to the
projective situation and all existing results follow very easily from ours (see §9).
We state one such result in the noetherian situation for locally G-ringed spaces.

Theorem A. Let R be a noetherian ring. Let X be a proper scheme over SpecR.
Let c : X→ X be a morphism of locally G-ringed spaces. Let Xcl be the set of closed
points of X and let Xcl,c = c−1(Xcl). Assume that

(1) OX is coherent;
(2) if F ∈ Coh(X), then ⊕iHi(X,F) is a finitely generated R-module;
(3) c : Xcl,c → Xcl is bijective;
(4) if F ∈ Coh(X) and Fx = 0 for all x ∈ Xcl,c, then F = 0; and
(5) if x ∈ Xcl,c, then OX,c(x) → OX,x is flat and κ(c(x))→ κ(c(x))⊗OX,c(x)OX,x

is an isomorphism.

Then the comparison map:

Hi(X,F )→ Hi(X, c∗F )

is an isomorphism for all coherent sheaves F on X and

c∗ : Coh(X)→ Coh(X)

is an exact equivalence of abelian categories.

Our method is very powerful. Theorem A is a consequence of a general non-
noetherian result (Theorem 8.1), where we do not even need to assume flatness or
properness. In future work, we will address algebraic stacks and their derived coun-
terparts. Our method derives from the innovative approach to the non-noetherian
formal GAGA results proven in the Stacks Project [Stacks, Tag 0DIJ]. This result
also follows from our Theorem 8.1 (see Example 9.7).

http://stacks.math.columbia.edu/tag/0DIJ
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Remark 1.1. Basic properties of completions of noetherian local rings show that
Theorem A(5) is implied by:

(5’) if x ∈ Xcl,c, then OX,x is noetherian and the morphism OX,c(x) → OX,x

induces an isomorphism on maximal-adic completions.

While it is possible to state a version of Theorem A for algebraic spaces, this
requires a discussion of points in henselian topoi. While these have been discussed
elsewhere [Con10], we felt that this would be a significant detour. We instead prove
Theorem 9.1, which should be just as easy to apply as Theorem A in practice.

Applying Theorem A to a quasi-compact and separated morphism of schemes
c : Y → X, a short argument using Corollary 3.10 shows that c is an isomorphism.
This is what we should expect from the Gabriel spectrum [Gab62]: every exact
equivalence F : Coh(X) → Coh(Y ) that sends OX to OY is of the form c∗ for a
unique isomorphism of schemes c : Y → X. We also wish to point out that the
conditions of Theorem A are essentially necessary (see Remark 9.3).

In fact, our techniques are so malleable, we can even prove Lefschetz-style theo-
rems as below.

Theorem B. Let X be a quasi-compact and quasi-separated algebraic space. Let
c : X → Xét be a morphism of ringed topoi and i : Z ↪→ X a closed immersion.
Assume

(1) X − Z is quasi-affine,
(2) OX is coherent or i∗OZ is perfect,
(3) c and i are tor-independent,
(4) D−pc(Xét, i∗OZ) ' D−pc(X, c∗i∗OZ),

(5) H0(X,OX) ' H0(X,OX) and H1(X,OX) ↪→ H1(X,OX).

Then the comparison map:

H0(X,F )→ H0(X, c∗F )

is an isomorphism for all vector bundles F on X and

c∗ : Vect(X)→ Vect(X)

is fully faithful.

We will see in Theorem 2.1 that Theorem B implies the full faithfulness of the
analytification functor for vector bundles on the Fargues–Fontaine curve [FF18,
KL16]. Also see Theorem 9.9 for a variant of [BJ14, §1].

Theorem B is a special case of a more general result (Theorem 6.1) that does
not even require tor-independence and also compares the higher cohomology groups.
Essential surjectivity results along the lines of Theorem B are much more subtle.
Certainly, some follow readily from our general GAGA result (Theorem 9.1). Lack-
ing a good localization and support theory for analytic sheaves makes more general
results difficult to come by (see Remark 2.2). There are of course well-established
techniques to handle related problems—that continue to be developed to this day—
using methods from commutative algebra.

The following technical question arose in this work. It would be nice to have a
conclusive answer.

Question 1.2. Let X be a quasi-compact and separated algebraic space. Let i : Z ↪→
X be a closed immersion. What conditions on X and Z guarantee the existence of
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a perfect complex P on X such that P lies in the thick closure of D−pc(Z) in Dqc(X)
and has support |Z|?

In Lemma 3.4, we prove that if OX is coherent then there is always a P as
in Question 1.2. This is sufficient for our intended applications. It is certainly
necessary that the complement of Z in X is quasi-compact.

Acknowledgements. It is a pleasure to thank Amnon Neeman and David Rydh
for several supportive and useful discussions. We also wish to thank Bhargav Bhatt
and Brian Conrad for some helpful comments and suggestions on a draft.

2. Special cases

In this section we will establish Theorems A and B in some special cases, where
certain optimizations can be made. We do this to advertise the simplicity of the
core argument and illustrate the general strategy.

2.1. GAGA. Here we will prove Theorem A when R is assumed to be a field k
and X → Spec k is a smooth projective morphism. We will further assume that X

is a locally ringed space and that c is flat and bijective on closed points.
We will be concerned with the triangulated categories DbCoh(X) and DbCoh(X). The

objects of these categories are bounded complexes of OX -modules and OX-modules,
respectively, with coherent cohomology sheaves. Since the morphism c : X → X is
flat, there is a derived pullback functor

c∗ : DbCoh(X)→ DbCoh(X).

Our first observation is that condition (2) implies that this functor admits a right
adjoint c∗ : DbCoh(X) → DbCoh(X). This is a non-trivial result, but it is a simple
consequence of a theorem of Bondal and van den Bergh [BB03, Thm. 1.1] that we
will now briefly explain. Let M ∈ DbCoh(X) and consider the cohomological functor

FM : DbCoh(X)◦ → Vect(k) : P 7→ HomOX
(c∗P,M).

Since X is smooth, its local rings are regular. In particular, if P ∈ DbCoh(X), then
P is a perfect complex. Hence, c∗P is a perfect complex and

FM(P ) = HomOX
(c∗P,M) ' HomOX

(OX, c
∗(P∨)⊗L

OX
M) ' H0(RΓ(X, c∗(P∨)⊗L

OX
M)),

where P∨ = RHomOX (P,OX) is the dual of P . Now c∗(P∨) is also a perfect
complex and so c∗(P∨) ⊗L

OX
M ∈ DbCoh(X). It now follows easily from condition

(2) that ⊕iFM(P [i]) is a finite-dimensional k-vector space. This means that the
cohomological functor FM is of finite type and [BB03, Thm. 1.1] implies that there
is an M ∈ DbCoh(X) such that FM(P ) ' HomOX (P,M) for all P ∈ DbCoh(X).
Standard properties of adjoint functors show that the assignment M 7→ M defines
a right adjoint c∗ : DbCoh(X)→ DbCoh(X) to c∗ : DbCoh(X)→ DbCoh(X).

Our next observation is the following: if P ∈ DbCoh(X) and M ∈ DbCoh(X), then
there is always a projection formula:

(c∗M)⊗L
OX

P ' c∗(M⊗L
OX

c∗P ).

This follows from the smoothness of X (so every object of DbCoh(X) is perfect and
dualizable) and abstract nonsense about adjoints and dualizables (see Lemma 4.3).

For the full faithfulness of c∗, it is sufficient to prove that ηN : N → c∗c
∗N is a

quasi-isomorphism for all N ∈ DbCoh(X). Let HN be a cone of ηN . By Nakayama’s
Lemma, it is sufficient to prove that HN ⊗L

OX
κ(y) ' 0 for all closed points y ∈ X.
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Fix a closed point y ∈ X. The projection formula shows that HN ⊗L
OX

κ(y) '
HN⊗L

OX
κ(y). But N ⊗L

OX
κ(y) is just a direct sum of shifts of κ(y). Hence, we

are reduced to proving that ηκ(y) is a quasi-isomorphism. An elementary argument

using stalks shows that c∗κ(y) ' κ(x) in DbCoh(X) for some unique closed point
x ∈ X (see the proof of Theorem A). Thus, it remains to prove that κ(y)→ c∗κ(x)
is a quasi-isomorphism. If y′ 6= y is a closed point, then again there is a unique
closed point x′ ∈ X such that c∗κ(y′) ' κ(x′) in DbCoh(X). The projection formula
shows us that:

(c∗κ(x))⊗L
OX

κ(y′) ' c∗(κ(x)⊗L
OX

κ(x′)) ' 0.

It follows that c∗κ(x) is supported only at y. In particular, we can determine c∗κ(x)
from its global sections. But

RΓ(X, c∗κ(x)) = RHomOX (OX , c∗κ(x)) ' RHomOX
(OX, κ(x)) ' RΓ(X, κ(x)) ' κ(x).

Since κ(y)→ κ(x) is an isomorphism, we conclude that ηκ(y) is a quasi-isomorphism
and c∗ is fully faithful.

For the essential surjectivity of c∗ : DbCoh(X) → DbCoh(X), let M ∈ DbCoh(X). Set
M = c∗M ∈ DbCoh(X). We will prove that M algebraizes M; that is, the adjunction
εM : c∗c∗M → M is a quasi-isomorphism. Let EM be a cone for εM. Again by
Nakayama’s Lemma, it is sufficient to prove that EM ⊗L

OX
κ(x) ' 0 for all closed

points x ∈ X. Now we have already seen that if x ∈ X is closed, then κ(x) ' c∗κ(x′)
for a unique closed point x′ of X. In particular, it follows that it is sufficient to
prove that EM ⊗L

OX
c∗κ(x′) ' 0 for all closed points x′ of X. But the projection

formula shows that we have quasi-isomorphisms:

(c∗c∗M)⊗L
OX

c∗κ(x′) ' c∗(c∗M⊗L
OX

κ(x′)) ' c∗c∗(M⊗L
OX

c∗κ(x′)).

It follows immediately that EM⊗L
OX
c∗κ(x′) ' EM⊗L

OX
c∗κ(x′). Again, M⊗L

OX
c∗κ(x′)

is just a finite direct sum of shifts of c∗κ(x′). Hence, it remains to prove that
c∗c∗c

∗κ(x′)→ c∗κ(x′) is a quasi-isomorphism. But we’ve already seen that κ(x′)→
c∗c
∗κ(x′) is a quasi-isomorphism, and the result follows.
Note that the full faithfulness of c∗ : DbCoh(X) → DbCoh(X) implies the cohomo-

logical comparison result. Indeed, if F ∈ Coh(X), then

Hi(X,F ) ' HomOX (OX , F [i]) ' HomOX
(c∗OX , c

∗F [i])

' HomOX
(OX, c

∗F [i]) ' Hi(X, c∗F ).

2.2. Lefschetz. We will prove the following variant of Theorem B, which is suffi-
cient to establish the full-faithfulness of the analytification of vector bundles on the
Fargues–Fontaine curve, which is a regular noetherian scheme of dimension 1 that
is universally closed and separated but not locally of finite type over SpecQp.

Theorem 2.1. Let X be a regular noetherian scheme of dimension 1. Let c : X→
X be a morphism of locally ringed spaces. Let x ∈ X be a closed point. Assume

(1) U = X − {x} is quasi-affine;
(2) c−1(x) consists of a single point y;
(3) OX,x → OX,y is flat and κ(x)→ κ(x)⊗OX,x OX,y is an isomorphism; and

(4) H0(X,OX) ' H0(X,OX) and H1(X,OX) ↪→ H1(X,OX).

Then the comparison morphism:

H0(X,F )→ H0(X, c∗F )
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is an isomorphism for all vector bundles F on X.

Proof. With no finiteness at our disposal, we have to work with unbounded derived
categories of sheaves. Specifically, we consider the adjoint pair:

Lc∗ : Dqc(X) � D(X) : Rcqc,∗.

