
A RELATIVE GAGA PRINCIPLE FOR FAMILIES OF CURVES
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Abstract. We prove a relative GAGA principle for families of curves, show-
ing: (i) analytic families of pointed curves whose fibers have finite automor-

phism groups are algebraizable and (ii) analytic birational models of Mg,n

possessing modular interpretations with the finite automorphism property are

algebraizable. This is accomplished by extending some well-known GAGA

results for proper schemes to non-separated Deligne–Mumford stacks.

1. Introduction

Fundamental relations between analytic and algebraic geometry are described
by various GAGA principles. These have been beautifully addressed (in different
ways) by many, with major contributions due to W. L. Chow [Cho49], K. Kodaira
[Kod54], J. P. Serre [GAGA], A. Grothendieck and M. Raynaud [SGA1, Exp. XII],
M. Artin [Art70, Thm. 7.3], and more recently J. Lurie [Lur04] and B. Töen and
M. Vaquié [TV08]. For an excellent survey of the classical results, we recommend
Hartshorne [Har77, App. B].

There are, however, relative formulations of the GAGA principle which are yet
to be addressed. In fact, in the relative situation, even the case of families of curves
is subtle.

Fix an integer n ≥ 0 and an algebraic (resp. analytic) space T . An n-pointed
algebraic (resp. analytic) T -curve is a morphism of algebraic (resp. analytic) spaces
π : C → T which is proper, flat, and of relative dimension one, together with n
algebraic (resp. analytic) sections {σi : T → C}ni=1 to π. Note that we do not
assume that the map π is smooth nor the images of the sections σi disjoint. When
T is SpecC or the punctual analytic space, “T -curve” will be contracted to “curve”.

If T is an algebraic space which is locally separated and locally of finite type
over SpecC, then T maybe functorially analytified to an analytic space Tan. In
particular, an n-pointed algebraic T -curve may be functorially analytified to an
n-pointed analytic Tan-curve. An n-pointed analytic Tan-curve is algebraizable if it
lies in the essential image of the afforementioned analytification functor.

An automorphism of an n-pointed algebraic (resp. analytic) curve is an algebraic
(resp. analytic) automorphism of the underlying curve preserving the sections. An
n-pointed algebraic (resp. analytic) T -curve has the finite automorphism property if
its n-pointed fibers have finite automorphism groups. The Deligne–Mumford stable
curves [DM69, Defn. 1.1] and their n-pointed generalizations [Knu83, Defn. 1.1]
satisfy the finite automorphism property, though there are many others (e.g. [Sch91,
Smy12]). In this paper, we prove the following relative GAGA principle for such
families of curves.
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Theorem A. Fix an algebraic space T , proper over SpecC, and an integer n ≥ 0.
Then, any n-pointed analytic Tan-curve with the finite automorphism property is
algebraizable.

In Example 3.1 we show that Theorem A cannot be strengthened to include
smooth families of curves of genus 1 (such families do not have the finite automor-
phism property).

Another relative GAGA principle for families curves that we prove is related
to the Hassett–Keel program [Has05]. This program has recently seen a flurry
of activity [AS12, AH12, AFS10, ASv10, Smy11a, Smy11b, FS11, HL10a, HL10b,
HL07, HH08], initiated by the work of B. Hassett and D. Hyeon [HH09]. Roughly
speaking, this program aims to classify proper and birational models of the stack
Mg,n of smooth n-pointed algebraic curves of genus g, whose sections are required
to have disjoint images, which admit modular interpretations [ASv10, §1]. One
can ask an analogous question for the analytic Deligne–Mumford stack of smooth
n-pointed analytic curves of genus g, Man

g,n. We show that these problems are
equivalent in the case of modular interpretations with the finite automorphism
property (see §7).

Theorem B. Fix non-negative integers g and n such that 2g − 2 + n > 0. Then,
analytic modular birational models of Man

g,n with the finite automorphism property
are uniquely algebraizable to algebraic modular birational models of Mg,n with the
finite automorphism property.

It is important to note that many of the birational models appearing in the
Hassett–Keel program do not have the finite automorphism property. Moreover, at
present, there are no counterexamples to an analogue of Theorem B holding in the
more general setting of birational models without the finite automorphism property.
We also believe that a much deeper understanding of the geometry of Artin stacks—
along the lines of [Lur04] and [GZ12]—would be of benefit to attempting such a
generalization.

To motivate the proof of Theorem A, fix a scheme T which is proper over SpecC,
and non-negative integers g and n such that 2g− 2 + n > 0. Consider a smooth n-
pointed analytic Tan-curve $ : C → Tan with fibers of genus g such that the sections
have disjoint images. By definition of Man

g,n, this is equivalent to a morphism of
analytic stacks Tan →Man

g,n. In §7, we will show thatMan
g,n is the analytification of

the stack Mg,n. Thus, in the smooth case, it suffices to prove that the morphism
f$ algebraizes to a map fπ : T →Mg,n. Indeed, this would give rise to a smooth
n-pointed algebraic T -curve π : C → T together with an analytic isomorphism
of n-pointed analytic Tan-curves Can

∼= C. The Deligne–Mumford stack Mg,n is
separated, however, and so the existence of an algebraization follows readily from
the GAGA principles for separated Deligne–Mumford stacks (see §2 for precise
statements and references).

In the general case, the strategy is similar, except instead of the separated stacks
Mg,n and Man

g,n, we use the stacks of all finite automorphism n-pointed algebraic

(resp. analytic) curves UFA
n (resp. UFA,an

n ). In §7 we show that the stack UFA
n is

an algebraic Deligne–Mumford stack (see §1.1 for definitions) whose analytification
is UFA,an

n . Note, however, that the algebraic Deligne–Mumford stack UFA
n is not

separated, but Theorem A now follows from:
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Theorem C. Fix algebraic Deligne–Mumford stacks Z and X. Suppose that Z is
proper, then the analytification functor:

Hom(Z,X)→ Hom(Zan, Xan)

induces an equivalence of categories.

J. Lurie [Lur04, Thm. 1.1] has proved a related result to Theorem C—the stack
X is permitted to be algebraic (as opposed to Deligne–Mumford), but the diagonal
is assumed to be affine. Note, however, that the diagonal of the Artin stack UFA

n is
quasi-affine (indeed, it is quasi-finite and separated), but is not known to be affine.
Thus, Lurie’s result [loc. cit.] is currently insufficient to prove Theorem A.

To prove Theorem C, we will prove a generalization of Chow’s Theorem [Cho49]
for non-separated Deligne–Mumford stacks. The connection here is well-known: to
an analytic morphism φ : Zan → Xan we can associate its graph Γφ : Zan → Zan ×
Xan, which is the pullback of the diagonal ∆Xan

: Xan → Xan ×Xan along Zan ×
Xan

(φ,id)−−−→ Xan ×Xan. If X is a separated scheme, then Γφ is a closed immersion.
If X is a separated Deligne–Mumford stack, then Γφ can only be assumed to be a
finite morphism. Moreover, since algebraizing the graph of a morphism is equivalent
to algebraizing the morphism, in the separated case, Theorem C follows from the
separated GAGA statements. If X is non-separated, however, the graph Γφ is no
longer finite, but only locally quasi-finite.

For an algebraic (resp. analytic) stack X, let QF(X) denote the category of 1-
morphisms Z → X which are locally quasi-finite, separated, and representable. Let
QFp(X) ⊂ QF(X) denote the full subcategory consisting of those 1-morphisms
Z → X with Z proper. Our main technical result, also instrumental to proving
Theorem B, is

Theorem D. Fix an algebraic Deligne–Mumford stack X. Then, the analytifica-
tion functor:

ΨX,p : QFp(X)→ QFp(Xan)

induces an equivalence of categories.

Our proof of Theorem D is very similar to the approach of [HalR10, Thm. 3.5].
To motivate this strategy, it is instructive to sketch the proof that there is an equiv-
alence of categories Coh (Y )→ Coh (Yan) for proper C-schemes. The technique is
via dévissage on the category of coherent sheaves Coh (Y ) and we follow [SGA1,
XII.4.4]. We say that F ∈ Coh (Yan) is algebraizable if it lies in the essential image
of the analytification functor Coh (Y ) → Coh (Yan). The proof consists of the
following steps.

