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Openness of versality via coherent functors
By Jack Hall at Canberra

Abstract. We give a proof of openness of versality using coherent functors. As an appli-
cation, we streamline Artin’s criterion for algebraicity of a stack. We also introduce multi-step
obstruction theories, employing them to produce obstruction theories for the stack of coherent
sheaves, the Quot functor, and spaces of maps in the presence of non-flatness.

Introduction

In M. Artin’s classic paper on stacks, a criterion for algebraicity is expounded [7, Theo-
rem 5.3]. In the present paper, we take a novel approach to algebraicity, proving an algebraicity
criterion for stacks which is easier to apply, more widely applicable, and admitting a substan-
tially simpler proof.

Theorem A. Fix an excellent scheme S and a category X that is fibered in groupoids
over the category of S -schemes, Sch=S . Then, X is an algebraic stack that is locally of finite
presentation over S , if and only if the following conditions are satisfied.

(1) [Stack] X is a stack over the site .Sch=S/ KEt.

(2) [Limit preservation] For any inverse system of affine S -schemes ¹SpecAj ºj2J with limit
SpecA, the natural functor

lim
�!
j

X.SpecAj /! X.SpecA/

is an equivalence of categories.

(3) [Homogeneity] For any diagram of affine S -schemes ŒSpecB  SpecA
i
�! SpecA0�,

where i is a nilpotent closed immersion, the natural functor

X.Spec.B �A A0//! X.SpecA0/ �X.SpecA/ X.SpecB/

is an equivalence of categories.
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138 Hall, Openness of versality via coherent functors

(4) [Effectivity] For any m-adically complete local noetherian ring .B;m/with an S -scheme
structure SpecB ! S such that the induced morphism Spec.B=m/! S is locally of
finite type, the natural functor

X.SpecB/! lim
 �
n

X.Spec.B=mn//

is an equivalence of categories.

(5) [Conditions on automorphisms and deformations] For any affine S -scheme T that is lo-
cally of finite type over S and � 2 X.T /, the functors

AutX=S .�;�/; DefX=S .�;�/WQCoh.T /! Ab

are coherent.

(6) [Conditions on obstructions] For any affine S -scheme T that is locally of finite type over
S and � 2 X.T /, there exist an integer n and a coherent n-step obstruction theory for X
at � .

Except for conditions (5) and (6), Theorem A is similar to Artin’s criterion [7, Theo-
rem 5.3]. Note, however, that we have fewer conditions, and these conditions are cleaner (e.g.
no deformation situations). The conditions of Theorem A are also stable under composition, in
the sense of [45].

This paper began with the realization that the homogeneity condition (3), which is
stronger than the analogous condition of [7, (S10)], together with conditions (5) and (6), sim-
plifies and broadens the applicability of existing results.

Our usage of the term “coherent” in conditions (5) and (6) of Theorem A is in a different
sense than what many readers may be familiar with and is due to M. Auslander [9]. For an
affine scheme S , a functor F WQCoh.S/ ! Ab is coherent if there exists a morphism of
quasi-coherent OS -modules K1 ! K2 such that for all I 2 QCoh.S/, there is a natural
isomorphism of abelian groups

F.I/ Š coker
�
HomOS

.K2; I/! HomOS
.K1; I/

�
:

It is proven in [20] that most functors arising in moduli are coherent.

Relation with other work. The idea of using the Exal functors to simplify M. Artin’s
results is due to H. Flenner [15]. Our results and techniques are quite different, however. In
particular, H. Flenner [15] does not address the relationship between formal smoothness and
formal versality.

Independently, work in the Stacks Project [44, 07T0] has provided a different perspective
on Artin’s results. This approach, however, requires that the deformation–obstruction theory is
given by a bounded complex. If there are non-flat or non-tame objects in the moduli problem,
the existence of such a complex is subtle. Note that while the problems with non-tame stacks
can be dealt with by [20, Theorem B], the problems with non-flatness likely needed to be
handled by derived algebraic geometry [44, blog:2572].