These will be discussed in great detail in §4. If N ∈ Dqc(X), then we have the
adjunction ηN : N → Rcqc,∗Lc

∗N ; let QN denote a cone for this morphism. We
must prove that if F is a vector bundle on X, then τ≤0QF ' 0. Observe that the
projection formula implies that for a coherent sheaf N on X we have QOX⊗L

OX
N '

QN (this is because X is regular, so N is perfect). Set Q = QOX ; hence, it suffices
to prove that τ≤0QOX ' 0. Conditions (2) and (3), just like in the previous
section, combine to show that Q⊗L

OX
κ(x) ' 0. Now let j : U ↪→ X be the resulting

open immersion; then localization theory (e.g., [HR17b, Ex. 1.4]) now implies that
Q ' Rj∗Lj

∗Q. But U is quasi-affine, so it follows that τ≤0Q ' 0 if and only if
τ≤0RΓ(X,Q) ' 0. We now have the long exact sequence:

0→ H0(X,Q)→ H0(X,OX)→ H0(X,OX)→ H0(X,Q)→ H1(X,OX)→ H1(X,OX).

Certainly, τ<−1Q ' 0, so we have H−1(X,Q) ' H0(X,H−1(Q)). But H0(X,OX) '
H0(X,OX), so H0(X,H−1(Q)) = 0 and H−1(Q) ' 0. Hence, H0(X,Q) ' H0(X,H0(Q)).
The injection H1(X,OX)→ H1(X,OX) allows us to conclude that H0(Q) ' 0 too.
The result follows. �

Remark 2.2. Assume that we are in the situation of Theorem 2.1. Let Xcl be the set
of closed points of X and let Xcl,c = c−1(Xcl). Additionally, assume the following:

(5) c∗ preserves direct limits of OX-modules; and
(6) X has the following property: given a direct system of vector bundles with

injective transition maps {En}n≥0 such that lim−→n
En ⊗OX

κ(y) ' 0 and

lim−→n
Γ(X,En) ' 0, then En = 0 for all n.

Condition (6) holds if X is a scheme (by support theory), but in the adic/analytic
setting seems difficult (or false). We sketch an argument that the conditions above
imply that cqc,∗ is conservative on vector bundles; this is not quite enough to deduce
that c∗ : Vect(X)→ Vect(X) is an equivalence, but it is very close. If V ∈ Vect(X),
consider V⊗OX

c∗j∗OU . Observe that j∗OU = lim−→n
Ln, where L = ker(OX → κ(x)).

By the projection formula, cqc,∗(V ⊗OX
c∗j∗OU ) ' cqc,∗(V) ⊗OX j∗OU . Now take

En = V⊗OX
c∗Ln; then

lim−→
n

En ⊗ κ(y) ' V⊗OX
c∗(j∗OU ⊗OX κ(x)) ' 0.

Now if cqc,∗(V) ' 0, then it follows immediately from the projection formula calcu-
lation above that lim−→n

Γ(X,En) = 0 too. By (6), En = 0 for all n; hence, V = 0.

3. A finiteness result

Our first task is to consider a variant of the finiteness result [BB03, Thm. 1.1] for
non-noetherian algebraic spaces. This was recently established in the noetherian
case in [BZNP17] and in general in [Stacks], where it is formulated in terms of
pseudo-coherence [SGA6]. Since the non-noetherian situation will be important to
us, we will briefly recall these ideas.

Let B be a ring. A bounded complex of finitely generated and projective B-
modules is called strictly perfect. Let m ∈ Z. A complex of B-modules M is
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m-pseudo-coherent if there is a morphism φ : P →M such that P is strictly perfect
and the induced morphism Hi(φ) : Hi(P ) → Hi(P ) is an isomorphism for i > m
and surjective for i = m. A complex of B-modules M is pseudo-coherent if it is
m-pseudo-coherent for all integers m ∈ Z; equivalently, it is quasi-isomorphic to
a bounded above complex of finitely generated and projective B-modules [Stacks,
Tag 064T]. These conditions are all stable under derived base change [Stacks, Tag
0650] and are flat local [Stacks, Tag 068R].

We let D−pc(B) denote the full triangulated subcategory of the derived cate-
gory of B-modules, D(B), with objects those complexes of B-modules that are
quasi-isomorphic to a pseudo-coherent complex of B-modules. We let Dbpc(B) ⊆
D−pc(B) be the triangulated subcategory of objects with bounded cohomological
support. If B → C is a ring homomorphism, then derived base change induces
− ⊗L

B C : D−pc(B) → D−pc(C). If C has finite tor-dimension over B (e.g., C is B-
flat), then the derived base change sends bounded pseudo-coherent complexes to
bounded pseudo-coherent complexes.

The above generalizes to ringed sites [Stacks, Tag 08FS]. Let X be a ringed site.
A complex of OX-modules is strictly perfect if it is bounded and each term is a
direct summand of a finitely generated and free OX-module [Stacks, Tag 08FL].

Example 3.1. Let X be an algebraic space. If i : D ⊆ X is a Cartier divisor, then
i∗OD ∈ Dqc(X) is perfect. More generally, if i : Z ↪→ X is a regular embedding
(i.e., i is locally the zero locus of a regular section of a vector bundle), then i∗OZ ∈
Dqc(X) is perfect. Also, if X is quasi-compact and quasi-separated and j : U ⊆ X
is a quasi-compact open immersion, then there is a perfect complex P ∈ Dqc(X)
whose cohomological support is precisely X \ U [HR17a, Thm. A].

Let m ∈ Z. A complex of OX-modules M is m-pseudo-coherent if locally on
X there is a morphism φ : P → M such that P is strictly perfect and the induced
morphism Hi(φ) : Hi(P)→ Hi(M) is an isomorphism for i > m and surjective for
i = m. A complex of OX-modules is pseudo-coherent if it is m-pseudo-coherent for
every m ∈ Z.

Let D−pc(X) denote the full triangulated subcategory of D(X), the unbounded
derived category of OX-modules, with objects those complexes that are quasi-
isomorphic to a bounded above pseudo-coherent complex. We let Dbpc(X) ⊆ D−pc(X)
be the full triangulated subcategory of objects with bounded cohomological support.
If c : X→ X is a morphism of ringed sites, then the restriction of Lc∗ : D(X)→ D(X)
to D−pc(X) factors through D−pc(X) [Stacks, Tag 08H4]. Moreover, if c has finite tor-
dimension (e.g., it is flat), then Lc∗ preserves bounded complexes.

Example 3.2. Perfect complexes on sites (i.e., complexes that are locally strictly
perfect) are pseudo-coherent. In particular, vector bundles of finite rank are pseudo-
coherent.

Example 3.3. Let X be a ringed site with a coherent structure sheaf. For example,
a locally noetherian algebraic space or an analytic space. Let ∗ ∈ {−, b}. Then
D∗pc(X) = D∗Coh(X); that is, a complex M ∈ D(X) is pseudo-coherent if and only
if it is quasi-isomorphic to a bounded above complex of sheaves with coherent
cohomology [SGA6, Cor. I.3.5].

The following lemma improves upon those given in Example 3.1 in the coherent
situation. To state this lemma, we recall the following definition [Nee01, §2.1].

http://stacks.math.columbia.edu/tag/064T
http://stacks.math.columbia.edu/tag/0650
http://stacks.math.columbia.edu/tag/068R
http://stacks.math.columbia.edu/tag/08FS
http://stacks.math.columbia.edu/tag/08FL
http://stacks.math.columbia.edu/tag/08H4
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Let T be a triangulated category. A subcategory S ⊆ T is thick (or épaisse) if it
is triangulated and is closed under direct summands. If S ⊆ T is a collection of
objects, we let 〈S〉 ⊆ T denote the thick closure of S; that is, it is the smallest thick
triangulated subcategory of T containing S.

Lemma 3.4. Let X be a quasi-compact and quasi-separated algebraic space. Let
i : Z ↪→ X be a finitely presented closed immersion. Let

Dbpc,|Z|(X) = ker(Lj∗ : Dbpc(X)→ Dbpc(U)),

where j : U → X is the open immersion complementary to i : Z → X. If OX is
coherent, then 〈Ri∗Dbpc(Z)〉 = Dbpc,|Z|(X).

Proof. Clearly, Ri∗D
b
pc(Z) ⊆ Dbpc,|Z|(X). Since Dbpc,|Z|(X) is a thick subcate-

gory of Dbpc(X), it follows that 〈Ri∗Dbpc(Z)〉 ⊆ Dbpc,|Z|(X). For the reverse in-

clusion, by induction on the length of a complex, it is sufficient to prove that
if M ∈ Coh|Z|(X) = ker(j∗ : Coh(X) → Coh(U)) then M ∈ 〈Ri∗Dbpc(Z)〉. Let
I = ker(OX → i∗OZ). By [HR16, Lem. 2.5(i)], it follows that there exists an integer
n > 0 such that In+1M = 0. Hence, M admits a finite filtration by i∗OZ-modules
and so belongs to 〈Ri∗Dbpc(Z)〉. �

Let A be a ring. A B-algebra A is pseudo-coherent if it admits a surjection
from a polynomial ring φ : A[x1, . . . , xn] � B such that B is a pseudo-coherent
A[x1, . . . , xn]-module. Pseudo-coherence is stable under flat base change on A and
is étale local on B. See [Stacks, Tag 067X] for more background material. This
definition generalizes readily to morphisms of algebraic spaces [Stacks, Tag 06BQ].
We now recall some examples that will be important to us.

Example 3.5. Let A be a noetherian ring. If X → SpecA is a locally of finite
type morphism of algebraic spaces, then it is pseudo-coherent [Stacks, Tag 06BX].

Example 3.6. Let A be a ring. If X → SpecA is a flat and locally of finite
presentation morphism of algebraic spaces, then it is pseudo-coherent [Stacks, Tag
06BV].

Example 3.7. Let A be a universally cohesive ring. That is, every finitely pre-
sented A-algebra is a coherent ring. The standard example is an a-adically complete
valuation ring; for example, A = OCp , the ring of integers in the p-adically com-
pleted algebraic closure of Qp, Cp. If X → SpecA is a locally of finite presentation
morphism of algebraic spaces, then it is pseudo-coherent. This is the setting for
Fujiwara–Kato’s formalism of rigid geometry [FK13].

The main result of this section is the following small refinement of [Stacks,
Tag 0CTT].

Theorem 3.8. Let A be a ring. Let X → SpecA be a quasi-compact, sepa-
rated, and pseudo-coherent morphism of algebraic spaces. Let M ∈ Dqc(X). If
RHomOX (P,M) ∈ D(A) is pseudo-coherent (pseudo-coherent and bounded) for all
perfect complexes P , then M is pseudo-coherent (pseudo-coherent and bounded).

Proof. It is sufficient to prove that the condition implies that RΓ(X,E ⊗L
OX

M) ∈
D(A) is pseudo-coherent for all pseudo-coherent E on X. Indeed, pseudo-coherent
morphisms are locally finitely presented, so M is pseudo-coherent relative to A

http://stacks.math.columbia.edu/tag/067X
http://stacks.math.columbia.edu/tag/06BQ
http://stacks.math.columbia.edu/tag/06BX
http://stacks.math.columbia.edu/tag/06BV
http://stacks.math.columbia.edu/tag/0CTT
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[Stacks, Tag 0CTT]. Since X → SpecA is pseudo-coherent, M is pseudo-coherent
on X [Stacks, Tag 0DHQ]. The boundedness result is [BZNP17, Lem. 3.0.14].

We begin by observing that if P ∈ Dqc(X) is perfect, then RHomOX (P∨,M) '
RΓ(X,P ⊗L

OX
M) ∈ D(A), which is pseudo-coherent by assumption. Now there

exists an integer n such that Hr(X,N) = 0 for all r > n and N ∈ QCoh(X)
[Stacks, Tag 073G]. By [LO08, Rem. 2.1.11], τ≥mRΓ(X,G) ' τ≥mRΓ(X, τ≥lG) for
all m ∈ Z, l ≤ m − n, and G ∈ Dqc(X). Let E ∈ Dqc(X) be pseudo-coherent and
fix m ∈ Z. Let j ∈ Z be such that τ>jM ' 0 and τ>jE ' 0. Choose a perfect
complex P ∈ Dqc(X) and morphism φ : P → E such that τ≥acone(φ) ' 0, where
a = m− n− j [Stacks, Tag 08HP]. Then

τ≥mRΓ(X,E ⊗L
OX

M) ' τ≥mRΓ(X, τ≥m−n(E ⊗L
OX

M))

' τ≥mRΓ(X, τ≥m−n((τ≥m−n−jE)⊗L
OX

M))

' τ≥mRΓ(X, τ≥m−n((τ≥m−n−jP )⊗L
OX

M)

' τ≥mRΓ(X, τ≥m−n(P ⊗L
OX

M))

' τ≥mRΓ(X,P ⊗L
OX

M).