(1) Given coherent sheaves H, H ′ on Y , the natural map of C-modules:

ExtiOY (H,H ′)→ ExtiOYan
(Han, H

′
an)

is an isomorphism for all i ≥ 0. Taking i = 0 here shows that the an-
alytification functor Coh (Y ) → Coh (Yan) is fully faithful. Hence, it is
sufficient to prove that the analytification functor Coh (Y ) → Coh (Yan)
is essentially surjective.

(2) Show that if we have an exact sequence of coherent sheaves on Yan:

0 // H′ // H // H′′ // 0
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and two of H′, H′′, H are algebraizable, then the third is. This follows
from the exactness of analytification and the i = 0,1 statements of 1. In
particular, given an OYan -morphism λ : H → H′ such that H′, kerλ, and
cokerλ are algebraizable, then H is algebraizable.

(3) By noetherian induction on the topological space |Y |, we may assume that
Y is integral and that every H ∈ Coh (Yan) with | suppH| ( |Y | is alge-
braizable.

(4) Combine 2 and 3 to conclude that the essential surjectivity of the analyti-
fication functor Coh (Y ) → Coh (Yan) will be shown if we can produce
for each F ∈ Coh (Yan) an OYan

-morphism F → Han whose kernel and
cokernel is supported on a proper subset of |Y |.

(5) Prove the result for all projective C-schemes by hand.
(6) If Y is a proper C-scheme, use Chow’s Lemma [EGA, II.5.6.1] to construct

a projective morphism p : Y ′ → Y that is an isomorphism on a dense open
subset of Y and such that Y ′ is projective;

(7) Use 5 for the projective scheme Y ′ to show that p∗anF ∼= Gan for some
coherent G;

(8) Use [SGA1, XII.4.2] to show that (p∗G)an
∼= (pan)∗Gan.

(9) Combine 7 and 8 to see that (pan)∗p
∗
anF ∼= (p∗G)an is algebraizable. Fur-

thermore, we have an adjunction morphism η : F → (pan)∗p
∗
anF . Since p

is birational, η satisfies the conditions of step 3 and we conclude that the
result has been proven for all proper C-schemes.

Our strategy for proving Theorem D is a reinterpretation of the above steps. Thus,
instead of performing a dévissage on the category Coh (X), we perform a dévissage
on the category QFp(X). In §4, we will reinterpret 1 and 2 in terms of the existence
of pushouts in QF(X) along finite morphisms. The exactness of the analytification
functor Coh (Y )→ Coh (Yan) is recast as the preservation of these pushouts under
analytification (Lemma 4.2). The analog of 4 is the main result of §4 (Lemma 4.1).

Projective schemes in 5 are replaced by those C-schemes Y ′ whose structure
maps factor as Y ′ → W → SpecC, where Y ′ → W is étale and quasicompact,
and W is projective. Proving 5 will make use of a basic case of the Comparison
Theorem between étale and complex cohomology [FK88, I.11.5]. The Chow Lemma
used in 6 is a generalization due to Raynaud–Gruson [RG71, Cor. 5.7.13]: any
quasicompact C-scheme Y admits a blowup Y ′ → Y such that Y ′ → SpecC factors
as Y ′ →W → SpecC, where Y ′ →W is étale and W is projective.

In §5 we use Stein factorizations to reinterpret the steps 8 and 9 (Lemma 5.1).
This proves Theorem D for all schemes and forms, what we call, the technique of
birational dévissage (Proposition 5.3). Finally, to prove Theorem D for algebraic
Deligne–Mumford stacks, we will require a finite dévissage (Proposition 5.4), which
is similar to the birational dévissage, but much simpler. The proof of Theorem D
is completed in §6.

1.1. Assumptions and notations. We will assume that all schemes are locally of
finite type over SpecC. An algebraic Deligne–Mumford stack will denote a Deligne–
Mumford stack (in the sense of [LMB, 4.1]) which is locally of finite type over
SpecC. Thus, we assume that the diagonals of all algebraic Deligne–Mumford
stacks are quasicompact and separated, so are representable by quasicompact, un-
ramified, and separated schemes.
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For a ringed space (resp. site) E we denote by |E| its underlying topological
space (resp. category) and OE its sheaf of functions. For a morphism of ringed
spaces (resp. sites) φ : E → F we denote by φ] : OF → φ∗OE the induced map of
functions. Denote by Mod (E) the abelian category of OE-modules.

For background material on analytic spaces, we refer the reader to [GR84]. Let
An denote the category of analytic spaces. A morphism of analytic spaces is étale
if it is an isomorphism locally in the analytic topology. Covering families for the
étale topology on An are given by jointly surjective families of étale morphisms.

Given morphisms p : U → V and q : W → V , set UW = U ×p,V,q W and take
pW : UW →W to be the projection.

2. Analytic Deligne–Mumford stacks

Analytic Deligne–Mumford stacks have been defined in various levels of gener-
ality by multiple authors. In this section, we give a definition which is similar to
[Toë99, Ch. 5], but we permit our stacks to be non-separated.

An analytic space X , via its functor of points, gives rise to a stack over An. We
will not distinguish between the analytic space and its associated stack. A stack
Y over An is representable if it is isomorphic to an analytic space. A 1-morphism
U → V of stacks over An is representable if for any analytic space X and any
1-morphism X → V, the 2-fiber product U ×V X is representable.

If P is a property of morphism of analytic spaces that is stable under base
change (e.g. étale, surjective, separated, flat, proper), then a 1-morphism U → V
of stacks over An has P if for any analytic space X and any 1-morphism X → V,
the morphism of analytic spaces U ×V X → X has P .

Definition 2.1. An analytic Deligne–Mumford stack X is a stack over An such
that:

(1) the diagonal morphism ∆X : X → X ×X is representable and separated;
(2) there exists an analytic space U and a 1-morphism U → X which is repre-

sentable by surjective and étale morphisms.

Note that in the definition of an analytic Deligne–Mumford stack—unlike the
case of an algebraic Deligne–Mumford stack (c.f. §1.1)—we make no compactness
assumptions on the diagonal. If we were to do so, all our analytic Deligne–Mumford
stacks would be forced to be separated, which is insufficiently general for the pur-
poses of this article.

For an analytic Deligne–Mumford stack X , define |X | to be the set of isomor-
phism classes of the groupoid X (∗) (where ∗ denotes the analytic space consisting
of a single reduced point). The collection of all open analytic substacks of X defines
the analytic topology on the set |X |.

A morphism of analytic Deligne–Mumford stacks X → Y is locally quasi-finite if
the continuous morphism |X | → |Y| has discrete fibers.

A morphism of analytic Deligne–Mumford stacks is separated if its diagonal
1-morphism is representable by finite morphisms. An analytic Deligne–Mumford
stack is proper if it is separated and the topological space |X | is compact.

Let U be an analytic space. The theory of the abelian category Coh (U) of
coherent analytic sheaves is well-covered in the classic text of Grauert–Remmert
[GR84]. We now outline some variations to this theory so that a sliver of it may be
applied to the analytic Deligne–Mumford stacks of this article.
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An analytic Deligne–Mumford stack X has an associated small étale site, which
we denote as Xét. The objects of this site are 1-morphisms U → X representable
by étale morphisms, where U is representable; morphisms and covering families in
this site are as to be expected. If x ∈ |X | and F is a sheaf on Xét we let Fx denote
the stalk at x. Set

| suppF| = {x ∈ |X | : Fx 6= 0}.
Note that F ∼= 0 if and only if | suppF| = ∅.

The site Xét is naturally ringed, and we denote this sheaf of rings by OXét
. If X

is representable, then the natural functor Sh (Xét) → Sh (X ) (resp. Mod (Xét) →
Mod (X )) is an equivalence of categories. We will make use of these equivalences
without further mention.