Using the ideas of B. Töen and G. Vezzosi [46, §1.4], J. Lurie has developed a crite-
rion for algebraicity in the derived context [31, Theorem 3.2.1]. Conditions (5) and (6) of
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Theorem A are related to Lurie’s requirement of the existence of a cotangent complex. Lurie’s
criterion is not applicable to Artin stacks, though it is a future intention [31, Remark 2]. J. Prid-
ham has proved a criterion for Artin stacks [39, Theorem 3.16] which is related to the results
of Lurie’s Ph.D. thesis [30, Theorems 7.1.6, 7.5.1] and also exploits a derived analogue of the
homogeneity condition (3) in order to simplify Lurie’s conditions.

To prove that the Quot functors for separated Deligne–Mumford stacks are algebraic
spaces, M. Olsson and J. Starr [38, Theorem 1.1] did not apply [7, Corollary 5.4], which like
[7, Theorem 5.3] is formulated in terms of a single-step obstruction theory. The reason for this
is simple: in the presence of non-flatness, it is difficult to formulate a single-step obstruction
theory with good properties.

They circumvented this predicament by the use of Artin’s original algebraicity criterion
[6, Theorem 5.3]. This earlier algebraicity criterion is not formulated in terms of the exis-
tence and properties of a single-step obstruction theory – but in terms of certain explicit lifting
problems – making its application more complicated (note that J. Starr [45, Theorem 2.15]
has subsequently generalized the criteria of [6, Theorem 5.3] to stacks). To solve these lifting
problems, M. Olsson and J. Starr [38, Lemma 2.5] used a 2-step process. This 2-step process
is insufficiently functorial to define a multi-step obstruction theory in the sense of this paper. It
is, however, closely related, and inspired the multi-step obstruction theories we define.

M. Olsson and J. Starr [38, p. 4077] noted that M. Artin had incorrectly computed the
obstruction theory of the Quot functor in the presence of non-flatness [6, (6.4)]. We have also
located some other articles in the literature that have not observed the subtlety of deformation
theory in the presence of non-flatness (see Sections 8–9). We would like to emphasize that
the impact of this on the main ideas of these articles is small. Indeed, the relevant arguments
in these articles are still perfectly valid in the flat case, which covers most cases of interest to
geometers. In the non-flat case, the relevant statements in these articles can be shown to hold
with the techniques and examples of this article.

By work of M. Olsson [36, Remark 1.7], the conditions of Theorem A are seen to be
necessary. The sufficiency of the conditions of Theorem A is demonstrated by the following
sequence of observations:

(i) formally versal deformations exist,

(ii) algebraizations of formally versal deformations exist, and

(iii) formal versality at a point implies smoothness in a neighborhood.

Using the generalizations of M. Artin’s techniques [7] due to B. Conrad and J. de Jong [11,
Theorem 1.5], conditions (1)–(4) of Theorem A prove (i) and (ii). The main contribution of
this paper is the usage of conditions (3), (5), and (6) of Theorem A to prove (iii).

Note that in our proof of (iii), the techniques of Artin approximation [5] are not used.
This is in contrast to M. Artin’s treatments [6,7], where this technique features prominently. In
a paper joint with D. Rydh [21], we illustrate how refinements of the homogeneity condition
(3) clarify and simplify M. Artin’s results on versality.

Outline. In Section 1, we discuss the notion of homogeneity. Homogeneity is a gen-
eralization of the Schlessinger–Rim criteria [12, Exposé VI]. This section is quite categorical,
but it is the only section of the paper that is such. Morally, homogeneity provides a stack
X with a linear structure at every point, which we describe in Section 2. To be precise, for

Brought to you by | University of Arizona
Authenticated

Download Date | 7/6/17 7:59 AM



140 Hall, Openness of versality via coherent functors

any scheme T , together with an object � 2 X.T /, homogeneity produces an additive functor
ExalX .�;�/WQCoh.T / ! Ab sharply controlling the deformation theory of �. The author
learnt these ideas from J. Wise (in person) and his paper [48], though they are likely well
known to experts, and go back at least as far as the work of H. Flenner [15]. In Section 3, we
recall and generalize – to the relative setting – the notion of limit preserving groupoid [7, §1].
The results in Section 3 are similar to those obtained by Lieblich–Osserman [27, §2.4].