We have already seen that RΓ(X,P ⊗L
OX

M) ∈ D(A) is pseudo-coherent, and the
claim follows. �

Remark 3.9. Theorem 3.8 has a converse if X → SpecA is proper. If M is pseudo-
coherent (resp. pseudo-coherent and bounded) and P is perfect, then RHomOX (P,M) '
RΓ(X,P∨⊗L

OX
M). Replacing M by P∨⊗L

OX
M , it suffices to prove that RΓ(X,−)

sends pseudo-coherent complexes to pseudo-coherent complexes. If A is noetherian,
this is just the usual coherence theorem for algebraic spaces [Knu71, Thm. IV.4.1].
If X is a scheme and A is not necessarily noetherian, this is Kiehl’s Finiteness The-
orem [Kie72, Thm. 2.9]. If X → SpecA is flat, this is in the Stacks Project [Stacks,
Tag 0CSC]. If A is universally cohesive, then this is due to Fujiwara–Kato [FK13,
Thm. 8.1.2]. Using derived algebraic geometry, the argument given in the Stacks
Project readily extends to the general (i.e., non-flat) situation; that is, a version of
Kiehl’s finiteness theorem for algebraic spaces. This is done by Lurie in [SAG].

As noted in [BZNP17, Rem. 3.0.6], it is Theorem 3.8 that fails miserably for
algebraic stacks with infinite stabilizers. In future work, we will describe a variant
of Theorem 3.8 for a large class of algebraic stacks with infinite stabilizers that is
sufficient to establish integral transform and GAGA results.

We conclude this section with a simple corollary of Theorem 3.8. Variants of this
are well-known (see [Lip09, Ex. 4.3.9] and [Ryd14] in the finite type noetherian, but
non-separated situation).

Corollary 3.10. Let A be a universally cohesive ring (e.g., noetherian). Let X →
SpecA be a quasi-compact and separated morphism of algebraic spaces. If RΓ(X,−)
sends Dbpc(X) to Dbpc(A), then X → SpecA is proper and of finite presentation.

Proof. By absolute noetherian approximation [Ryd15], there is an affine morphism
a : X → X0, where X0 is a separated and finitely presented algebraic space over
SpecA. Using Nagata’s compactification theorem for algebraic spaces [CLO12],
a blow-up, and absolute noetherian approximation again, we may further assume
that X0 → SpecA is proper and finitely presented. Since A is universally cohesive,

http://stacks.math.columbia.edu/tag/0CTT
http://stacks.math.columbia.edu/tag/0DHQ
http://stacks.math.columbia.edu/tag/073G
http://stacks.math.columbia.edu/tag/08HP
http://stacks.math.columbia.edu/tag/0CSC
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OX0
is coherent. Now let P ∈ Dqc(X0) be a perfect complex; then

RHomOX0
(P, a∗OX) = RHomOX (La∗P,OX) = RΓ(X, La∗P∨) ∈ DbCoh(A).

Hence, Theorem 3.8 implies that a∗OX ∈ Coh(X0). That is, a is finite and finitely
presented. By composition, X → SpecA is proper and of finite presentation. �

4. Adjoints

Throughout we let X be an algebraic space. Consider a morphism of ringed topoi
c : X→ Xét. There is an adjoint pair on the level of unbounded derived categories

Lc∗ : D(X) � D(X) : Rc∗.

The inclusion Dqc(X) ⊆ D(X) is fully faithful and also admits a right adjoint, the
quasi-coherator RQX : D(X)→ Dqc(X). It follows immediately that

(1) the restriction of Lc∗ to Dqc(X) is left adjoint to RQXRc∗; and
(2) ifM ∈ Dqc(X), then the natural mapM → RQX(M) is a quasi-isomorphism.

We will let

Lc∗ : Dqc(X) � D(X) : Rcqc,∗

denote the resulting adjoint pair. Let M ∈ Dqc(X) and N ∈ D(X). Let

ηM : M → Rcqc,∗Lc
∗M and εN : Lc∗Rcqc,∗N→ N

denote the morphisms resulting from the adjunctions.
We now use Theorem 3.8 to show that Rcqc,∗ frequently preserves pseudo-coherence.

Proposition 4.1. Let A be a ring. Let X → SpecA be a quasi-compact, separated,
and pseudo-coherent morphism of algebraic spaces. Let c : X→ Xét be a morphism
of ringed topoi. Let ∗ ∈ {b,−}. If RΓ(X,−) sends D∗pc(X) to D∗pc(A), then the
restriction of Rcqc,∗ to D∗pc(X) factors through D∗pc(X).

Proof. Let M ∈ D∗pc(X) and let P ∈ Dqc(X) be perfect. Then Lc∗P∨ ∈ Dqc(X) is

perfect, so M⊗L
OX

Lc∗P ∈ D∗pc(X). Hence,

RHomOX (P,Rcqc,∗M) ' RHomOX (Lc∗P,M) ' RΓ(X, Lc∗P∨ ⊗L
OX

M) ∈ D∗pc(A).

By Theorem 3.8, Rcqc,∗M ∈ D∗pc(X). �

Remark 4.2. A variant of Proposition 4.1 that is valid for finite type cohomolog-
ical functors for proper schemes over noetherian bases, which generalizes [BB03,
Thm. 1.1], appears in [Nee18].

We now return to our general discussion. The categories Dqc(X) and D(X) are
symmetric monoidal and the derived pullback Lc∗ is strong monoidal. This lets us
apply the formalism in Appendix A to our situation. We record some consequences
here.

Lemma 4.3. If M ∈ Dqc(X) and N ∈ D(X), then there is a natural projection
morphism

πM,N : M ⊗L
OX

(Rcqc,∗N)→ Rcqc,∗(Lc
∗M ⊗L

OX
N).

This is an isomorphism if M is perfect or OX is a compact object of D(X).
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Proof. If M is perfect, then it is a dualizable object of Dqc(X) [HR17a, Lem. 4.3].
Hence, the projection morphism is an isomorphism in this case by Theorem A.8.
If OX is a compact object of D(X), then Lc∗ : Dqc(X) → D(X) preserves compact
objects [HR17b, Lem. 2.3(2)], so its right adjoint Rcqc,∗ preserves small coproducts
[Nee96, Thm. 5.1]. Hence, the full subcategory of Dqc(X) consisting of those M
for which πM,N is an isomorphism is localizing and contains the perfect complexes.
By Thomason’s localization theorem [Nee96, Thm. 2.1.2], the result follows. �

Remark 4.4. The condition that OX is a compact object of D(X) is subtle, but
frequently satisfied. A useful criterion is [Stacks, Tag 094D], which shows that it is
sufficient for cohomology of abelian sheaves on X to commute with filtered colimits
and have finite cohomological dimension. It follows that OX is a compact object of
D(X) whenever

(1) X is equivalent to the topos of a noetherian topological space of finite Krull
dimension (Grothendieck’s Theorem, see [Gro57, Thm. 3.6.5] and [Stacks,
Tag 02UZ]);

(2) X is equivalent to the topos of a spectral topological space of finite Krull
dimension (this generalizes the above, see [Sch92, Thm. 4.5] and [Stacks,
Tag 0A3G];

(3) X is equivalent to the topos of a compact Hausdorff space of finite cohomo-
logical dimension (e.g., it has finite covering dimension).

5. Equivalences

In this section, the following setup will feature frequently.

Setup 5.1. Let X be an algebraic space. Let c : X→ Xét be a morphism of ringed
topoi. Let A be a quasi-coherent sheaf of OX -algebras. Let Z and Z be the
ringed topoi (Xét,A) and (X, c∗A), respectively. There is an induced 2-commutative
diagram of ringed topoi:

Z
cZ //

i′

��

Z

i

��

X
c // Xét.

Assume that
Lc∗Z : D−pc(Z)→ D−pc(Z)

is an equivalence.

Remark 5.2. In Setup 5.1, if Z̃ denotes the algebraic space defined by the quasi-
coherent sheaf of algebras A, then there is a natural equivalence Dqc(Z) ' Dqc(Z̃)
[HR17a, Cor. 2.7]. This equivalence restricts to one on pseudo-coherent complexes.

Remark 5.3. In practice, the equivalence Lc∗Z in Setup 5.1 is often quite easy to
check. For example, when the underlying topoi of X and Xét are equivalent and
A→ A⊗OX OX is an isomorphism of OX -algebras. This always the case when c is
a formal completion along a closed immersion.

The following two lemmas provide a sanity check in Setup 5.1.

Lemma 5.4. Assume Setup 5.1. The restriction of RcZ,qc,∗ to D−pc(Z) induces an
equivalence:

Lc∗Z : D−pc(Z) � D−pc(Z) : RcZ,qc,∗.

http://stacks.math.columbia.edu/tag/094D
http://stacks.math.columbia.edu/tag/02UZ
http://stacks.math.columbia.edu/tag/0A3G
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Proof. Let P , Q ∈ D−pc(Z). Then there are isomorphisms:

RHomOZ (P,Q) ' RHomOZ
(Lc∗ZP, Lc

∗
ZQ) ' RHomOZ (P,RcZ,qc,∗Lc

∗
ZQ).

Thus if HQ denotes the cone of the adjunction morphism ηZ,Q : Q→ RcZ,qc,∗Lc
∗
ZQ,

then RHomOZ (P,HQ) ' 0 for all P ∈ D−pc(Z). But D−pc(Zλ) contains the per-
fect complexes of Z, so HQ ' 0 [HR17a, Thm. A]. That is, ηZ,Q is an isomor-
phism for all Q ∈ D−pc(Z). Now let Q ∈ D−pc(Z). Then Q ∈ D−pc(Z) and there
is an isomorphism Q ' Lc∗ZQ. By what we have proved so far, it follows that
RcZ,qc,∗Q ' RcZ,qc,∗Lc

∗
ZQ ' Q. That is, RcZ,qc,∗ restricts to a functor from D−pc(Z)

to D−pc(Z). It follows immediately from general nonsense that RcZ,qc,∗ is right

adjoint to Lc∗Z : D−pc(Z)→ D−pc(Z) and we have the claimed adjoint equivalence. �

The following lemma is where the technicalities of this section are buried.

Lemma 5.5. Assume Setup 5.1. Let N ∈ D−pc(X) and define

VN = {Q ∈ D(X) : πN,Q is an isomorphism},
T = {Q ∈ D(X) : εQ is an isomorphism}, and

S = {P ∈ Dqc(X) : ηP is an isomorphism}.

Then 〈Ri′∗D−pc(Z)〉 ⊆ VN . If c and i are tor-independent, then 〈Ri′∗D−pc(Z)〉 ⊆ T and

〈Ri∗D−pc(Z)〉 ⊆ S.

Proof. Clearly, we can view VN , T, and S as full subcategories of D(X), D(X),
and Dqc(X), respectively. Moreover, they are obviously triangulated and thick
subcategories. It remains to prove the following.

(1) If Q0 ∈ D−pc(Z), then Ri′∗Q0 ∈ VN : this is essentially just the functoriality of
the projection formula. Specifically, we apply Lemma A.6 with C = Dqc(X),
D = D(X), C′ = Dqc(Z), and D′ = D(Z) with the natural functors and
adjoints already described. Lemma B.1 now implies that πN,Ri′∗Q0 is an
isomorphism whenever πLi∗N,Q0

is an isomorphism. But Li∗N ∈ D−pc(Z),

Q0 ∈ D−pc(Z), and Lc∗Z and RcZ,qc,∗ are an adjoint equivalence on pseudo-
coherent complexes (Lemma 5.4), so the claim follows from Remark A.1.

(2) Assume that c and i are tor-independent. If Q0 ∈ D−pc(Z), then Ri′∗Q0 ∈ T:
to see this, we note that the following diagram commutes

Lc∗Rcqc,∗Ri
′
∗Q0

//

εRi′∗Q0

��

Lc∗Ri∗RcZ,qc,∗Q0

��

Ri′∗Q0 Ri′∗Lc
∗
ZRcZ,qc,∗Q0.