A sheaf of OXét
-modules F is finitely generated if there exists a covering family

(ji : Ui → X )i∈I such that for each i ∈ I there is an integer ni and surjections
of O(Ui)ét

-modules O⊕ni(Ui)ét
→ j−1

i F . A sheaf of OXét
-modules F is coherent if it

is finitely generated, and for any (j : U → X ) ∈ Xét and integer n, any OUét
-

module homomorphism O⊕nUét
→ j−1F has finitely generated kernel. Let Coh (Xét)

denote the full subcategory of Mod (Xét) having those objects which are coher-
ent. Certainly, coherence is local for the étale topology and is stable under pull-
backs. Also, if X is representable, then the natural functor Coh (Xét)→ Coh (X )
is an equivalence of categories. By [FAC, Thm. 1] we immediately deduce that
Coh (Xét) ⊂Mod (Xét) is a full abelian subcategory closed under extensions. Since
there is now no possibility for confusion, we will write OXét

(resp. Coh (Xét)) as
OX (resp. Coh (X )) whether X is representable or not.

Theorem 2.2. Let X be an analytic Deligne–Mumford stack.

(1) Let x ∈ |X |, then OX ,x is a noetherian local ring.
(2) (Oka’s Theorem) OX is coherent.
(3) (Direct Image Theorem) If f : X → Y is a proper and representable

morphism of analytic Deligne–Mumford stacks and F ∈ Coh (X ), then
f∗F ∈ Coh (Y).

Proof. Claims 1 and 2 are local for the étale topology on X , thus follow from the
corresponding results for analytic spaces [GR84, 2.2.1 and 2.5.3]. Claim 3 is local for
the étale topology on Y, so we are now reduced to the case where f is a morphism
of analytic spaces, and the claim follows from [GR84, 10.5.6]. �

Just as in the case for analytic spaces [GR84, 1.2.2], for an analytic Deligne–
Mumford stack X and a coherent sheaf of OX -ideals I, there is an associated
closed analytic substack V (I) ↪→ X with the property that |V (I)| = | supp(OX /I)|
and OV (I) = OX /I. The following Lemma is a Nullstellensatz type result which
will be used frequently.

Lemma 2.3. Fix a proper analytic Deligne–Mumford stack X , a coherent OX -
module F and a coherent OX -ideal I.

(1) If | suppF| ⊂ |V (I)|, then there exists k > 0 such that IkF = 0.
(2) Given a coherent subsheaf F ′ ⊂ F such that | suppF ′| ⊂ |V (I)|, then there

exists k > 0 such that (IkF) ∩ F ′ = 0.

Proof. For 1, the Rückert Nullstellansatz [GR84, §3.2] shows that for any x ∈ |X |,
there is an étale neighborhood (Ux, ux) → (X , x) and a positive integer kx such
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that (IkxF)Ux = 0. The compactness of |X | now gives the result. For 2, by 1 we
are free to assume that IF ′ = 0. Now fix x ∈ |X | and observe that the local ring
OX ,x is noetherian (Theorem 2.21), so by [AM69, Cor. 10.10] there exists a positive
integer kx such that (Ikxx Fx) ∩ F ′x = 0. Note that for any x ∈ |X |, the sheaf of
OX -modules Gx = (IkxF) ∩ F ′ is coherent, and has closed support. As (Gx)x = 0,
there is an open neighborhood Ux of x ∈ |X | such that Gx |Ux= 0. The compactness
of |X | now gives the claim. �

Fix an algebraic Deligne–Mumford stack X and let U → X be an étale cover by
a scheme. Set R = U×X U , and define Xan to be the quotient stack [Ran ⇒ Uan] in
the 2-category of stacks over An. Arguing as in [LMB, 4.3.1], one readily deduces
that Xan is an analytic Deligne–Mumford stack and is independent of the covering
U → X. We call Xan the analytification of X and this assignment can be made
functorial. On the level of sets we have |Xan| = |X(SpecC)|. It is readily seen—
using arguments similar to [SGA1, XII.3.1–2], with the aid of [LMB, 16.6]—that
an algebraic Deligne–Mumford stack is proper if and only if its analytification is so.
Similarly, a morphism of algebraic Deligne–Mumford stacks is locally quasi-finite
(resp. separated, representable, surjective, etc.) if and only if its analytification is
so.

If X is an algebraic Deligne–Mumford stack, there is also an analytification
functor:

Coh (X)→ Coh (Xan) : F 7→ Fan

Observe that if I / OX is a coherent sheaf of ideals, then (V (I))an = V (Ian).
For an algebraic (resp. analytic) Deligne–Mumford stack X which is separated, let
Cohp(X) denote the category coherent OX -modules with proper support. If M ∈
Cohp(X), then Man ∈ Cohp(Xan). We conclude this section with some GAGA
results for separated Deligne–Mumford stacks, which are marginally stronger than
[Toë99, 5.10] (where they are proved when X is proper).

Theorem 2.4. Let X be an algebraic Deligne–Mumford stack. If X is separated,
then the analytification functor:

Cohp(X)→ Cohp(Xan)

is an equivalence of categories.

Proof. We give the necessary modifications to the arguments of [Toë99, 5.10]. Fix
G ∈ Cohp(X), then there is a closed immersion ı : W ↪→ X with W proper such
that the adjunction G→ i∗i

∗G is an isomorphism. Thus, given F ∈ Cohp(X), we
have natural bijections:

HomOX (F,G) ∼= HomOX (F, i∗i
∗G) ∼= HomOW (i∗F, i∗G)

∼= HomOWan
((i∗F )an, (i

∗G)an) [Toë99, 5.10]

∼= HomOWan
(i∗anFan, (i

∗G)an) [Toë99, 5.12]

∼= HomOXan
(Fan, (ian)∗(i

∗G)an)

∼= HomOXan
(Fan, (i∗i

∗G)an) [Toë99, 5.11]

∼= HomOXan
(Fan, Gan).

Thus, we have proved that the analytification functor is fully faithful. For the
essential surjectivity, let F ∈ Cohp(Xan) and take OX to be the category of quasi-
compact open subsets of X. We note that {U}U∈OX is an open cover of X and so
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{|Uan| ∩ | suppF|}U∈OX is an open cover of | suppF|. By assumption | suppF| is
compact, so | suppF| ⊂ |Uan| for some open immersion j : U → X with U quasicom-
pact. Thus the adjunction (jan)!j

∗
anF → F is an isomorphism, j∗anF ∈ Cohp(Uan),

and as (jan)!Han = (j!H)an for all OU -modules H (easily verified on stalks), we
deduce that it is sufficient to prove the essential surjectivity of the analytification
functor AX,p when X is, in addition, quasicompact. The Chow Lemma for sepa-
rated Deligne–Mumford stacks [LMB, 16.6.1] and the arguments of [Toë99, 5.10]
immediately reduce us to the situation where X is a quasiprojective scheme. In
[SGA1, XII.4.4], the analytification functor AX,p is proved to be an equivalence
when X is a proper scheme. To deduce the quasiprojective case from the projective
case, one argues analogously to [EGA, III.5.2.6]. �

We now obtain two easy corollaries. First, we have Theorem D in the separated
case.

Corollary 2.5. Let X be an algebraic Deligne–Mumford stack which is separated.
If σ : Z → Xan is finite with Z proper, then there exists a finite morphism of
algebraic Deligne–Mumford stacks s : Z → X, a 1-isomorphism f : Zan → Z, and
a 2-morphism αf : san → σ ◦ f .

Second, we have Theorem C in the separated case.

Corollary 2.6. Fix algebraic Deligne–Mumford stacks Z and X over C. Suppose
that Z is proper and X is separated. Then, the analytification functor:

Hom(Z,X)→ Hom(Zan, Xan)

induces an equivalence of categories.

With Corollary 2.6 at our disposal, we can also prove the full-faithfulness of
Theorem D. Before we do this, however, we will need to give some precise definitions.

For an algebraic (resp. analytic) Deligne–Mumford stack X, let QF(X) denote

the category of 1-morphisms (Z
s−→ X) which are locally quasi-finite, separated, and

representable. A morphism (f, αf ) : (Z ′
s′−→ X) → (Z

s−→ X) in QF(X) consists
of a 1-morphism f : Z ′ → Z together with a 2-morphism αf : s′ ⇒ s ◦ f over X.
We will frequently contract this to “f : Z ′ → Z is a morphism in QF(X)”. Let
QFp(X) denote the full subcategory QF(X) with objects those (Z → X) such that
Z is proper. If X is an algebraic Deligne–Mumford stack, there is an analytification
functor:

ΨX : QF(X)→ QF(Xan).