In Section 4, we recall the notions of formal versality and formal smoothness. We next
recast these notions in terms of vanishing criteria for the functors ExalX .T;�/. The central
technical result of this paper is Theorem 4.4 – our new proof of (iii).

In Section 5, we briefly review coherent functors. In Section 6, we formalize multi-step
obstruction theories. In Section 7, we prove Theorem A.

The remainder of the paper is devoted to applications. In Section 8, we compute a 2-step
obstruction theory for the stack of coherent sheaves. Finally, in Section 9, we compute a 2-step
obstruction theory for the stack of morphisms between two algebraic stacks.

In Appendix A, we prove that pushouts of algebraic stacks along nilimmersions and affine
morphisms exist. This aids in the verification of the homogeneity condition (3) in practice. In
Appendix B, we consider left-exact sequences of Picard categories and a resulting 7-term exact
sequence. In Appendix C, we state two basic results on local Tor-functors for morphisms of
algebraic stacks.

Assumptions, conventions, and notations. If C is a category, then denote the opposite
category by Cı. A fibration of categories QWC ! D has the property that every arrow in the
category D admits a strongly cartesian lift. For an object d of the category D , we denote the
resulting fiber category byQ.d/. It will also be convenient to say that the category C is fibered
over D . If the category C is fibered over D and every arrow in the category C is strongly
cartesian, then we say that the functor Q is fibered in groupoids. The assumptions guarantee
that if the category C is fibered in groupoids over D , then for every object d of the category
D the fiber category Q.d/ is a groupoid.

Let T be a scheme. Denote by jT j the underlying topological space (with the Zariski
topology) and OT the (Zariski) sheaf of rings on jT j. If t 2 jT j, then let �.t/ denote its residue
field. Denote by QCoh.T / the abelian category of quasi-coherent sheaves on the scheme T .
Let Sch=T denote the category of schemes over T . The big étale site over T will be denoted
by .Sch=T / KEt. If T is locally noetherian, then let Coh.T / denote the abelian category coherent
sheaves on T .

Let A be a ring and let M be an A-module. Denote the quasi-coherent OSpecA-module
associated to M by fM . Denote the abelian category of all (resp. coherent) A-modules by
Mod.A/ (resp. Coh.A/).

As in [44], we make no separation assumptions on our algebraic stacks and spaces. As
in [37], we use the lisse-étale site for sheaves on algebraic stacks.

Fix a 1-morphism of algebraic stacks f WX ! Y . Given another 1-morphism of algebraic
stacks W ! Y we denote the pullback along this 1-morphism by fW WXW ! W .

A morphism of algebraic S -stacks U ! V is a locally nilpotent closed immersion if
it is a closed immersion defined by a quasi-coherent sheaf of ideals I, such that fppf-locally
(equivalently, smooth-locally) on V there always exists an integer n such that In D .0/.
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1. Homogeneity

Schlessinger’s conditions [42], for a functor of artinian rings, are fundamental to infinites-
imal deformation theory. Schlessinger’s conditions were generalized to groupoids by R. S. Rim
[12, Exposé VI], clarifying infinitesimal deformation theory in the presence of automorphisms.
Schlessinger’s and Rim’s conditions are both instances of the notion of homogeneity, which
can be traced back to A. Grothendieck [18, no. 195]. A generalization of Rim’s conditions was
recently considered by J. Wise [48, §2]. In this section, we will develop a relative formulation
of homogeneity for use in this paper.

Throughout this section, we let S be a scheme. An S -groupoid is a pair .X; aX /, where
X is a category and aX WX ! Sch=S is a fibration in groupoids. A 1-morphism of S -groupoids
ˆW .Y; aY / ! .Z; aZ/ is a functor ˆWY ! Z that commutes strictly over Sch=S . We will
typically refer to an S -groupoid .X; aX / just as “X”.