Ri′∗εQ0oo

The claim now follows from functoriality (the top morphism) Lemmas 5.4
(the bottom morphism) and B.2 (the right morphism).

(3) Assume that c and i are tor-independent. If Q0 ∈ D−pc(Z), then Ri∗Q0 ∈ S:
this is almost identical to (2), so is omitted. �

We now introduce a key definition. We appreciate that it is difficult to parse.
Such a definition appears necessary, however, to treat the lack of tor-independence
that appears in the non-noetherian situation as well as the subtleness of the pro-
jection morphism. When tor-independence is available, Proposition 5.7 provides a
useful criterion for Z-equivalence.
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Definition 5.6. Assume Setup 5.1. Let M ∈ D(X), N ∈ D−pc(X). We say that c is

(a) faithful along M at N if

νM,N : Rcqc,∗M⊗L
OX

Rcqc,∗N→ Rcqc,∗(M⊗L
OX

N)

is an isomorphism; and
(b) an equivalence along M at N if (a) holds and

M⊗ εN : M⊗L
OX

Lc∗Rcqc,∗N→M⊗L
OX

N

is an isomorphism.

If the above holds for all N, then we omit the “at N”. If M = i′∗OZ, then we will
replace “M” with “Z”.

The simplest method to produce an equivalence along Z is to use the following.

Proposition 5.7. Assume Setup 5.1. Let M ∈ Dqc(X) and N ∈ D−pc(X).

(1) If ηM is an isomorphism, then c is faithful along Lc∗M at N if and only if
πM,N is an isomorphism.

(2) If c and i are tor-independent and M ∈ 〈Ri∗D−pc(Z)〉, then c is an equiva-
lence along M at N if and only if πM,N is an isomorphism.

Proof. By definition of the projection morphism (A.1), the following diagram com-
mutes:

M ⊗L
OX

(Rcqc,∗N)
ηM⊗Rcqc,∗N

//

πM,N
++

Rcqc,∗Lc
∗M ⊗L

OX
(Rcqc,∗N)

νLc∗M,N

��

Rcqc,∗(Lc
∗M ⊗L

OX
N).

This proves (1). If M ∈ 〈Ri∗D−pc(Z)〉 and c and i are tor-independent, then ηM is
an isomorphism (Lemma 5.5). By Lemma A.2, the following diagram commutes:

Lc∗(M ⊗L
OX

Rcqc,∗N) //

Lc∗πM,N

��

Lc∗M ⊗L
OX

Lc∗Rcqc,∗N

Lc∗M⊗εN
��

Lc∗Rcqc,∗(Lc
∗M ⊗L

OX
N)

ε
Lc∗M⊗L

OX
N

// Lc∗M ⊗L
OX

N.

The top morphism is an isomorphism, as is the bottom (Lemmas 5.5 and B.1). The
stated equivalence follows. �

Many examples are provided by the following two results.

Corollary 5.8. Assume Setup 5.1 and c and i are tor-independent. If

(1) i is a Cartier divisor; or
(2) i∗OZ is perfect; or
(3) OX is a compact object of D(X) (see Remark 4.4);

then c is an equivalence along Z.

Proof. We use the criterion of Proposition 5.7. Case (1) is a special case of (2). In
cases (2) and (3) the projection morphism is an isomorphism by Lemma 4.3. �
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Corollary 5.9. Assume Setup 5.1, c and i are tor-independent, and i is a closed
immersion. If OX is coherent, then there is a perfect complex M ∈ 〈Ri∗D−pc(Z)〉
with τ≥0M ' OZ such that c is an equivalence along Lc∗M .

Proof. By perfect approximation [Stacks, Tag 08HP], there exists a perfect complex

M ∈ D≤0
Coh,|Z|(X) with τ≥0M ' OZ . By Lemma 3.4, M ∈ 〈Ri∗DbCoh(Z)〉, so Lc∗M ∈

〈Ri′∗D−pc(Z)〉 (Lemma B.2). Now apply Lemma 4.3 and Proposition 5.7. �

Lacking tor-independence, these notions can be quite subtle. We will give some
interesting examples at the end of this section, however. In the meantime, we
content ourselves with the following useful lemma.

Lemma 5.10. Assume Setup 5.1. Let M0 ∈ D−pc(Z), N ∈ D−pc(X). If Rcqc,∗N ∈ D−pc(X)
and c is faithful along Ri′∗M0 at N, then c is an equivalence along Ri′∗M0 at N.

Proof. We have the following commutative diagram:

Rcqc,∗(Lc
∗Rcqc,∗N ⊗L

OX
Ri′∗M0)

πRcqc,∗N,Ri′∗M0
//

Rcqc,∗(εN⊗Ri′∗M0) ++

Rcqc,∗(N)⊗L
OX

Rcqc,∗Ri
′
∗M0

νN,Ri′∗M0

��

Rcqc,∗(N ⊗L
OX

Ri′∗M0.)

Since c is faithful along Ri′∗M0 at N, the vertical map is an isomorphism. By Lemma
5.5, the horizontal map is an isomorphism. It follows that the diagonal map is an
isomorphism. Let Q be a cone for εN; then Q ∈ D−pc(X). Hence, Q ⊗L

OX
Ri′∗M0 '

Ri′∗(Li
′∗Q⊗L

OZ
M0) (Lemma B.1). Let Q0 = Li′∗Q⊗L

OZ
M0; then Q0 ∈ D−pc(Z) and

0 ' Rcqc,∗(Q⊗L
OX

Ri′∗M0) ' Rcqc,∗Ri
′
∗Q0 ' Ri′∗RcZ,qc,∗Q0.

It follows immediately that Q0 ' 0 and the claim follows. �

The whole reason for introducing these notions is the following key result.

Proposition 5.11. Assume Setup 5.1. Let M ∈ D(X) and N = Lc∗N , where N ∈
D−pc(X). If πN,M is an isomorphism, then the following conditions are equivalent:

(1) c is faithful along M at N;
(2) Rcqc,∗M⊗ ηN is an isomorphism.

Proof. This is immediate from the commutativity of the following diagram (A.1):

N ⊗L
OX

(Rcqc,∗M)
ηN⊗Rcqc,∗M

//

πN,M
++

Rcqc,∗Lc
∗N ⊗L

OX
(Rcqc,∗M)

νLc∗N,M

��

Rcqc,∗(Lc
∗N ⊗L

OX
M). �

We conclude this section with more methods to produce examples. These are
non-noetherian and not necessarily tor-independent. In particular, they can be
safely skipped by those only interested in the proof of Theorem A.

Lemma 5.12. Assume Setup 5.1.

http://stacks.math.columbia.edu/tag/08HP
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(1) c is faithful along M if and only if

RΓ(X,Rcqc,∗M⊗L
OX

Rcqc,∗N)→ RΓ(X,M⊗L
OX

N)

is an isomorphism for all N ∈ D−pc(X).
(2) If f : X → SpecA is flat; A = OX/f

∗I, where I ⊆ A is an ideal; and

A/I ⊗L
A RΓ(X,N)→ RΓ(X, Li′∗N)

is an isomorphism for all N ∈ D−pc(X); then c is an equivalence along Z.

Proof. For (1): the necessity is clear. For the sufficiency, the perfect complexes
compactly generate Dqc(X) [HR17a, Thm. A], so it suffices to prove that

RHomOX (P,Rcqc,∗M⊗L
OX

Rcqc,∗N)→ RHomOX (P,Rcqc,∗(M⊗L
OX

N))

is an isomorphism for all perfect P . Since perfects are dualizable, the morphism
above is an isomorphism if and only if the following morphism is an isomorphism:

RΓ(X,P∨ ⊗L
OX

Rcqc,∗M⊗L
OX

Rcqc,∗N)→ RΓ(X,P∨ ⊗L
OX

Rcqc,∗(M⊗L
OX

N)).

The projection formula (Lemma 4.3) and adjunction says that this morphism is an
isomorphism if and only if the following is an isomorphism:

RΓ(X,Rcqc,∗(Lc
∗P∨ ⊗L

OX
M)⊗L

OX
Rcqc,∗N))→ RΓ(X, Lc∗P∨ ⊗L

OX
M⊗L

OX
N).

The claim follows.
For (2), we take M = c∗f∗(A/I) = c∗A = i′∗OZ; then Rcqc,∗M ' Ri∗RcZ,qc,∗OZ '

A = f∗(A/I) ' Lf∗(A/I). We next observe that the usual projection formula
[HR17a, Cor. 4.12] implies that

RΓ(X, Lf∗(A/I)⊗L
OX

Rcqc,∗N) ' A/I ⊗L
A RΓ(X,Rcqc,∗N) ' A/I ⊗L

A RΓ(X,N).

The claim now follows from (1). �

Remark 5.13. Lemma 5.12 can easily be refined when X is quasi-affine:

(1) c is faithful along M at N if and only if the following is an isomorphism:

RΓ(X,Rcqc,∗M⊗L
OX

Rcqc,∗N)→ RΓ(X,M⊗L
OX

N).

(2) If f : X → SpecA is flat; A = OX/f
∗I, where I ⊆ A is an ideal; and

A/I ⊗L
A RΓ(X,N)→ RΓ(X, Li′∗N)

is an isomorphism; then c is an equivalence along Z at N.

We have the following non-noetherian and non-tor-independent example that
comes from [Stacks, Tag 0DIA].

Example 5.14. Let {An}n≥0 be an inverse system of rings with surjective tran-
sition maps and locally nilpotent kernel. Let A = lim←−nAn. Let X → SpecA

be a proper, flat, and finitely presented morphism of algebraic spaces. Let In =
ker(A→ An) and let OXn = OX/InOXn . Since X → SpecA is flat, the natural map
OX⊗L

AAn → OXn in D(X) is an isomorphism. Let X be the ringed topos with under-
lying topos Xét and sheaf of rings OX = lim←−n OXn in Mod(X). There is a morphism

of ringed topoi c : X → Xét corresponding to OX → OX. Let n ≥ 0; then [Stacks,
Tag 0CQF] and a local calculation shows that OXn → OXn = OX/ ker(OX → OXn)
is an isomorphism of sheaves of OX -algebras. Let in : Xn → X and i′n : Xn → X be
the resulting morphisms; note that c ◦ i′n = in.

http://stacks.math.columbia.edu/tag/0DIA
http://stacks.math.columbia.edu/tag/0CQF
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First we show that if M ∈ D−pc(X), then RΓ(X,M) ∈ D−pc(A). For each n ≥ 0

let Mn = Li′∗nM ∈ D−pc(Xn). By [Stacks, Tag 0CQF] and a local calculation,
M ' holim

n
Ri′n,∗Mn in D(X). Also RΓ(X,−) preserves homotopy limits, so

RΓ(X,M) ' holim
n

RΓ(X,Ri′n,∗Mn) ' holim
n

RΓ(Xn,Mn).

Let Mn = RΓ(Xn,Mn). Then Mn is a pseudo-coherent complex of An-modules
(a special case of Kiehl’s Finiteness Theorem, see [Stacks, Tag 0CSD]) and the
projection formula [HR17a, Cor. 4.12] and the flatness of X → SpecA implies that:

Mn+1 ⊗L
An+1

An ' RΓ(Xn+1,Mn+1 ⊗L
OXn+1

OXn) 'Mn.

Thus, M is A-pseudo-coherent and RΓ(X,M) ⊗L
A An ' RΓ(Xn,Mn) [Stacks, Tag

0CQF]. By Proposition 4.1, Rcqc,∗M ∈ D−pc(X).
In Setup 5.1, we take Z = X0. By the above and Lemma 5.12(2), c is faithful

along Z. By Lemma 5.10, c is even an equivalence along Z.

Example 5.15. Let X be a quasi-compact and quasi-separated algebraic space.
Let L be a line bundle on X and let s ∈ Γ(X,L). Let s∨ : L∨ → OX be the dual
morphism and let I = im(s∨) and K = ker(s∨). Let i : Z ↪→ X be the closed
immersion defined by I. That is, i is the vanishing locus of s. Let OX be a sheaf of
OX -algebras (not necessarily quasi-coherent) such that

(a) OX/I → OX/IOX is an isomorphism; and
(b) K ∼= ker(s∨ ⊗OX OX).