The analytification functor ΨX sends QFp(X) to QFp(Xan), and we denote this re-

striction by ΨX,p. An object (Z σ−→ Xan) ∈ QF(Xan) (resp. QFp(Xan)) is algebraiz-
able if it lies in the essential image of the analytification functor ΨX (resp. ΨX,p).

Lemma 2.7. Fix an algebraic Deligne–Mumford stack X. Then, the analytification
functor:

ΨX,p : QFp(X)→ QFp(Xan)

is fully faithful.

Proof. For i = 1, 2 let (Zi
si−→ X) ∈ QFp(X), then:

HomQF(X)((Z
1 → X), (Z2 → X)) = HomX(Z1, Z2) = {Z1 t−→ Z1 ×X Z2 : (s1, s2) ◦ t = idZ1}.
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For i = 1,2 the morphisms si are separated and representable, thus Z1 ×X Z2 is
separated. Moreover, Z1 is proper, so Corollary 2.6 now demonstrates that:

{Z1 t−→ Z1×XZ2 : (s1, s2)◦t = idZ1} = {Z1
an

τ−→ Z1
an×XanZ

2
an : (s1

an, s
2
an)◦τ = idZ1

an
}.

As before, however:

{Z1
an

τ−→ Z1
an ×Xan

Z2
an : (s1

an, s
2
an) ◦ τ = idZ1

an
} = HomXan

(Z1
an, Z

2
an),

and we deduce the claim. �

3. Counterexamples

First, we give an example showing that Theorem A is false for families of curves
of genus 1.

Example 3.1. Let H be the Hopf surface: it is the quotient of C2 − {0} by the
free Z-action (z1, z2) 7→ ( 1

2z1,
1
2z2). The surface H is proper and is an elliptic fiber

space over CP1, but is not algebraizable [BHPV04, V.18]. In particular, this gives
a family of smooth analytic curves over a projective base which is not algebraizable.

Our next example shows that the separatedness assumption in Theorem 2.4 is
essential—even for smooth and universally closed schemes. The argument given is
a variation of [Har77, B.2.0.1].

Example 3.2. Let E be an elliptic curve. Since Ext1
OE (OE ,OE) ∼= H1(E,OE) 6=

0, there exists a non-split extension of OE by OE, which we denote as E. Set
Y = P(E), then [Har77, V.2.3] shows that PicE is a direct summand of PicY .
Since E is an elliptic curve, PicE is uncountable, thus PicY is uncountable.

Now let E0 ⊂ Y denote the unique section of Y → E with self-intersection
number E2

0 = 0 [Har77, V.2.8.1]. Take U = Y \ E0 and denote the resulting open
immersion by i : U ↪→ Y . By [Har77, II.6.6 & II.6.16], PicY → PicU is surjective
with countable kernel, so PicU is also uncountable. It is shown in [Har70, pp. 232–
234], however, that there is an analytic isomorphism Uan

∼= C××C×, thus PicUan
∼=

Z×Z is countable. We deduce that the morphism of abelian groups PicU → PicUan

has uncountable kernel and is consequently non-empty. Since PicY → PicU is
surjective, it follows that there are two algebraic line bundles L and M on Y , such
that the analytic line bundles i∗anLan and i∗anMan are analytically isomorphic, but
the algebraic line bundles i∗L and i∗M are not algebraically isomorphic.

Define the smooth, universally closed, and finite type C-scheme X by gluing two
copies of Y along U . Let j1, j2 : Y ⇒ X denote the two different inclusions
of Y into X. By gluing, we obtain an analytic line bundle F on Xan such that
(j1)

∗
anF ∼= Lan and (j2)

∗
anF ∼=Man. If F is algebraizable, then there is a coherent

OY -module F together with an analytic isomorphism Fan
∼= F . In particular, we

see that there are induced analytic isomorphisms of coherent sheaves on Yan:

(j∗1F )an
∼= (j1)

∗
anF ∼= Lan and (j∗2F )an

∼= (j2)
∗
anF ∼= Man.

Since Y is projective, by GAGA [SGA1, XII.4.4], the induced isomorphism (j∗1F )an
∼=

Lan (resp. (j∗1F )an
∼= Lan) is uniquely algebraizable to an algebraic isomorphism

j∗1F
∼= L (resp. j∗2F

∼= M). However, this implies there is an algebraic isomor-
phism:

i∗L ∼= i∗j∗1F
∼= i∗j∗2F

∼= i∗M,
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which is a contradiction. Hence, the analytic line bundle F is not algebraizable.
Thus, the analytification functor Coh (X) → Coh (Xan) is not necessarily essen-
tially surjective for universally closed but not separated schemes.

Our last example shows that Corollary 2.5 cannot be extended to non-separated
schemes.

Example 3.3. Let X and F be as in Example 3.2. Set Z to be the analytic space
with |Z| = |Xan| and OZ = OXan

⊕F , with the multiplication map (x, f)(x′, f ′) =
(xx′, xf ′ + x′f). The finite map of analytic spaces Z → Xan is not algebraizable.

4. Pushouts

The main result of this is the following dévissage lemma (Lemma 4.1) which is
fundamental to our proof of Theorem D.

Lemma 4.1. Fix an algebraic Deligne–Mumford stack X. Consider a finite and

surjective QFp(Xan)-morphism f : (Z ′ σ′−→ Xan) → (Z σ−→ Xan) with (Z ′ σ′−→
Xan) ∈ QFp(Xan) algebraizable. Fix a Zariski closed subset |Q| ⊂ |X| and sup-

pose that any closed analytic substack of Z supported in σ−1|Qan| is algebraizable.

If ker f ] and coker f ] have support contained in σ−1|Qan|, then (Z σ−→ Xan) ∈
QFp(Xan) is algebraizable.

We will prove Lemma 4.1 by forming finite colimits in the category QF(X) along
finite morphisms. In other words, we will glue stacks which are locally quasi-finite
and representable over an algebraic or analytic Deligne–Mumford stack along finite
morphisms. For this, we require several preliminaries.

Let X be an algebraic Deligne–Mumford stack and fix (Zi
si−→ X) ∈ QF(X) for

i = 1, 2, 3. In addition, fix finite morphisms tj : Z3 → Zj for j = 1, 2 in QF(X). It
was shown in [HalR10, Thm. 2.10], that there is a cocartesian diagram in QF(X):

(1) Z3

t2

��

t1 // Z1

m1

��
Z2 m2

// Z4,

and the morphisms mi : Zi → Z4 in QF(X) are finite. It was also shown [loc. cit.],
that the Zariski topological space |Z4| is the colimit of the diagram of topological

spaces [|Z1| t1←− |Z3| t
2

−→ |Z2|], and that there is an isomorphism of coherent sheaves

OZ4 → m1
∗OZ1×m3

∗OZ3
m2
∗OZ2 . Also, if for i = 1, 2 we have (Zi

si−→ X) ∈ QFp(X),

then (Z4 s4−→ X) ∈ QFp(X).
We would now like to investigate the behaviour of the diagram (1) under analyti-

fication. This requires some deliberations on pushouts in the category of analytic
spaces.