Example 1.1. For any S -scheme T , there is a canonical functor

Sch=T ! Sch=S W .W ! T / 7! .W ! T ! S/

which is faithful. In particular, we may view an S -scheme T as an S -groupoid. Thus a mor-
phism of S -schemes gWU ! V induces a 1-morphism of S -groupoids

Sch=gWSch=U ! Sch=V:

The converse is also true: any 1-morphism of S -groupoids GWSch=U ! Sch=V is uniquely
isomorphic to a 1-morphism of the form Sch=g for some morphism of S -schemes gWU ! V .

Definition 1.2. Fix an S -groupoid X . An X -scheme is a pair .T; �T / consisting of an
S -scheme T together with a 1-morphism of S -groupoids �T WSch=T ! X . A morphism of
X -schemes .f; f̨ /W .U; �U / ! .V; �V / is given by a morphism of S -schemes f WU ! V

together with a 2-morphism f̨ W �U ) �V ı Sch=f . The collection of all X -schemes forms a
1-category, which we denote as Sch=X .

For a 1-morphism of S -groupoids ˆWY ! Z there is an induced functor

Sch=ˆWSch=Y ! Sch=Z:

It is readily seen that for an S -groupoid X , the category Sch=X is also an S -groupoid. The
content of the 2-Yoneda Lemma is essentially that the natural 1-morphism of S -groupoids
Sch=X ! X is an equivalence. An inverse to this equivalence is given by picking a clivage
for X .
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142 Hall, Openness of versality via coherent functors

The principal advantage of working with the fibered category Sch=X is that it admits
a canonical clivage. In practice, this means that given an X -scheme V and a morphism of
S -schemes pWU ! V , the way to make U an X -scheme is already chosen for us: it is the
composition

Sch=U
Sch=p
�����! Sch=V ! X:

It is for this reason that working with Sch=X greatly simplifies proofs and definitions. Calcu-
lations, however, are typically easier to perform in X .

Fix a class P of morphisms of S -schemes and an S -groupoid X . Then, a morphism of
X -schemes pWU ! V is P if the underlying morphism of S -schemes is P . The following
squares will feature frequently and prominently throughout the article.

Definition 1.3. Fix a scheme S , a class P of morphisms of S -schemes, and an S -
groupoid X . A P -nil pair over X is a pair

.V
p
��! T; V

j
�! V 0/;

where p and j are morphisms of X -schemes, p is P , and j is a locally nilpotent closed
immersion. A P -nil square over X is a commutative diagram of X -schemes:

(1.1) V_�

j

��

p
// T

i
��

V 0
p0
// T 0,

where the pair .V
p
��! T; V

j
�! V 0/ is P -nil over X . A P -nil square over X is cocartesian

if it is cocartesian in the category of X -schemes. A P -nil square over X is geometric if p0 is
affine, i is a locally nilpotent closed immersion, and there is a natural isomorphism

OT 0 ! i�OT �p0�j�OV
p0�OV 0 :

The following definition is a trivial generalization of the ideas of M. Olsson [34, Ap-
pendix A], J. Starr [45, §2], and J. Wise [48, §2].

Definition 1.4 (P -homogeneity). Fix a scheme S and a class P of morphisms of S -
schemes. A 1-morphism of S -groupoids ˆWY ! Z is P -homogeneous if the following two
conditions are satisfied.

(HP1 ) A P -nil square over Y is cocartesian if and only if the induced P -nil square over Z is
cocartesian.

(HP2 ) If a P -nil pair over Y can be completed to a cocartesian P -nil square overZ, then it can
be completed to a P -nil square over Y .

An S -groupoid X is P -homogeneous if its structure 1-morphism is P -homogeneous.

For homogeneity, we will be interested in the following classes of morphisms:

Nil – locally nilpotent closed immersions,

Cl – closed immersions,
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Hall, Openness of versality via coherent functors 143

rNil – morphisms V ! T such that there exists .V0 ! V / 2 Nil with the composition
.V0 ! V ! T / 2 Nil,

rCl – morphisms V ! T such that there exists .V0 ! V / 2 Nil with the composition
.V0 ! V ! T / 2 Cl,

Aff – affine morphisms.