This holds, for example, when X is locally noetherian, s is a regular section of
L (i.e., K = 0), and OX is the formal completion of X along I. This also holds
when X is non-noetherian [Stacks, Tag 0BNG]. More generally, it holds when s is a
regular section of L and of c∗L. Note that if s is a regular section, then s remaining
a regular section of c∗L is easily seen to be equivalent to the tor-independence of c
and i.

Let A = OX/I in Setup 5.1. Let X = (Xét,OX) and C = [L∨
s∨−→ OX ], which is

perfect. We will establish the following:

(1) ηC is an isomorphism;
(2) c is faithful along Lc∗C; and
(3) if N ∈ D−pc(X) is such that N⊗L

OX
C or N⊗L

OX
K belongs to Dqc(X), then

c is an equivalence along Lc∗C at N.

Condition (3) is of course trivially satisfied when s is a regular section of L.
We first prove (1). Consider the morphism of distinguished triangles:

H−1(C)[1] //

��

C //

��

H−0(C)[0] //

��

H−1(C)[2]

��

H−1(Rcqc,Lc
∗C)[1] // Rcqc,Lc

∗C // H0(Rcqc,Lc
∗C)[0] // H−1(Rcqc,Lc

∗C)[2].

Now H−0(C) = OX/I and H−0(Lc∗C) = OX/IOX, which are isomorphic by (a).
Similarly, H−1(C) = ker(L∨ → OX) and H−1(Lc∗C) = ker(L∨⊗OX OX → OX) are
isomorphic by (b). In particular, both H0(Lc∗C) and H−1(Lc∗C) are quasi-coherent
OX -modules. It follows immediately that Lc∗C is a quasi-coherent OX -module and
so Rcqc,∗Lc

∗C ' Rc∗Lc
∗C ' C ⊗L

OX
OX as OX -modules. The claim follows.

http://stacks.math.columbia.edu/tag/0CQF
http://stacks.math.columbia.edu/tag/0CSD
http://stacks.math.columbia.edu/tag/0CQF
http://stacks.math.columbia.edu/tag/0BNG
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We next prove (2). Now condition (a) implies that Mod(Z) ' Mod(Z), so
D−pc(Z) ' D−pc(Z). Since C is perfect, Lemma 4.3 and Proposition 5.7(1) together
with (1) imply c is faithful along Lc∗C. Claim (3) is similar, so its proof is omitted.

The previous example can be generalized to the vanishing locus of a section of
vector bundle.

Example 5.16. Let X be a quasi-compact and quasi-separated algebraic space.
Let F be a vector bundle on X and let s ∈ Γ(X,F ). Let i : Z ↪→ X be the vanishing
locus of s. Let OX be a sheaf of OX -algebras (not necessarily quasi-coherent) such
that K(s∨)→ K(s∨)⊗L

OX
OX is a quasi-isomorphism of OX -modules, where K(s∨)

is the Koszul complex associated to s∨ : F∨ → OX [FL85, §IV.2]. If s is regular
section of F , then this condition is equivalent to s remaining a regular section of
F ⊗OX OX. As before, this condition is satisfied when s is a regular section and
OX is the formal completion of OX along I = im(s∨). If F is a line bundle, then

K(s∨) = [F∨
s∨−→ OX ]. Hence, we see that this condition is equivalent to those in

Example 5.15. Arguing as in Example 5.15, one can establish the following:

(1) c is faithful along Lc∗K(s∨); and
(2) if N ∈ D−pc(X) is such that N⊗L

OX
K(s∨) ∈ Dqc(X), then c is an equivalence

along Lc∗K(s∨) at N.

6. Lefschetz Theorems

To illustrate the strength of our reformulation, we can already give a brief proof
of the following Lefschetz theorem.

Theorem 6.1. Let X be a quasi-compact and quasi-separated algebraic space. Let
c : X → Xét be a morphism of ringed topoi. Let i : Z → X be a closed immersion
and let r ≥ 0 be an integer. If

(1) U = X − Z is quasi-affine;
(2) RΓ(X,OX)→ RΓ(X,OX) is r-connected; and
(3) there exists M ∈ D(X) such that

(a) Rcqc,∗M is perfect with cohomological support |Z|, and
(b) c is faithful along M at OX;

then OX → Rcqc,∗OX is r-connected. In particular, if E ∈ Vect(X), then

RΓ(X,E)→ RΓ(X, c∗E)

is r-connected.

Proof. By the projection formula (Lemma 4.3), πOX ,M is an isomorphism. Thus,
Proposition 5.11 implies that Rcqc,∗M ⊗ ηOX is an isomorphism. Let Q be a cone
for ηOX : OX → Rcqc,∗OX; then we have just proved that Q⊗L

OX
Rcqc,∗M ' 0. It re-

mains to prove that τ≤rQ ' 0. Let j : U → X be the resulting open immersion. The
theory of smashing Bousfield localizations implies immediately that Q ' Rj∗Lj

∗Q
(e.g., [HR17b, Ex. 1.4]). But U is quasi-affine, so it follows that τ≤rQ ' 0 if and
only if τ≤rRΓ(X,Q) ' 0 [HR17a, Cor. 2.8]. Finally, RΓ(X,OX) → RΓ(X,OX) '
RΓ(X,Rcqc,∗OX) is r-connected. The result follows. �

We can now prove Theorem B.



18 J. HALL

Proof of TheoremB. If i∗OZ is perfect, then set M = Lc∗i∗OZ . If OX is coher-
ent, then set M = Lc∗M , where M is as in Lemma 5.9. Since c and i are tor-
independent, Corollary 5.8(2) (in the perfect case) and Corollary 5.9 (in the co-
herent case) imply that c is faithful along M. Moreover, Lemma 5.5 implies that
Rcqc,∗M = Rcqc,∗Lc

∗M 'M , which is perfect with cohomological support |Z|. Now
the conditions H0(X,OX) ' H0(X,OX) and H1(X,OX) ↪→ H1(X,OX) are equiva-
lent to RΓ(X,OX) → RΓ(X,OX) being 1-connected. The result now follows from
Theorem 6.1. �

In the following theorem, we can optimize the above results substantially in the
case of a Cartier divisor, making them amenable to an inductive process.

Theorem 6.2. Let X be a quasi-compact and quasi-separated algebraic space. Let
c : X → Xét be a morphism of ringed topoi. Let L be a line bundle on X, s ∈
Γ(X,L), and i : Z ↪→ X its vanishing locus. Let r ≥ 0 be an integer. If

(1) U = X − Z is quasi-affine;

(2) C → Rcqc,∗Lc
∗C is r-connected, where C = [L∨

s∨−→ OX ]; and
(3) RΓ(X,OX)→ RΓ(X,OX) is r-connected;

then OX → Rcqc,∗OX is r-connected. In particular, if E ∈ Vect(X), then

RΓ(X,E)→ RΓ(X, c∗E)

is r-connected. In addition, if s is a regular section of L and c∗L (equivalently, c
and i are tor-independent), then we may replace (2) with

(2’) OZ → Rc′qc,∗OZ is r-connected, where c′ : Z = (X, c∗OZ)→ (Xét,OZ).

Proof. If N ∈ Dqc(X), let QN be a cone for ηN ; then we must show that τ≤rQOX '
0. Clearly C is perfect, so by Lemma 4.3, πC,Lc∗OX is an isomorphism. Hence, the
commutative diagram (A.3) implies that QOX ⊗L

OX
C ' QC . By condition (2),

we conclude that τ≤r(QOX ⊗L
OX

C) ' 0. We now let Q = QOX and consider the
distinguished triangle:

L∨ ⊗L
OX

Q // Q // C ⊗L
OX

Q // L∨ ⊗L
OX

Q[1].

But L∨ is a line bundle, so τ≤r(L∨⊗L
OX

Q) ' L∨⊗L
OX

τ≤rQ. It follows immediately

from the distinguished triangle above that C⊗L
OX

τ≤rQ ' 0. Let j : U = X−Z ↪→ X
be the resulting open immersion; then the theory of smashing Bousfield localizations
implies immediately that τ≤rQ ' Rj∗Lj

∗τ≤rQ (e.g., [HR17b, Ex. 1.4]). But U is
quasi-affine, so it follows that τ≤rQ ' 0 if and only if RΓ(X, τ≤rQ) ' 0 [HR17a,
Cor. 2.8]. Finally, RΓ(X,OX)→ RΓ(X,OX) ' RΓ(X,Rcqc,∗OX) is r-connected (by
(3)), so 0 ' τ≤rRΓ(X,Q) ' RΓ(X, τ≤rQ). The result follows. �

7. Pseudo-conservation

Let X be a ringed topos. We say that a collection S ⊆ D(X) is pseudo-conservative
if whenever M ∈ D−pc(X) satisfies M⊗L

OX
Q ' 0 for all Q ∈ S, then M ' 0.

Example 7.1. Let X be a quasi-compact and quasi-separated algebraic space.
Let |X|cl be the set of closed points of X. The collection {κ(x)}x∈|X|cl is pseudo-
conservative. This is immediate from Nakayama’s Lemma.

Example 7.2. Let X be a locally ringed space. The collection {κ(x)}x∈|X|cl is
pseudo-conservative. This is again immediate from Nakayama’s Lemma.
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Example 7.3. Let A be a ring. Let X → SpecA be a quasi-compact and closed
morphism of algebraic spaces. Let I ⊆ A be an ideal contained in the Jacobson
radical of A. Let X0 = X ×SpecA Spec(A/I) and take i : X0 → X be the resulting
closed immersion. Then {OX0

} is pseudo-conservative. Indeed, if M ∈ D−pc(X) is

non-zero, then its top cohomology group Htop(M) is finitely generated. It follows
that its support W is a non-empty closed subset of X. The image of W in SpecA
is closed and non-empty so must meet Spec(A/I) because I is contained in the
Jacobson radical of A.

We have the following useful lemma.

Lemma 7.4. Let X be a ringed topos, where OX is coherent. Let S ⊆ D−(X) be a
collection of objects. Consider the collection:

S′ = {Ht(Q)(Q) : Q ∈ S} ⊆ Mod(X),

where t(Q) denotes the top cohomological degree of Q. The following are equivalent:

(1) S is pseudo-conservative;
(2) if M ∈ Coh(X) and M⊗OX Q ∼= 0 for all Q ∈ S′, then M ∼= 0.

Proof. This is immediate from the following: if M, N ∈ D−(X), then

Ht(M)+t(Q)(M⊗L
OX

N) ∼= Ht(M)(M)⊗OX
Ht(N)(N). �

8. GAGA

In this section, we prove our general GAGA theorem. We will see in §9 that
this implies all existing results in the literature for algebraic spaces. Given what
we have already established, its proof is straightforward.

Theorem 8.1. Let X be a quasi-compact and quasi-separated algebraic space. Let
c : X → Xét be a morphism of ringed topoi. Consider a family of quasi-coherent
sheaves of OX-algebras {Aλ}λ∈Λ. Let Zλ and Zλ be the ringed topoi (Xét,Aλ) and
(X, c∗Aλ), respectively. There is an induced 2-commutative diagram of ringed topoi:

Zλ
cλ //

i′λ
��

Zλ

iλ

��

X
c // Xét.

For each λ ∈ Λ, let Mλ ∈ 〈Ri′λ,∗D−pc(Zλ)〉.
(i) Let N ∈ D−pc(X). Assume that Rcqc,∗Lc

∗N ∈ D−pc(X) and {Rcqc,∗Mλ}λ∈Λ

is pseudo-conservative. If for all λ ∈ Λ, c is faithful along Mλ at Lc∗N ,
then

ηM : M → Rcqc,∗Lc
∗M

is an isomorphism.
(ii) Let N ∈ D−pc(X). Assume that Rcqc,∗N ∈ D−pc(X) and {Mλ}λ∈Λ is pseudo-

conservative. If for all λ ∈ Λ, c is an equivalence along Mλ at N, then

εM : Lc∗Rcqc,∗M→M

is an isomorphism.

In addition assume that ∗ ∈ {b,−} and

(1) X is proper and pseudo-coherent over an affine scheme SpecA;
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(2) RΓ(X,−) sends D∗pc(X) to D∗pc(A); and

(3) if ∗ = b, then Lc∗ sends Dbpc(X) to Dbpc(X).