Given a diagram of ringed spaces E := [V 1 ← V 3 → V 2], let the topological
space |V 4| be the colimit of the induced diagram |E| := [|V 1| ← |V 3| → |V 2|]
in the category of topological spaces. We have induced maps ni : |V i| → |V 4|,
and the colimit of the diagram E in the category of ringed spaces is the ringed
space V 4 := (|V 4|, n1

∗OV 1 ×n3
∗OV 3

n2
∗OV 2). The morphisms of topological spaces
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ni : |V i| → |V 4| together with the projections OZ4
→ ni∗OV i induce morphisms of

ringed spaces ni : V i → V 4.
If the ringed spaces V i are locally ringed, and the maps ni are morphisms of

locally ringed spaces, then V 4 is the colimit of the diagram E in the category of
locally ringed spaces. Indeed, given a locally ringed space W and for i = 1, 2, 3
compatible morphisms of locally ringed spaces wi : V i → W , there is a uniquely
induced morphism of ringed spaces w4 : V 4 →W . It remains to show that w4 is a
morphism of locally ringed spaces. Let z ∈ |V 4| have image w ∈ |W |, then we have
an induced morphism of local rings OW,w → OV 4,z which we must show is local.
The morphism |V 1| q |V 2| → |V 4| is surjective, so there exists some i ∈ {1, 2} and
zi ∈ |V i| such that z = ni(zi). We now have a triple of morphisms of local rings
OW,w → OV 4,z → OV i,zi and by hypothesis, the morphisms OW,w → OV i,zi and
OV 4,z → OV i,zi are local. The claim is now a consequence of the following general

observation: given a triple of morphisms of local rings (A,mA)
f−→ (B,mB)

g−→
(C,mC) such that gf and g are local, then f is local.

Thus, to show that a scheme (resp. analytic space) is a pushout of some schemes
(resp. analytic spaces), it will suffice to show that it is the pushout in the category
of ringed spaces, and the maps involved are all maps of schemes (resp. analytic
spaces). In the lemma that follows we retain the notation of diagram (1).

Lemma 4.2. Let X be an algebraic Deligne–Mumford stack. Then, the commuta-
tive diagram in QF(Xan):

Z3
an

t2an

��

t1an // Z1
an

m1
an

��
Z2

an

m2
an // Z4

an,

is cocartesian and remains so after flat and representable base change on Xan.
Thus all finite colimits along finite morphisms exist in QF(X), are preserved under
analytification, and remain colimits under flat and representable base change on
Xan.

Proof. The latter claim is consequence of the fact that finite colimits can be built
from finite disjoint unions and pushouts, so it suffices to prove the former.

Set m3 := m1 ◦ t1. First, we assume that X is a scheme. For l = 1, 2, 3 observe
that because the morphism ml : Zl → Z4 is finite, the natural morphism of OZ4

an
-

modules (ml
∗OZl)an → (ml

an)∗OZlan
is an isomorphism [SGA1, XII.4.2]. By [SGA1,

XII.1.3.1], the analytification functor Coh (Z4) → Coh (Z4
an) is also exact. Thus

we have a natural sequence of isomorphisms of coherent OZ4
an

-modules:

OZ4
an

∼= (OZ4)an
∼= (m1

∗OZ1 ×m3
∗OZ3

m2
∗OZ2)

an
∼= (m1

∗OZ1)an ×(m3
∗OZ3 )

an
(m2
∗OZ2)an

∼= (m1
an)∗OZ1

an
×(m3

an)∗OZ3
an

(m2
an)∗OZ2

an
.

Hence, we conclude that Z4
an is the colimit of the diagram in the category of ringed

spaces, and remains so after flat base change on X. It is clear that this implies
that Z4

an is the colimit in the category of analytic spaces thus the diagram is also
cocartesian in QF(Xan).

Next, we assume that X is an algebraic Deligne–Mumford stack. Let X1 → X
be an étale cover by a scheme and set X2 = X1 ×X X1 (which is also a scheme).
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Also, set Zki = Zk ×X Xi for i = 1, 2 and k = 1, 2, 3, 4. By the case of schemes
already considered, we know for i = 1 and 2 that the analytic space (Z4

i )an is
the colimit of the diagram [(Z1

i )an ← (Z3
i )an → (Z2

i )an] in the category of analytic
spaces. The universal properties furnish us with an étale groupoid of analytic spaces
[(Z4

2 )an ⇒ (Z4
1 )an], with quotient in the category of analytic Deligne–Mumford

stacks Z4
an. The universal property of the pushouts and étale descent immediately

imply that (s4
an : Z4

an → Xan) ∈ QF(Xan) is the relevant colimit and is also
preserved after representable and flat base change on Xan. �

We now recall some general facts about conductors. Fix a morphism of rings φ :
A→ B, define the conductor Cφ of φ to be the image of the A-ideal AnnA(cokerφ)
in B. A trivial calculation shows Cφ is a B-ideal. Also, if I is an A-ideal such that

Ĩ := IB ⊂ Cφ, then another easy calculation proves that Ĩ ⊆ imφ. In particular, if

φ is injective, then Ĩ is also an A-ideal and the resulting conductor square:

(2) B/Ĩ Boo

A/Ĩ

OO

A

OO

oo

is cartesian. The power of the conductor square lies in the fact that the rings B,

A/Ĩ, and B/Ĩ can frequently be chosen to be better behaved than A.
The above deliberations can be variedf to handle a finite morphism of algebraic

or analytic Deligne–Mumford stacks f : Z ′ → Z. Define the conductor Cf of f
as the image of the OZ-ideal AnnOZ (coker f ]) in f∗OZ′ . As before, Cf is also an
f∗OZ′ -ideal. If I / OZ is a coherent ideal such that I ⊂ Cf , then the image of

I in f∗OZ′ generates a f∗OZ′ -ideal Ĩ ⊂ Cf , contained in the image of OZ . In

particular, if f ] is injective, then Ĩ is, in addition, a coherent OZ-ideal containing
I. For a coherent ideal J /OZ , let JZ′ denote the OZ′ -ideal generated by f∗J (if f

is flat, then f∗J = JZ′). Since f is finite, the inclusion of OZ-ideals I ⊂ Ĩ induces

an equality of OZ′ -ideals IZ′ = ĨZ′ . We now extend the conductor square (2) to
analytic Deligne–Mumford stacks.

Lemma 4.3. Let X be an analytic Deligne–Mumford stack and consider a mor-
phism f : Z ′ → Z in QF(X ) which is finite and f ] : OZ → f∗OZ′ is injective. Fix
a coherent ideal I /OZ such that I ⊂ Cf . Then, the following diagram in QF(X )
is cocartesian:

V (IZ′) �
� //

��

Z ′

f
��

V (Ĩ) �
� // Z.

Proof. First, we assume that X is an analytic space, then we will show that the
diagram above is cocartesian in the category of locally ringed spaces, thus in the
category of analytic spaces. We will use the criterion of [Fer03, Sc. 4.3(b)]. Note
that from the associated cartesian conductor square for rings (2), it suffices to show
that Z has the correct topological space. Since f ] is injective and f is finite, then f

is surjective and closed, thus submersive. Let U = Z−V (Ĩ) and U ′ = Z ′−V (IZ′).
It remains to show that f induces a bijection of sets U ′ → U . Since Ĩ ⊂ Cf , then
for u ∈ U we have that the map f ]u : OZ,u → (f∗OZ′)u is a bijection. Thus, since f
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is finite, we may conclude that the induced surjective morphism f−1(U) → U has
connected fibers—thus is a bijection of sets. Hence, we are reduced to showing that

the inclusion U ′ ↪→ f−1(U) is surjective. This follows from (Z−V (Ĩ))∩f(V (IZ′)) =
∅, which is obvious.

In the case where X is an analytic Deligne–Mumford stack, since all of these
constructions commute with étale base change on Z, we may work étale locally on
X and deduce the result from the case of analytic spaces already proved. �

Combining Lemmata 4.2 and 4.3 we can now prove Lemma 4.1.

of Lemma 4.1. Let J / OX be a coherent ideal such that |V (J)| = |Q|. By as-
sumption, | supp ker f ]| ⊂ |V ((Jan)Z)| so by Lemma 2.32 we may replace J by
some power Jk so that (Jan)Z ∩ ker f ] = 0. Now consider the diagram of ana-
lytic Xan-stacks [V ((Jan)Z) ← V ((Jan)Z′) → Z ′]. By hypothesis, these analytic
Deligne–Mumford stacks are all algebraizable. By Lemma 4.2, the colimit of this
diagram in QF(Xan), which we denote as Z ′′, is algebraizable. In particular, we

obtain a factorization of the map f : Z ′ → Z as Z ′ → Z ′′ β−→ Z. Trivially, β is
finite and surjective. We claim, in addition, that β] is injective and Cβ ⊂ Cf . Note
that because β∗ is left-exact we have the following isomorphism:

β∗OZ′′ ∼= OZ/(Jan)Z ×f∗[OZ′/(Jan)Z′ ]
f∗OZ′ .