By [17, IV.18.12.11], universal homeomorphisms of schemes are integral, thus affine. Hence,
there is a containment of classes of morphisms of S -schemes:

Cl
�

Nil
�

�
rCl�Aff:

rNil
�

In [21, Appendix A], it is shown that ifX is limit preserving, in the sense of [7, §1], and a stack
for the Zariski topology, then rCl-homogeneity is equivalent to the condition (S10) of [7, (2.3)].
To assuage any fears of circularity, we would like to emphasize that this result will not be used
in this paper.

J. Wise [48, Proposition 2.1] has shown that every algebraic stack is Aff-homogeneous.
In Appendix A, we generalize results of D. Ferrand [14] and obtain techniques to prove that
many “geometric” moduli problems are Aff-homogeneous.

The following definition is a convenient computational tool. A 1-morphism of S -group-
oids ˆWY ! Z is formally étale if for every Z-scheme V 0 and every locally nilpotent closed
immersion of Z-schemes V ,! V 0, then every Y -scheme structure on V that is compatible
with its Z-scheme structure under ˆ lifts uniquely to a compatible Y -scheme structure on V 0.
That is, there is always a unique solution to the following lifting problem:

V_�

��

// Y

ˆ
��

V 0

9 Š

>>

// Z.

Note that if Y is a stack for the étale topology, then it suffices to verify the above lifting property
étale-locally on V 0. Indeed, the uniqueness in the definition of formally étale guarantees the
cocycle condition necessary to perform the descent. Also, if Y and Z are schemes, then the
induced 1-morphism of S -groupoids Sch=Y ! Sch=Z is formally étale if and only if the
morphism of schemes Y ! Z is formally étale [17, IV4.17.1.1].

The following lemma provides several methods to prove that a 1-morphism of S -group-
oids is P -homogeneous, at least in the situation where P � Aff.

Lemma 1.5. Fix a scheme S , a 1-morphism of S -groupoids ˆWY ! Z, and a class
P � Aff of morphisms of S -schemes.

(1) Every cocartesian P -nil square over Y is geometric. In particular, if Z satisfies (HP1 ),
then every cocartesian P -nil square over Y is cocartesian over Z.

(2) Let .V
p
��! T; V

j
�! V 0/ be a P -nil pair over Y that may be completed to a cocartesian

P -nil square over Z as in (1.1). If ˆ is P -homogeneous, then this cocartesian P -nil
square over Z lifts uniquely to a P -nil square over Y that is simultaneously cocartesian
and geometric.
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144 Hall, Openness of versality via coherent functors

(3) Let W be a P -homogeneous S -groupoid. Then every P -nil pair .V
p
��! T; T

j
�! V 0/

over W can be completed to a P -nil square over W that is simultaneously cocartesian
and geometric. In particular, P -nil squares over W are cocartesian if and only if they
are geometric.

(4) IfW is an S -groupoid that is a stack for the Zariski topology, thenW is P -homogeneous
if and only if for every P -nil pair .SpecA ! SpecB;SpecA ,! SpecA0/ over S , the
naturally induced functor

W.Spec.B �A A0//! W.SpecB/ �W.SpecA/ W.SpecA0/

is an equivalence of categories.

(5) Let ‰WW ! Y be a 1-morphism of S -groupoids. If ˆ is P -homogeneous, then ‰ is
P -homogeneous if and only if ˆ ı‰ is P -homogeneous.

(6) If Z is P -homogeneous, then the 1-morphism ˆ is P -homogeneous if and only if for
every Z-scheme W , the W -groupoid Y �Z .Sch=W / is P -homogeneous.

(7) IfZ andˆ areP -homogeneous, then for everyP -homogeneous 1-morphism of S -group-
oids ‰WW ! Z, the 1-morphism Y �Z W ! W is P -homogeneous.

(8) If Z and ˆ are P -homogeneous, then the diagonal 1-morphism �ˆWY ! Y �Z Y is
P -homogeneous.

(9) If Z is P -homogeneous and ˆ is formally étale, then ˆ and Y are P -homogeneous.

Proof. For (1), fix a cocartesian P -nil square over Y as in (1.1). By [14, Théorème 7.1],
the induced P -nil pair .V

p
��! T; V

j
�! V 0/ over Y may be completed to the following co-

cartesian P -nil square over S which is geometric:

V_�

j
��

p
// T

��

V 0 // QT .