If {Rcqc,∗Mλ}λ∈Λ (resp. {Mλ}λ∈Λ) is pseudo-conservative and for all λ ∈ Λ, c is
faithful (resp. an equivalence) by Mλ, then

Lc∗ : D∗pc(X)→ D∗pc(X)

is fully faithful (resp. essentially surjective).

Proof. For (i), by Lemma 5.5 and Proposition 5.11, we have that Rcqc,∗Mλ ⊗ ηN
is an isomorphism for all λ ∈ Λ. But N and Rcqc,∗Lc

∗N ∈ D−pc(X), so cone(ηN ) ∈
D−pc(X). Since {Rcqc,∗Mλ}λ∈Λ is pseudo-conservative, the claim follows.

For (ii), Mλ ⊗ εN is an isomorphism for all λ ∈ Λ. But N, Lc∗Rcqc,∗N ∈ D−pc(X),

so cone(εN) ∈ D−pc(X). Since {Mλ}λ∈Λ is pseudo-conservative, the claim follows.
The last claim is immediate from the above and Proposition 4.1. �

9. Applications

We will now demonstate how Theorem 8.1 establishes all existing GAGA results
in the literature. We begin with the following tor-independent GAGA theorem.

Theorem 9.1. Let A be a ring. Let π : X → SpecA be a proper and pseudo-
coherent morphism of algebraic spaces. Let c : X → Xét be a morphism of ringed
topoi. Consider a family of quasi-coherent sheaves of ideals {Iλ ⊆ OX}λ∈Λ. Let Zλ
and Zλ be the ringed topoi (Xét,OX/Iλ) and (X, c∗OX/Iλ), respectively. There is
an induced 2-commutative diagram of ringed topoi

Zλ
cλ //

i′λ
��

Zλ

iλ

��

X
c // Xét.

Let ∗ ∈ {b,−}. Assume that

(a) RΓ(X,−) sends D∗pc(X) to D∗pc(A);
(b) for all λ ∈ Λ, c and iλ are tor-independent;
(c) for all λ ∈ Λ, Lc∗λ : D−pc(Zλ)→ D−pc(Zλ) is an equivalence;

(d) if ∗ = b, then Lc∗ sends Dbpc(X) to Dbpc(X);
(e) OX is coherent; or OX is a compact object of D(X); or for all λ ∈ Λ, iλ,∗OZλ

is perfect.

If {OZλ}λ∈Λ (resp. {OZλ}λ∈Λ) is pseudo-conservative, then

Lc∗ : D∗pc(X)→ D∗pc(X)

is fully faithful (resp. essentially surjective).

Proof. In the case where OX is a compact object of D(X) or iλ,∗OZλ is perfect for
all λ ∈ Λ, the result is immediate from Theorem 8.1 and Corollary 5.8. In the case
where OX is coherent, we apply Corollary 5.9 to produce a perfect complex Mλ ∈
〈Ri∗D−pc(Zλ)〉 with c an equivalence along Lc∗Mλ for all λ ∈ Λ. But if {OZλ}λ∈Λ

(resp. {OZλ}λ∈Λ) is pseudo-conservative, then {Mλ}λ∈Λ (resp. {Lc∗Mλ}λ∈Λ) is
pseudo-conservative (Lemma 7.4). Now apply Theorem 8.1. �

We now prove Theorem A.
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Proof of Theorem A. We simply verify the conditions (a)–(e) of Theorem 9.1, with
Λ indexing the set of closed points of X and ∗ = b. Clearly, conditions (1) and (2)
of Theorem A imply condition (a). Condition (e) is obvious.

Let S = Xcl,c. We next check conditions (b) and (d). Let M ∈ D−Coh(X)

and s ∈ S; then (Lc∗M)s ' Mc(s) ⊗L
OX,c(s)

OX,s. If τ<nM ' 0 for some n, then

(τ<nLc∗M)s ' τ<n(Mc(s)⊗L
OX,c(s)

OX,s). By condition (5), τ<n(Mc(s) ⊗L
OX,c(s)

OX,s) ' 0.

Condition (4) gives τ<n(Lc∗M) ' 0, so Lc∗ : D−Coh(X)→ D−Coh(X) is t-exact.
We next prove that if s ∈ S, then the induced map on residue fields κ(c(s)) →

κ(s) is an isomorphism. By condition (5), κ(c(s)) → κ(c(s)) ⊗OX,c(s) OX,s is an

isomorphism. But we also have a surjective morphism κ(c(s))⊗OX,c(s) OX,s → κ(s).

Consequently, the map of fields κ(c(s))→ κ(s) is surjective, hence an isomorphism.
We next prove that if s ∈ S, then the natural morphism ε : c∗κ(c(s)) → k(s) is

an isomorphism of sheaves. If t ∈ X, then (c∗κ(c(s)))t = κ(c(s))c(t) ⊗OX,c(t) OX,t.

Condition (3) tells us that this is 0 if t 6= s and is κ(c(s)) ⊗OX,c(s) OX,s
∼= κ(s)

if t = s. Observe that condition (3) implies that c−1(X − {c(s)}) = X − {s}
and so X − {s} is admissible and c∗κ(c(s)) is the sheafification of the presheaf
C : U 7→ lim−→W⊇c(U)

(κ(c(s))(W ) ⊗OX(W ) OX(U)); obviously, C(U) = 0 if s /∈ U and

the same is true for its sheafification. We now apply the elementary Lemma 9.2 to
the sheaf c∗κ(c(s)) with the point s to obtain the isomorphism c∗κ(c(s))→ κ(s).

Let s ∈ S and let cs : (X, κ(s)) → (|X|, κ(c(s))) be the induced morphism of
G-ringed spaces. Then c∗s : Mod(|X|, κ(c(s))) → Mod(X, κ(s)) is an equivalence
(Lemma 9.2). Hence, condition (c) is satisfied and we have a t-exact equivalence

Lc∗ : DbCoh(X)→ DbCoh(X)

The cohomological comparison and the equivalence on hearts follows trivially. �

Lemma 9.2. Let X be a G-ringed space. Let F be a sheaf of OX-modules. Let
x ∈ X be a closed point and i : {x} → X the inclusion. We will regard {x} as a
ringed space with structure sheaf OX,x. Assume that:

(1) if W ⊆ X is admissible and x /∈W, then F(W) = 0; and
(2) X− {x} has an admissible cover.

Then the natural morphism F → i∗i
∗F is an isomorphism. In particular, the functor

Mod(X, κ(x))→ Mod(κ(x)) : G 7→ Gx

is an exact equivalence of abelian categories.

Proof. We first prove that F → i∗i
∗F is an isomorphism of sheaves of OX -modules.

That it is an epimorphism of sheaves is obvious. That it is a monomorphism:
condition (1) implies that it suffices to prove that if U is admissible and x ∈ U,
then the natural morphism F(U) → Fx is injective. Let f ∈ F(U) and suppose
that fx = 0 in Fx. By definition of the stalk, there exists an admissible open V of
U containing x such that f |V = 0 in F(V). By condition (2), X − {x} = ∪i∈IWi,
where each Wi is admissible and I is some indexing set. Now F is a sheaf, so
F(U) ⊆ F(V)×

∏
i∈I F(U ∩Wi) = F(V), since x /∈ U ∩Wi for all i. Since f |V = 0,

the claim follows.
To prove the equivalence, we may assume that OX = κ(x). Obviously, if G is

a sheaf of κ(x)-modules, then G satisfies condition (1); hence, G → i∗i
∗G is an

isomorphism. This proves that the functor G 7→ Gx is fully faithful. The essential
surjectivity is trivial and the result follows. �
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Remark 9.3. We now explain the necessity of the conditions in Theorem A. Assume
that X is a G-locally ringed space with OX coherent and there is a set of closed
points S of X such that

(a) if s ∈ S, then OX,s is noetherian;
(b) if s ∈ S, then κ(s) ∈ Coh(X); and
(c) if F ∈ Coh(F) and Fs = 0 for all s ∈ S, then F = 0.

Now suppose that c : X → X is a morphism of G-locally ringed spaces such that
Lc∗ : D−Coh(X) → D−Coh(X) is a t-exact equivalence. We claim that S = c−1(Xcl)
and the remaining conditions of Theorem A are satisfied. Conditions (1) and (2)
are obvious. Let x ∈ Xcl; then Γ(X, c∗κ(x)) = Γ(X,κ(x)) 6= 0. Hence, there exists
s ∈ S such that (c∗κ(x))s 6= 0. Now if t ∈ S, then (c∗κ(x))t = κ(x)c(t)⊗OX,c(t) OX,t.

We deduce immediately that c(s) = x. Thus, we have a local ring homomorphism
OX,x → OX,s that induces a morphism on residue fields κ(x) → κ(s) and the
induced morphism of sheaves of OX-algebras c∗κ(x) → κ(s) is surjective. But
then κ(x) → cqc,∗κ(s) is a surjective morphism of coherent OX -modules and κ(x)
is a skyscraper sheaf, so this forces the morphism to be an isomorphism. Hence,
c∗κ(x) ' κ(s). Examining the stalk at s, we further see that κ(x) ⊗OX,x OX,s →
κ(s) is an isomorphism. Also, comparison of global sections of c∗κ(x) and κ(s)
shows that the morphism of fields κ(x) → κ(s) is an isomorphism. Further, if
∃ t ∈ X−{s} such that c(t) = x, then (c∗κ(x))t 6= 0; but this is nonsense in view of
the established isomorphism c∗κ(x) ' κ(s). Also if s ∈ S, then (cqc,∗κ(s))x 6= 0 for
some x ∈ Xcl. Hence, there exists a non-zero morphism cqc,∗κ(s) → κ(x) and so
a non-zero morphism κ(s) → c∗κ(x). It follows that c(s) = x; thus, S = c−1(Xcl)
and c : S → Xcl is bijective. Finally, the t-exactness of Lc∗ : D−Coh(X) → D−Coh(X)

implies that Tor
OX,c(s)
1 (κ(c(s)),OX,s) = 0 whenever s ∈ S. By the local criterion

for flatness, OX,c(s) → OX,s is flat whenever s ∈ S. This establishes conditions (3),
(4), and (5) of Theorem A.

It is easy to use Theorems A, 8.1, and 9.1 to prove existing GAGA results.

Example 9.4 (Analytic spaces). Let X → SpecC be a proper scheme. Let
c : Xan → X be its complex analytification. Now Xan is a Hausdorff topologi-
cal space and c is bijective on closed points; indeed |Xan| = X(SpecC). Also, the
local rings of OXan are noetherian and the induced morphism OX,c(x) → OXan,x

is an isomorphism on maximal-adic completions [SGA1, XII.1.1]. By Remark 1.1,
we see that conditions (3), (4), and (5) are satisfied. The Grauert–Remmert The-
orem [GR84, 10.5.6] implies that if F ∈ Coh(Xan), then condition (2) is satisfied.
Oka’s Coherence Theorem [GR84, 2.5.3] is that OXan

is coherent, so condition (1)
is satisfied. By Theorem A we may conclude that if F ∈ Coh(X), then

Hi(X,F ) ' Hi(Xan, Fan)

and c∗ : Coh(X)→ Coh(Xan) is an equivalence.

Example 9.5 (Formal GAGA). LetX → SpecR be a proper morphism of schemes.
Assume that R is noetherian. Let I ⊆ R be an ideal and assume that R is complete
with respect to the I-adic topology. Let c : X̂ → X be the formal completion of X
along the closed subscheme X0 = X ⊗R (R/I). It is easily verified using the results
of [EGA, III1] that c satisfies the hypotheses of Theorem A. Hence, we have the
cohomological comparison result and the equivalence on categories of sheaves. It
is also easy to use these arguments and Theorem 9.1 to prove formal GAGA for
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proper algebraic spaces. We again leave this as an exercise to the reader. One can
also use these arguments to prove the formal GAGA statements of [FK13], which
hold for certain non-noetherian base rings A (e.g., A is the a-adic completion of a
finitely presented V -algebra, where V is an a-adically complete valuation ring.).