Thus, it remains to prove that if ρ : A → B is a ring homomorphism and M / A
is an ideal such that M ∩ ker ρ = 0, then the map ρ′ : A → A/M ×B/MB B is
injective and Cρ′ ⊆ Cρ. The first claim is trivial and the latter follows readily from
the Snake Lemma.

We may now conclude that | supp(kerβ])| = ∅ and | supp(cokerβ])| ⊆ | supp(coker f ])| ⊆
σ−1|Qan|. So we are now reduced to the case where f ] is assumed to be injective.

By hypothesis, (V ((Jan)Z) → Xan) is algebraizable. By Lemma 2.31 we may
replace J by some power such that (Jan)Z coker f ] = 0, thus Cf ⊇ (Jan)Z . As Z ′
is proper and algebraizable, then (V ((Jan)Z′) → Xan) is also algebraizable. The
diagram:

V ((Jan)Z′)

��

// Z ′

��
V ((J̃an)Z) // Z

is cocartesian in QF(Xan) (Lemma 4.3), thus (Z σ−→ Xan) is algebraizable (Lemma
4.2) . �

5. Dévissage

First we prove the birational dévissage on the category QFp(X) for schemes.
Before we get to this, we require the following Lemma which does most of the
work.

Lemma 5.1. Fix a proper and surjective morphism of schemes q : Y → X. Let

(Z σ−→ Xan) ∈ QFp(Xan) be such that (ZYan
→ Yan) ∈ QFp(Yan) is algebraizable.

Then, there exists a finite and surjective QFp(Xan)-morphism f : (Z ′ σ
′

−→ Xan)→

(Z σ−→ Xan) with (Z ′ σ′−→ Xan) ∈ QFp(Xan) algebraizable. In addition, if q is an
isomorphism over an open subscheme U ⊂ X, then f maybe chosen to be such that
ker f ] and coker f ] have support contained in σ−1(|Xan| \ |Uan|).
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Proof. The morphism (qan)Z : ZYan
→ Z is a proper morphism of analytic spaces,

thus admits a Stein factorization ZYan

β−→ Z ′ f−→ Z [GR84, §10.6.1]. That is, β
is proper and surjective with connected fibers, f is finite and surjective, and the
natural map β] : OZ′ → β∗OZYan

is an isomorphism. If q is an isomorphism over

an open subscheme U ⊂ X, then (qan)Z is an isomorphism over σ−1(Uan), whence
f is an isomorphism over σ−1(Uan). We deduce immediately that this implies that
ker f ] and coker f ] have support contained in σ−1(|Xan| \ |Uan|). Thus it remains

to show that the resulting object (Z ′ σ
′

−→ Xan) ∈ QFp(Xan) is algebraizable. To do
this we will give an alternate description of Z ′.

By hypothesis, ZYan
∼= Wan for some W ∈ QFp(Y ). Note that W is proper over

SpecC and since the diagonal of Y is quasicompact, it follows that the morphism
W → Y is also quasicompact. Hence, W → Y is quasi-finite, separated, and
representable. Zariski’s Main Theorem [EGA, IV.18.12.13] now provides a finite
Y -scheme E and a dense open immersion j : W ↪→ E. Let r be the composition
E → Y → X, then r is a proper morphism of locally noetherian schemes and thus

admits a Stein factorization E
r′−→ E′

t−→ X [EGA, III.4.3.1]. That is, OE′ ∼= r′∗OE ,
r′ is proper and surjective with geometrically connected fibers, and t is finite.

We now proceed to show that |Z ′| = r′(|W |) ⊆ |E′| is Zariski open and that Z ′
is isomorphic to the analytification of the resulting open subscheme Z ′ ⊆ E′. The
morphism r′ is proper, so is of finite type, hence by Chevalley’s Theorem [EGA,
IV.1.8.4] |Z ′| ⊆ |E′| is constructible. In addition to being proper, r′ is surjective,
thus is universally submersive [SGA1, IX.2.2], so |Z ′| ⊂ |E′| is Zariski open if and
only if r′−1|Z ′| ⊂ |E| is so. By [EGA, IV.1.8.2], r′−1|Z ′| is also constructible.
Since E is Jacobson [EGA, IV.10.4.6], r′−1|Z ′| ⊂ |E| is Zariski open if and only if
|E(C)|∩r′−1|Z ′| ⊂ |E(C)| is Zariski open [EGA, IV.10.4.8] (where we give these sets
the subspace topology). Note, however, that |E(C)|∩r′−1|Z ′| = r′−1(|Z ′|∩|E′(C)|),
hence it is sufficient to show that the natural map |W (C)| → r′−1(|Z ′| ∩ |E′(C)|) is
bijective. To prove this will require an analysis of the fibers of W over |X(C)| and
|E′(C)|.

Let x ∈ |Xan| = |X(C)|, then |Zx| = σ−1(x) is a closed and discrete subset of |Z|.
Since |Z| is compact, it follows that |Zx| is a finite set, and so Zx is a finite analytic
space. Set (qan)Z : ZYan → Z to be the pullback of qan : Yan → Xan by σ : Z → Xan.
Observe that we have a natural morphism of fibers (qan)Z,x : (ZYan)x → Zx over x.
The morphism q is proper, thus so is the morphism (qan)Z,x and as Zx is finite, we
conclude that (ZYan

)x is a proper analytic space. Since properness of a C-scheme
can be verified on its analytification, we deduce that Wx is a proper C-scheme.

Now let v ∈ |E′(C)| have image x ∈ |X(C)|. Since Wv is a closed subscheme
of Wx ×X E′, Wx ×X E′ → Wx is finite, and Wx is proper, then Wv is a proper
C-scheme. In particular, the open immersion Wv → Ev is also proper, thus its
image is open and closed. But Ev is connected (by construction), so the image
of Wv in Ev is either everything or empty. We deduce immediately that the map
|W (C)| → r′−1(|Z ′| ∩ |E′(C)|) is bijective. Thus, we have proved that |Z ′| ⊂ |E′|
is a Zariski open subset.

We now let (Z ′
s′−→ X) ∈ QFp(X) denote the open subscheme of E′ defined

by |Z ′|. Let b : W → Z ′ denote the induced map. Observe that b is proper
and surjective with geometrically connected fibers, and b] : OZ′ → b∗OW is an
isomorphism. By [SGA1, XII.4.2], the resulting morphism ban : Wan → Z ′an has the
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same properties. That (Z ′an

s′an−−→ Xan) is isomorphic to (Z ′ σ
′

−→ Xan) in QFp(Xan)
now follows from Lemma 5.2 by taking X = Xan, W = Wan, Z1 = Z ′, Z2 = Z ′an,
β1 = β, β2 = ban, σ1 = σ′, and σ2 = s′an. �

Lemma 5.2. Fix an analytic space X and a commutative diagram:

W
β1 //

β2

��

Z1

σ1

��
Z2

σ2 // X ,

where for i = 1 and 2 we have (Zi
σi−→ X ) ∈ QFp(X ), βi is proper and surjective

with connected fibers, and β]i : OZi → (βi)∗OY is an isomorphism. Then, there
exists a unique isomorphism Z1 → Z2 in QFp(X ) completing the diagram.

Proof. It is sufficient to construct a unique morphism of analytic spaces γ : Z1 → Z2

completing the diagram. For z ∈ |Z1|, the subset (β1)−1(z) ⊂ |W| is closed and
connected and so Gz := β2 ◦ (β1)−1(z) ⊂ |Z2| is also closed and connected. Note,
however, that

σ2(Gz) = σ2 ◦ β2 ◦ (β1)−1(z) = σ1 ◦ β1 ◦ (β1)−1(z) = σ1(z).