Example 9.6 (Rigid GAGA). Let X → SpecR be a proper morphism of schemes.
Let k be a complete nonarchimean field. Assume that R is an affinoid k-algebra;
that is, it is a Banach k-algebra that is a quotient of some Tate algebra Tn =
k〈〈Y1, . . . , Yn〉〉, where Yn is the subalgebra of k[[Y1, . . . , Yn]] consisting of power
series that are convergent with respect to the Gauss norm (i.e., suprema of co-
efficients). Associated to X is a natural morphism of G-locally ringed spaces
c : Xrig → X, where Xrig is a rigid analytic space. The underlying topological
space of Xrig is Hausdorff and its points correspond to closed points of X. More-
over, OXrig

is a coherent sheaf with noetherian local rings. Also, R is noetherian.
Kiehl’s Finiteness Theorem [Kie67] implies that the cohomology of coherent sheaves
on OXrig

satisfies the condition (2) of Theorem A. Again, we get the cohomological
comparison result and equivalence on categories of coherent sheaves. Using [CT09],
one can make sense of rigid analytifications of separated algebraic spaces. This
allows one to prove rigid GAGA in this context too. One can also prove adic and
Berkovich GAGA statements using this method.

Example 9.7 (Non-noetherian formal GAGA). Here we will use Theorem 8.1 to
prove the GAGA result in the Stacks Project [Stacks, Tag 0DIA]. The situation is
as in Example 5.14, and it is immediate from 8.1 that we obtain an equivalence

Lc∗ : D−pc(X)→ D−pc(X).

We now use Theorem 9.1 to prove a generalization of relative analytic GAGA
from projective n-space to proper algebraic spaces, which recently appeared in
[AT18, Thm. C.1.1]. As far as we are aware, this was previously unknown.

Example 9.8. Let (Y, Y ) be an analytic germ [AT18, App. B]; that is, Y is an
analytic space and i : Y ⊆ Y is a semianalytic subset. Associated to (Y, Y ) is a
locally ringed space, YY , which has underlying topological space Y and sheaf of
rings i−1OY. In particular, YY only depends on an open neighborhood of Y in Y

and its structure sheaf is easily checked to be coherent using Oka’s Theorem.
A morphism of germs (Y1, Y1) → (Y2, Y2) is a morphism of analytic spaces

f : U1 → Y2, where U1 ⊆ Y1 is an open neigborhood of Y1 and f(Y1) ⊆ Y2—
we call f a representative. Morphisms of germs are declared equivalent if they
admit equal representatives. The morphism is without boundary if there is a rep-
resentative f with f−1(Y2) = Y1. Obviously, a morphism of germs gives rise to a
well-defined morphism on their locally ringed spaces. A YY -space is a morphism of
germs (X, X)→ (Y, Y ).

If P is a property of morphisms of morphisms of analytic spaces, then we say
that a morphism of germs is P if there exists a representative that is P and without
boundary. By the usual Grauert–Remmert Theorem and Proper Base Change in
topology, it follows that a proper morphism of germs sends a bounded complex of
coherent sheaves to a bounded complex of coherent sheaves.

A germ is affinoid if it admits a closed immersion into a germ of the form
(Cn, D), where D is a closed polydisc in Cn. If (Y, Y ) is affinoid, then (i) R =
Γ(YY ,OYY ) is an excellent noetherian C-algebra; (ii) Γ(Y,−) induces an exact

http://stacks.math.columbia.edu/tag/0DIA
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equivalence between coherent OYY -modules and finitely generated R-modules; the
map c : |Y | → | SpecR| is injective with image the closed points; and if y ∈ Y ,
then OSpecR,c(y) → OY,y is a morphism of noetherian local rings that induces an
isomorphism on maximal adic completions [AT18, Lem. B.6.1].

If X is a locally of finite type and locally separated algebraic space over SpecR,
then there is a relative analytification X(Y,Y )an . More precisely, there is a functor
from locally of finite type and locally separated algebraic spaces over SpecR to YY -
spaces. It is easily verifed that separated, proper morphisms are sent to separated
and proper morphisms, respectively. Similarly, étale morphisms are sent to local
isomorphisms. It is easily verified that there is an induced flat morphism of ringed
sites c : X(Y,Y )an,ét → Xét. We claim that the induced functor:

D−Coh(X)→ D−Coh(X(Y,Y )an)

is a t-exact equivalence. This generalizes the main result of [AT18, App. C] from
X = PnR to algebraic spaces that are proper over SpecR. To do this, we simply
verify the conditions of Theorem 9.1, with Λ the set of closed points of X. In light
of the above discussion and the arguments in Example 9.4, this is obvious.

The following is a variant of the results established in [BJ14, §1]. It is a simple
consequence of Theorem 6.2.

Theorem 9.9. Let X be a quasi-affine scheme. Let A = Γ(X,OX) and a ∈ A. Let

X0 = Spec(A/a) ∩X ⊆ X and let c : X̂ → X be the formal completion of X along
X0. Assume

(1) A is a-adically complete;
(2) a is not a zero divisor of A; and
(3)

⋂
n≥0 a

nH1(X,OX) = 0 (see Remark 9.10).

Then
c∗ : Vect(X)→ Vect(X̂)

is fully faithful.

Proof. By Theorem 6.2 and Example 5.15, it suffices to prove H0(X,OX) ' H0(X̂,OX̂)

and H1(X,OX) ↪→ H1(X̂,OX̂). Since a is not a zero divisor of A, we can apply the
second exact sequence of [BJ14, Lem. 1.2] to every affine open of X to conclude
that OX̂ ' holim

n
OX/a

nOX in D(X). Hence, we may apply [loc. cit.] again to

obtain injections:

lim←−
n

H0(X,OX)/an ↪→ H0(X̂,OX̂) and lim←−
n

H1(X,OX)/an ↪→ H1(X̂,OX̂).

Since H0(X,OX) = A and is a-adically complete, the first map is an isomor-

phism; that is, H0(X,OX) ' H0(X̂,OX̂). But the kernel of the map H1(X,OX)→
lim←−n H1(X,OX)/an is just

⋂
n≥0 a

nH1(X,OX), which vanishes by hypothesis. Hence,

H1(X,OX) ↪→ H1(X̂,OX̂) too. �

Remark 9.10. Condition (3) of Theorem 9.9, while subtle, is frequently met in
practice. Indeed, if H1(X,OX) is a finitely generated A-module, then it holds: we
always have H1(X,OX)a = 0, so if H1(X,OX) is a finitely generated A-module,
then aNH1(X,OX) = 0 for all N � 0.

Example 9.11. Let (A,m) be a noetherian local ring. Let X = SpecA−{m}. Let

a ∈ A and let c : X̂ → X be the a-adic completion of X (as a formal scheme). If
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(1) A is a-adically complete,
(2) a is not a zero divisor of A, and
(3) depthm(A) ≥ 3,

then c∗ : Vect(X)→ Vect(X̂) is fully faithful.

Appendix A. The projection formula

We recall some results on the projection formula. An excellent source is [FHM03].
Let (C,⊗, α, σ, 1, λ, ρ) be a symmetric monoidal category. That is,

• C is a category;
• − ⊗− : C× C→ C is a functor;
• for each triple x, y, z ∈ C there is a functorial isomorphism

αx,y,z : (x⊗ y)⊗ z ' x⊗ (y ⊗ z),
which satisfies the pentagram law;
• for each pair x, y ∈ C there is a functorial isomorphism

σx,y : x⊗ y ' y ⊗ x
such that σy,x ◦ σx,y = Id, and is compatible with α in the obvious sense;
• 1 ∈ C;
• for each x ∈ C there are functorial isomorphisms

λx : 1⊗ x ' x and ρx : x⊗ 1 ' x,
such that λ1 = ρ1 and are compatible with α and σ in the obvious sense.

Typically, we will just denote this data by C. For background material on symmetric
monoidal categories, we refer the interested reader to [SR72, ML98]. Consider an
adjoint pair of functors:

L : C � D : R,

where C and D are symmetric monoidal categories, and L is strong monoidal. This
means that for c1, c2 ∈ C, there is a natural isomorphism

µc1,c2 : L(c1 ⊗C c2) ' L(c1)⊗D L(c2)

as well as an isomorphism

ι : L(1C) ' 1D

that are compatible with the rest of the data defining a symmetric monoidal cate-
gory. We denote this package of data by (L,R, µ, ι).

If c ∈ C and d ∈ D, then we have the resulting unit/counit morphisms

ηc : c→ RL(c) and εd : LR(d)→ d.

If d1, d2 ∈ D, then there is a natural “conjugate” of µc1,c2 ,

νd1,d2 : R(d1)⊗C R(d2)→ R(d1 ⊗D d2).

It is obtained as the adjoint to the composition:

L(R(d1)⊗C R(d2))
L(µR(d1),R(d2))−−−−−−−−−−→ LR(d1)⊗D LR(d2)

εd1⊗εd2−−−−−→ d1 ⊗D d2.

In perhaps more familiar terms: the right adjoint to a strong monoidal functor is
lax-monoidal. It follows that if c ∈ C and d ∈ D, then there is a natural projection
morphism

πc,d : c⊗C R(d)→ R(L(c)⊗D d).
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Indeed, it is given as the composition:

(A.1) c⊗C R(d)
ηc⊗IdR(d)−−−−−−→ RL(c)⊗C R(d)

nL(c),d−−−−→ R(L(c)⊗D d).

Remark A.1. Note that if L is an equivalence, then πc,d is an isomorphism.

There is another way to produce a projection morphism

π̃c,d : c⊗C R(d)→ R(L(c)⊗D d).

It can be given as the adjoint to the composition:

L(c⊗C R(d))
µc,R(d)−−−−→ L(c)⊗D LR(d)

IdL(c)⊗εd−−−−−−→ L(c)⊗D d.

We wish to point out that ν (and so consequently π) depend on the choice of the
right adjoint R. Occasionally, it will be useful to observe this, and we do so by
using a suitable superscript (e.g., νL,R).

Lemma A.2. πc,d = π̃c,d.

Proof. The adjoint to πc,d factors as:

L(c⊗C R(d))
L(ηc⊗Id)

// L(RL(c)⊗C R(d))
L(µRL(c),R(d))

// LRL(c)⊗D LR(d)
εL(c)⊗εd

// L(c)⊗D d.

The following square also commutes, by naturality:

L(c⊗C R(d))

µc,R(d)

��

L(ηc⊗Id)
// L(RL(c)⊗C R(d))

L(µRL(c),R(d))

��

L(c)⊗D LR(d)
L(ηc)⊗Id

// LRL(c)⊗D LR(d).

Hence, the adjoint to πc,d factors as:

L(c⊗C R(d))
µc,R(d)

// L(c)⊗D LR(d)
L(ηc)⊗Id

// LRL(c)⊗D LR(d)
εL(c)⊗εd

// L(c)⊗D d.

By the unit/conuit equations for adjunction, the composition of the last two mor-
phisms results in Id ⊗ εd. The result now follows. �

Remark A.3. If κ : (L,R, µL, ιL) ⇒ (L′, R′, µ′, ι′) is a natural transformation of
symmetric monoidal functors, then there is a canonically induced natural transfor-
mation κ∨ : R′ ⇒ R between their right adjoints. If c ∈ C and d ∈ D, then it is
easily verified from Lemma A.2 that the following diagram commutes:

c⊗C R
′(d)

πL
′,R′

c,d
//

Id⊗κ∨

��

R′(L′(c)⊗D d)

κ∨

**

c⊗C R(d)
πL,Rc,d

// R(L(c)⊗D d)
R(κ)

// R(L′(c)⊗D d).

In the following lemma we record some useful commutative diagrams.
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Lemma A.4. Let c, x ∈ C and d ∈ D. The following diagrams commute.

L(c⊗C R(d))
µc,R(d)

//

L(πc,d)

��

L(c)⊗D LR(d)

Id⊗εd
��

LR(L(c)⊗ d)
εL(c)⊗d

// L(c)⊗D d.

(A.2)

c⊗C x
ηc⊗x

//

c⊗ηx
��

RL(c⊗C x)

R(µc,x)

��

c⊗C RL(x)
πc,L(x)

// R(L(c)⊗D L(x)).