Hence, we conclude that Gz ⊂ σ−1
2 ◦ σ1(z). The morphism σ2 : Z2 → X is locally

quasi-finite, thus we conclude that Gz is discrete. Since Gz is also connected,
Gz consists of a single point. Thus we see that there is a unique map of sets
γ : |Z1| → |Z2| : z 7→ Gz which is compatible with the remainder of the data.
We now claim that γ is continuous. To see this, fix a closed subset V ⊂ |Z2|, then
because β1 is submersive (it is proper and surjective), γ−1(V) ⊂ |Z1| is closed if and
only if (β1)−1γ−1(V) ⊂ |W| is closed. By construction, however, (β1)−1γ−1(V) =
(β2)−1(V) ⊂ |W|, which is closed because β2 is continuous, thus γ is continuous. We
define the morphism γ] : OZ2

→ γ∗OZ1
on functions as the following composition:

OZ2

β]2−→ (β2)∗OW = (γ ◦ β1)∗OW ∼= γ∗(β1)∗OW
γ∗[(β

]
1)−1]

−−−−−−→ γ∗OZ1 .

In particular, this morphism is uniquely defined by the data, and we deduce the
result. �

With Lemma 5.1 at our disposal, we now move to proving the birational dévissage.

Proposition 5.3. Fix a scheme X which is quasicompact. Suppose that for any
closed immersion V ↪→ X, there is a proper and birational morphism V ′ → V of
schemes such that the analytification functor ΨV ′,p is an equivalence. Then, the
analytification functor ΨX,p is an equivalence.

Proof. The analytification functor ΨX,p is fully faithful by Lemma 2.7, so it remains
to prove its essential surjectivity, which we do by noetherian induction on the
closed subsets of X. Thus, we are immediately reduced to the situation where the
analytification functor ΨV,p is already known to be an equivalence for all closed
subschemes V ↪→ X with |V | ( |X|.

By hypothesis, there is a proper and birational morphism q : Y → X such that
the analytification functor ΨY,p is an equivalence. Fix a dense open subscheme

U ⊂ X for which q−1U → U is an isomorphism, set |Q| = |X \ U |, and let (Z σ−→
Xan) ∈ QFp(Xan). By assumption, (ZYan

σYan−−−→ Yan) ∈ QFp(Yan) is algebraizable.
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By Lemma 5.1 there is a finite and surjective QFp(Xan)-morphism f : (Z ′ σ′−→
Xan) → (Z σ−→ Xan), such that ker f ] and coker f ] have support contained in

σ−1|Qan|, and (Z ′ σ′−→ Xan) ∈ QFp(Xan) algebraizable. By noetherian induction,

any closed analytic subspace of Z supported in σ−1|Qan| is algebraizable. Thus, by

Lemma 4.1, (Z σ−→ Xan) ∈ QFp(Xan) is algebraizable. Hence, the analytification
functor ΨX,p is essentially surjective. �

Finally, we have the finite dévissage on QFp(X) for algebraic Deligne–Mumford
stacks X.

Proposition 5.4. Fix an algebraic Deligne–Mumford stack X which is quasicom-
pact. Suppose that for any closed immersion V ↪→ X, there is a finite and generi-
cally étale map V ′ → V such that the analytification functors ΨV ′,p and ΨV ′×V V ′,p
are equivalences, then the analytification functor ΨX,p is an equivalence.

Proof. By Lemma 2.7, the analytification functor ΨX,p is fully faithful, thus it
remains to treat the essential surjectivity. We now prove the result by noetherian
induction on the closed substacks of X. Hence, it suffices to assume that the
analytification functor ΨV,p is an equivalence for any closed substack V ↪→ X
such that |V | ( |X|. By assumption, there is a finite and generically étale map
π : X1 → X such that the analytification functors ΨX1,p and ΨX1×XX1,p are
equivalences. Fix a dense open substack U ↪→ X such that π−1U → U is étale and

set Q = X \ U . Let (Z σ−→ Xan) ∈ QFp(Xan). Set X2 = X1 ×X X1 and for i = 1

and 2 define Zi = Z ×Xan
Xi

an. By the hypotheses on the analytification functors
ΨX1,p and ΨX2,p, the diagram [Z2 ⇒ Z1] is algebraizable in QFp(Xan). Hence, by
Lemma 4.2, we conclude that the coequalizer in the category QFp(Xan) exists, and
is algebraizable. We denote this coequalizer by (σ′ : Z ′ → Xan) and the universal
properties give a finite morphism f : Z ′ → Z in QF(Xan).

Consider the open analytic substack U := σ−1(Uan) of Z. We claim that the
induced map f−1U → U is an analytic isomorphism. By Lemma 4.2, this may be
verified after pulling back everything by the morphism U1 := π−1(U) → U . In
particular, we are free to assume that (πan)U : U1 := (πan)−1

Z (U) → U admits a
section s. It is now a trivial calculation (using the Yoneda embedding) to verify
that the coequalizer of [U1 ×U U1 ⇒ U1] in QF(Uan) is U . But the coequalizer
of [U1 ×U U1 ⇒ U1], by Lemma 4.2, is uniquely isomorphic to f−1U . Hence, the
universal properties guarantee that f−1U → U is an isomorphism.

In particular, we deduce that ker f ] and coker f ] have support contained in
σ−1|Qan|. By noetherian induction, any closed analytic substack of Z supported

in σ−1|Qan| is algebraizable. Thus, by Lemma 4.1, we deduce that (Z σ−→ Xan) ∈
QFp(Xan) is algebraizable. Thus, the analytification functor ΨX,p is essentially
surjective. �

6. Proof of Theorems C and D

We now use the main results of § 5 to prove Theorem D.

of Theorem D. Given Lemma 2.7 it is sufficient to prove the essential surjectivity.
Special case. First we prove that the analytification functor ΨX,p is essentially
surjective in the case where X is a quasicompact scheme such that the structure

morphism factors as X
f−→ Y

g−→ SpecC, where f is étale and g is projective. Fix
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(Z σ−→ Xan) ∈ QFp(Xan). The analytic space Yan is separated, so the composi-
tion f ◦ σ : Z → Yan is a locally quasi-finite and proper morphism of analytic
spaces. By [GR84, Thm. XII.4.2] such a morphism is finite. Since Y is also pro-
jective, by [SGA1, XII.4.6], there is a finite morphism of schemes Z → Y with Z
proper, and Zan

∼= Z over Yan. To complete the proof in this setting, it suffices
to produce a quasi-finite morphism of schemes t : Z → X such that tan = σ.
Note that it is equivalent to produce a section to the quasicompact étale mor-
phism h : W := X ×Y Z → Z which agrees with the analytic section to the
morphism of analytic spaces han induced by σ. Thus, it remains to show that
HomZ(Z,W ) = HomZan

(Zan,Wan). By [FK88, I.11.3], the analytification of the
sheaf HomZ(−,W ) on the small étale site of Z is representable by the analytic
space Wan on the small étale site of Zan. Moreover, since h : W → Z is quasicom-
pact and étale, the sheaf HomZ(−,W ) on the small étale site of Z is constructible.
By [FK88, I.11.5], HomZ(Z,W ) = HomZan(Zan,Wan).
Quasicompact schemes. Now we prove that the analytification functor ΨX,p

is essentially surjective in the case where X is a quasicompact schemes. Thus,
any closed immersion V ↪→ X is of finite type over C, so by [RG71, Cor. 5.7.13],
there is a schematic and birational morphism V ′ → V such that the structure

morphism of V ′ over C factors as V ′
fV−−→ YV

gV−−→ SpecC, where fV is étale and
gV is projective. By the special case considered above, the analytification functor
ΨV ′,p is an equivalence and so by Proposition 5.3 the analytification functor ΨX,p

is an equivalence.
Quasicompact algebraic Deligne–Mumford stacks. Now we prove that the
analytification functor ΨX,p is essentially surjective in the case where X is a qua-
sicompact algebraic Deligne–Mumford stack. Note that any closed immersion
V ↪→ X is of finite type over C, so by [LMB, Thm. 16.6], there is a finite and
generically étale morphism V ′ → V , where V ′ is a scheme. Since V ′ is a quasicom-
pact scheme, the case previously considered shows that the analytification functors
ΨV ′,p and ΨV ′×V V ′,p are equivalences. By Proposition 5.4 the analytification func-
tor ΨX,p is an equivalence.
General case. We finally prove that the analytification functor ΨX,p is essen-

tially surjective for all algebraic Deligne–Mumford stacks X. Fix (Z σ−→ Xan) ∈
QFp(Xan). Let OX denote the category of quasicompact open subsets of X. We

note that {U}U∈OX is an open cover of X and so {σ−1(Uan)}U∈OX is an open cover
of Z. Since Z is a compact topological space, and the exhibited cover is closed un-
der finite unions, there is an open immersion U ↪→ X such that the map Z → Xan

factors uniquely through Uan. By the previous case considered the analytification
functor ΨX,p is an equivalence. �

We now prove Theorem C.

of Theorem C. For the full faithfulness, fix morphisms f and g : Z → X such that
fan = gan. Let E = X×∆,X×X,(f,g)Z be the equalizer of f and g. Since the diagonal
of X is quasi-finite, separated, and representable by schemes, the same is true of
the induced morphism e : E → Z. To prove that f = g, it suffices to show that the
map e is an isomorphism. This is a local problem on Z for the étale topology, so we
are reduced to the case where Z and E are schemes. Finally, because analytification
preserves fiber products, we see that the map ean : Ean → Zan is an isomorphism,
whence e is an isomorphism [SGA1, XII.3.3(a)].
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For the essential surjectivity, let φ : Zan → Xan be an analytic map and take
Γφ : Zan → (Z ×X)an to be its graph. Since the diagonal of X is quasi-finite,
separated, and representable it follows that the same is true of Γφ. By Theorem

D, (Zan
Γφ−−→ (Z ×X)an) ∈ QFp((Z ×X)an) is uniquely algebraizable to (Z ′ →

Z × X) ∈ QFp(Z ×X) thus the QFp(Zan ×Xan)-isomorphism Zan → (Z ′)an is
algebraizable and the induced composition Z → Z ′ → Z × X → X defines a
morphism f such that fan

∼= φ. �

7. Proof of Theorems A and B

Fix an integer n ≥ 0. Let Un (resp. Uan
n ) denote the moduli stack of all n-pointed

algebraic (resp. analytic) curves. That is, a morphism from a scheme (resp. analytic
space) T to Un (resp. Uan

n ) is equivalent to a morphism of algebraic (resp. analytic)
spaces C → T which is proper and flat with one-dimensional fibers, together with n
sections to the map C → T . As in the Introduction, these curves are not assumed
to be smooth nor are the sections assumed to be disjoint. In [Smy12, B.1] it proved
that Un is an Artin stack, locally of finite presentation, with quasicompact and
separated diagonal.

Let UFA
n (resp. UFA,an

n ) denote the substack of Un (resp. Uan
n ) consisting of those

n-pointed curves with the finite automorphism property. Fix a non-negative integer
g and let Mg,n (resp. Man

g,n) denote the substack of Un (resp. Uan
n ) consisting of

those smooth n-pointed curves of genus g whose n sections have disjoint images. If
2g− 2 + n > 0, then we have inclusionsMg,n ⊂ UFA

n ⊂ Un which are representable
by open immersions. Since Artin stacks with quasi-finite diagonal in characteristic
zero are Deligne–Mumford, UFA

n is an algebraic Deligne–Mumford stack. There is
an induced morphism of analytic Deligne–Mumford stacks (UFA

n )an → UFA,an
n . We

now have three lemmata, which are likely known to experts.

Lemma 7.1. Fix a 1-morphism of stacks over An, f : X → G. Suppose that
X is an analytic Deligne–Mumford stack and the diagonal of G is representable by
analytic spaces. If for any local artinian C-scheme S the functor f(San) : X (San)→
G(San) is an equivalence, then f is an equivalence.

Proof. It is sufficient to show that for each analytic space W and 1-morphism
W → G, the resulting 1-morphism X ×G W → W is an equivalence of stacks over
An. Note, however, that because the diagonal of G is representable by analytic
spaces, the 1-morphism X ×G W → X ×W is representable by analytic spaces (it
is the pullback of ∆G : G → G ×G along X ×W → G ×G). By assumption X is an
analytic Deligne–Mumford stack, thus X ×G W → W is a 1-morphism of analytic
Deligne–Mumford stacks with the property that for all local artinian C-schemes S,
the functor (X ×G W)(San)→W(San) is an equivalence.

Thus it remains to prove that if g : V ′ → V is a 1-morphism of analytic Deligne–
Mumford stacks such that g(San) : V ′(San)→ V(San) is an equivalence for all local
artinian C-schemes S, then g is an isomorphism. First assume that g is repre-
sentable, then it is representable by bijective étale morphisms of analytic spaces,
thus is an isomorphism. For the general case, observe that ∆g : V ′ → V ′ ×V V ′
is representable and ∆g(San) is an equivalence for all local artinian S-schemes S.
Thus, by the case already considered, ∆g is an isomorphism. In particular, g is a
monomorphism, thus is representable, and we deduce the result. �
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Lemma 7.2. The morphism of An-stacks (UFA
n )an → UFA,an

n is an equivalence;
hence, Uan

n is an analytic Deligne–Mumford stack. Moreover, this equivalence sends
(Mg,n)an to Man

g,n.

Proof. A simple direct argument (or Theorem C to be sure) shows that for any
algebraic Deligne–Mumford stack X the natural functor X(S) → Xan(San) is an
equivalence for all local artinian C-schemes S. Taking X = UFA

n we see that the
functor UFA

n (S) → (UFA
n )an(San) is an equivalence for all local artinian C-schemes

S. Thus, by Lemma 7.1, the 1-morphism (UFA
n )an → UFA,an

n is an equivalence if the
functor UFA

n (S)→ UFA,an
n (San) is an equivalence for any local artinian C-scheme S

and the diagonal of UFA,an
n is representable by analytic spaces.

By separated GAGA (Corollary 2.6) the functor UFA
n (S)→ UFA,an

n (San) is easily
discerned to be fully faithful for all local artinian C-schemes S. For the essential
surjectivity, a proper and flat analytic curve C → San, C is a one-dimensional proper
analytic space, thus is algebraizable. The flat structure map C → San algebraizes,
as do the sections [loc. cit.]. Combining [Pou69, Thm. 2] with [Dou66, Thm. 10.2.1],
shows that Isom-spaces between n-pointed proper and flat relative analytic spaces
are representable by analytic spaces, whence we have proved that (UFA

n )an → UFA,an
n

is an equivalence. Finally, since smoothness of a morphism of algebraic C-spaces
and disjointness of sections to a morphism of algebraic C-space can be tracked by
their analytifications, it follows immediately that (Mg,n)an

∼=Man
g,n. �

We may now prove Theorem A.

of Theorem A. By Lemma 7.2, an analytic map W → Zan is equivalent to an
analytic map Zan → UFA,an

n
∼= (UFA

n )an. By Theorem C, this map is algebraizable
to a morphism of Deligne–Mumford stacks Z → UFA

n , giving rise to a flat family of
curves W → Z such that Wan

∼=W. �

We now address Theorem B. First, a definition.

Definition 7.3. Fix non-negative integers g and n satisfying 2g − 2 + n > 0. An
algebraic (resp. analytic) modular birational model of Mg,n (resp. Man

g,n) with
the finite automorphism property is a proper algebraic (resp. analytic) Deligne–
Mumford stack N (resp. N ), fitting into a 2-fiber diagram:

V �
� j′ //

i′

��

Mg,n

i

��

resp. V �
� j′ //

i′

��

Man
g,n

i

��
N
� � j // UFA

n N �
� j // UFA,an

n ,

where the map j is an open immersion, and the maps i′ and j′ have dense image.

of Theorem B. Let N ↪→ UFA,an
n be an analytic modular birational model of Man

g,n

with the finite automorphism property. Lemma 7.2 and Theorem D imply that the
open immersion of analytic stacks N ↪→ UFA,an

n is algebraizable to a quasi-finite
and separated morphism j : N → Un, where N is proper. Since jan is an open
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immersion, it follows that j is also. Next, form the 2-fiber square:

V
j′ //

i′ ��

Mg,n

i��
N

j // Un,

Clearly, all maps in the above diagram are open immersions, and it remains to show
that i′ and j′ have dense image. This may be checked after passing to the analyti-
fications, and since analytification commutes with 2-fiber products, we deduce the
claim. �
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