(A.3)

Proof. The diagram (A.2) is just a restatement of Lemma A.2. For the commuta-
tivity of (A.3), we observe that the adjoint of the composition going right and then
down is simply µc,x. Working the other way, we see that the adjoint map is the
composition:

L(c⊗C x)
L(Id⊗ηx)

// L(c⊗C RL(x))
µc,RL(x)

// L(c)⊗D LRL(x)
Id⊗εL(x)

// L(c)⊗D L(x).

By functoriality and naturality, the following diagram commutes:

L(c⊗C x)
µc,x

//

L(Id⊗ηx)

��

L(c)⊗D L(x)

Id⊗Lηx
��

L(c⊗C RL(x))
µc,RL(x)

// L(c)⊗D LRL(x).

It follows that the map we are interested in is actually the composition:

L(c⊗C x)
µc,x

// L(c)⊗D L(x)
Id⊗Lηx // L(c)⊗D LRL(x)

Id⊗εL(x)
// L(c)⊗D L(x).

By the unit/counit equations for the adjunction, the final two morphisms compose
to give the identity. The result follows. �

The following two lemmas establish the functoriality properties of the projection
morphism.

Lemma A.5. Consider symmetric monoidal functors:

C
(L,R,µL,ιL)−−−−−−−−→ D

(S,T,µS ,ιS)−−−−−−−→ D′.

Then RT is right adjoint to SL and

(1) SL : C→ D′ is also symmetric monoidal, via the compositions:

µSLc1,c2 : SL(c1 ⊗C c2)
S(µLc1,c2

)
−−−−−−→ S(L(c1)⊗D L(c2))

µSL(c1),L(c2)−−−−−−−→ SL(c1)⊗D′ SL(c2)

ιSL : SL(1C)
S(ιL)−−−→ S(1D)

ιS−→ 1D′ .

(2) The conjugate (via RT ) to µSLc1,c2 is the composition:

νSL,RTd′1,d
′
2

: RT (d′1)⊗CRT (d′2)
νL,R
T (d′1),T (d′2)

−−−−−−−−→ R(T (d′1)⊗DT (d′2))
R(νS,T

d′1,d
′
2
)

−−−−−−→ RT (d′1⊗D′d
′
2).
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(3) If c ∈ C and d′ ∈ D′, then the following diagram commutes:

c⊗C RT (d′)
πL,R
c,T (d′)

//

πSL,RT
c,d′ **

R(L(c)⊗D T (d′))

R(πS,T
Lc,d′ )

��

RT (SL(c)⊗D′ d
′).

Proof. Claim (1) is straightforward. Claim (2) follows from (1). Claim (3) follows
from the definition of the projection morphism (A.1) and (2). �

Lemma A.6. Consider a 2-commutative diagram of symmetric monoidal cate-
gories:

C′
L′ // D′

C
L //

F

OO

�"
κ

D

S

OO

Assume that L, L′, F , and S admit respective right adjoints R, R′, G, and T . Let
c ∈ C and d ∈ D′. Then the following diagram commutes:

c⊗C RT (d)

πc,T (d)

��

Id⊗κ∨

∼
// c⊗C GR

′(d)
πc,R′(d)

// G(F (c)⊗C′ R
′(d))

GπF (c),d

��

R(L(c)⊗D T (d))
RπL(c),d

// RT (SL(c)⊗D′ d)
κ∨(κ⊗Id)

∼
// GR′(L′F (c)⊗D′ d)

Proof. Combine Lemma A.5(3) with Remark A.3. �

An object c ∈ C is dualizable if there is a triple (c∗, s, t), where c∗ ∈ C and
s : 1→ c⊗ c∗ and t : c∗ ⊗ c→ 1 are morphisms such that the two compositions

c
λ−1
c // 1⊗ c s⊗Id

// (c⊗ c∗)⊗ c
αc,c∗,c

// c⊗ (c∗ ⊗ c) Id⊗t
// c⊗ 1C

ρc // c,

c∗
ρ−1
c∗ // c∗ ⊗ 1

Id⊗s
// c∗ ⊗ (c⊗ c∗)

αc∗,c,c∗
// (c∗ ⊗ c)⊗ c∗ t⊗Id

// 1⊗ c∗
λc∗ // c∗

are the identity morphism. Another way of expressing this is that the functor c∗⊗−
is left adjoint to c ⊗ −. In the following standard lemma, we do not require the
existence of a right adjoint R to L.

Lemma A.7. If c is dualizable, then L(c) is dualizable. More precisely: let (c∗, s, t)
be a dual of c. Then (L(c∗), sL, tL), where sL is the composition:

1D
e−1

−−→ L(1C)
L(s)−−−→ L(c⊗C c

∗)
µc,c∗−−−→ L(c)⊗D L(c∗),

and tL is the composition:

L(c∗)⊗D L(c)
µ−1
c∗,c−−−→ L(c∗ ⊗C c)

L(t)−−−→ L(1C)
e−→ 1D.

is dual to L(c).

Proof. This is a routine diagram chase. �

We now come to the main result of this appendix.
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Theorem A.8. If c ∈ C is dualizable, then

πc,d : c⊗C R(d)→ R(L(c)⊗D d)

is an isomorphism.

It is not difficult to prove that c⊗CR(d) and R(L(c)⊗D d) are isomorphic when
c is dualizable. The subtlety is showing that this isomorphism can be witnessed by
the projection morphism πc,d. In applications, this is critical.

The standard reference for Theorem A.8 (in the context of closed symmetric
monoidal categories) is [FHM03, Prop. 3.12]. Note that Theorem A.8 is not actually
proved in [loc. cit.]—there is an extra coherence condition for strong monoidal
functors specified in [FHM03, Eq. 3.7]. It is shown in [MS06, Rem. 2.2.10], however,
that this coherence condition is implied by the other conditions. Because of its
importance to this article, we give a self-contained proof here using dualizables.

Proof of Theorem A.8. Let (c∗, s, t) be a dual of c. Let x ∈ C. Then observe that
we have the following natural sequence of bijections:

HomC(x, c⊗C R(d)) ∼= HomC(c∗ ⊗C x,R(d))

∼= HomD(L(c∗ ⊗C x), d)

∼= HomD(L(c∗)⊗D L(x), d)

∼= HomD(L(x), L(c)⊗D d) (Lemma A.7)

∼= HomC(x,R(L(c)⊗D d)).

By the Yoneda lemma, it follows that there is a unique isomorphism

π′c,d : c⊗ R(d) ' R(L(c)⊗D d)

inducing the above. By Lemma A.2, it remains to prove that π̃c,d = π′c,d. We will

do this using the Yoneda lemma. Fix f : x → c ⊗C R(d). By definition, the L-R
adjoint to the composition π̃c,d ◦ f we can express as the composition:

L(x)
L(f)−−−→ L(c⊗C R(d))

µc,R(d)−−−−→ L(c)⊗D LR(d)
Id⊗εd−−−−→ L(c)⊗D d.

The adjoint to this morphism (afforded by L(c∗) ⊗ − and L(c) ⊗ −) is thus the
composition:

L(c∗)⊗D L(x)
Id⊗L(f)−−−−−→ L(c∗)⊗D L(c⊗C R(d))

Id⊗µc,R(d)−−−−−−−→ L(c∗)⊗D (L(c)⊗D LR(d))
αD,L(c∗),L(c),LR(d)−−−−−−−−−−−−→ (L(c∗)⊗D L(c))⊗D LR(d)

Id⊗εd−−−−→ (L(c∗)⊗D L(c))⊗D d
tL⊗Id−−−−→ 1D ⊗D d

λD,d−−−→ d.
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We now look at the image of f under the compositions defining π′c,d via the Yoneda
lemma. What we see is that:

f 7→ (c∗ ⊗C x
Id⊗f−−−→ c∗ ⊗C (c⊗C R(d))

αC,c∗,c,R(d)−−−−−−−→ (c∗ ⊗C c)⊗D R(d)

t⊗Id−−−→ 1C ⊗C R(d)
λC,R(d)−−−−−→ R(d))

7→ (L(c∗ ⊗C x)
L(Id⊗f)−−−−−→ L(c∗ ⊗C (c⊗C R(d)))

L(aC,c∗,c,R(d))−−−−−−−−−→ L((c∗ ⊗C c)⊗C R(d))
L(t⊗Id)−−−−−→ L(1C ⊗C R(d))

L(λR(d))−−−−−→ LR(d)
εd−→ d)

It remains to show that precomposing the above morphism with µ−1
c∗,x coincides

with the other morphism described above. This follows from the commutativity of
the following diagram, and that all of the vertical arrows are isomorphisms:

L(c∗ ⊗ x)
Id⊗L(f)

//

µc∗,x

��

L(c∗ ⊗ (c⊗ Rd))

Id⊗µc,Rd
//

µc∗,c⊗Rd

��

L((c∗ ⊗ c) ⊗ Rd)
αD // L(c∗ ⊗ c) ⊗ LRd

L(t)⊗Id
//

µc∗,c⊗Id

��

L(1C) ⊗ LRd

ι⊗Id

��
L(c∗) ⊗ L(x)

Id⊗L(f)

// L(c∗) ⊗ L(c⊗ Rd)

Id⊗µc,Rd
// L(c∗) ⊗ (Lc⊗ LRd)

L(αC)
// (L(c∗) ⊗ Lc) ⊗ LRd

tL⊗Id
// 1D ⊗ LRd.

�

Appendix B. Two lemmas for ringed topoi

We include in this appendix two simple lemmas, which we expect to be well-
known to experts.

Lemma B.1. Let W be a ringed topos. Let B be a sheaf of OW-algebras. Let W′ be
the ringed topos (W,B). There is an induced morphism of ringed topoi j : W′ →W.
Let M ∈ D(W) and N ∈ D(W′). Then the projection morphism

πM,N : M⊗L
OW

Rj∗N→ Rj∗(Lj
∗M⊗L

OW′
N)

is an isomorphism. In particular, if Q ∈ D−pc(W) and P ∈ 〈Rj∗D−pc(W′)〉, then

Q⊗L
OW

P ∈ 〈Rj∗D−pc(W′)〉.

Proof. Let F be a K-flat complex of OW-modules quasi-isomorphic to M and P a
K-flat complex of OW′ -modules quasi-isomorphic to N. The exactness of j∗ implies
that M⊗L

OW
Rj∗N is the total complex of (Fr ⊗OW

j∗P
s)r,s. Clearly,

Fr ⊗OW
j∗P

s = j∗(j
∗Fr ⊗OW′ P

s).

Moreover, j∗ commutes with the formation of total complexes (it commutes with
small coproducts). The result is now immediate. For the latter claim, we set

DQ = {R ∈ 〈Rj∗D−pc(W′)〉 : Q⊗L R ∈ 〈Rj∗D−pc(W′)〉}.

Clearly, DQ is a thick triangulated subcategory of 〈Rj∗D−pc(W′)〉. Thus, it suffices

to prove that N ∈ D−pc(W′) implies Q ⊗L
OW

Rj∗N ∈ 〈Rj∗D−pc(W′)〉. This is obvious
from the projection formula. �
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Lemma B.2. Let π : Y → W be a morphism of ringed topoi. Let B be a sheaf of
OW-algebras. Let W′ and Y′ be the ringed topoi (W,B) and (Y, π∗B), respectively.
There is an induced 2-commutative diagram of ringed topoi:

Y′
π′ //

j′

��

W′

j

��

Y
π // W.

If π and j are tor-independent and N ∈ D(W′), then there is a natural isomorphism:

Lπ∗Rj∗N ' Rj′∗Lπ
′∗N.

In particular, if Q ∈ 〈Rj∗D−pc(W′)〉, then Lπ∗Q ∈ 〈Rj′∗D−pc(Y′)〉.

Proof. Now j∗, j
′
∗ are exact and π−1j∗ = j′∗π

′−1. By tor-independence of π and j:

Lπ∗Rj∗N = OY ⊗L
π−1OW

π−1j∗N ' (OW ⊗L
π−1OY

π−1j∗OY′)⊗L
π−1j∗OY′

π−1j∗N

' j′∗OY′ ⊗L
π−1j∗OY′

π−1j∗N

' j′∗OY′ ⊗L
j′∗π
′−1OW′

j′∗π
′−1N

' j′∗(OY′ ⊗L
π′−1OW′

π′−1N) = Rj′∗Lπ
′∗N.

The latter claim follows from a similar argument to that in Lemma B.1. �
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