The universal properties produce a unique S -morphism t W QT ! T 0. The morphism t promotes
QT to a Y -scheme and it follows from the universal property defining T 0 that there is a uniquely

induced Y -morphism uWT 0 ! QT such that tu D IdT 0 . The universal property defining QT in
the category of S -schemes shows that ut D Id QT . Thus u is an isomorphism over Y and the
result follows.

For (2), by (HP2 ), it follows that there is a P -nil square over Y ,

V_�

j
��

p
// T

��

V 0 // T 00.

The P -nil square over Y above induces a P -nil square over Z. Since the P -nil square over Z
as in (1.1) is cocartesian, it follows that there is a uniquely inducedZ-morphism T 0 ! T 00 that
is compatible with the data. Since T 00 is a Y -scheme, T 0 inherits the structure of a Y -scheme.
It follows that the cocartesian P -nil square overZ as in (1.1) lifts to a P -nil square over Y and,
by (HP1 ), it is cocartesian and thus the lifting is unique. That the resulting square is geometric
follows from (1).
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Hall, Openness of versality via coherent functors 145

The claims (3) and (5) both follow from (1) and (2).
The claims (4) and (6) both follow from (1), (2), and (3).
The claim (7) follows from (6).
For (8), by (7) and (5), we know that Y �Z Y is P -homogeneous. The result now follows

from (5) applied to Y ! Y �Z Y ! Y .
For (9), by (5), it is sufficient to prove that ˆ is P -homogeneous. Since ˆ is formally

étale, we may use (1) to deduce that ˆ satisfies (HP1 ). By (3), every cocartesian P -nil square
over Z is geometric. Since ˆ is formally étale, it follows that ˆ satisfies (HP2 ).

2. Extensions

The results of this section are well known to experts, being similar to those obtained by
H. Flenner [15] and J. Wise [48, §2.3].

Fix a scheme S and an S -groupoid X . An X -extension is a square zero closed im-
mersion of X -schemes i WT ,! T 0. An obligatory observation is that the i�1OT 0-module
ker.i�1OT 0 ! OT / is canonically a quasi-coherent OT -module. If the X -scheme T is affine,
so is the scheme T 0; see [17, I.5.1.9]. A morphism of X -extensions

.i1WT1 ,! T 01/! .i2WT2 ,! T 02/

is a commutative diagram of X -schemes

T1
� � i1 //

��

T 01

��

T2
� � i2 // T 02.

In a natural way, the collection of X -extensions forms a category, which we denote as ExalX .
There is a natural functor ExalX ! Sch=X W .i WT ,! T 0/! T .

We denote by ExalX .T / the fiber of the category ExalX over the X -scheme T . An
X -extension of T is an object of ExalX .T /. There is a natural functor

ExalX .T /ı ! QCoh.T /; .i WT ,! T 0/ 7! ker.i�1OT 0 ! OT /:

We denote by ExalX .T; I / the fiber category of ExalX .T / over the quasi-coherent OT -module
I . An X -extension of T by I is an object of ExalX .T; I /.

A morphism .T ,! T 01/ ! .T ,! T 02/ in ExalX .T; I / induces a commutative diagram
of sheaves of rings on the topological space jT j:

0 // I // OT 02

��

// OT // 0

0 // I // OT 01
// OT // 0.

The Snake Lemma implies that the morphism of S -schemes T 01 ! T 02 is an isomorphism. Thus
the category ExalX .T; I / is a groupoid.
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146 Hall, Openness of versality via coherent functors

Example 2.1. If X is an algebraic stack, T is an X -scheme, and I is a quasi-coherent
OT -module, then the groupoid ExalX .T; I / is equivalent to the Picard category associated to
the complex ��0.RHomOT

.���1LT=X ; I /Œ1�/, where ���1LT=X is the truncated cotangent
complex of [25, Chapter 17]. For a proof of this, see [36, §2.22 and Theorem A.7]. For back-
ground material on Picard categories see [8, XVIII.1.4].

Example 2.1 motivates many of the results in this section. The following is a triviality
that we record here for future reference.

Lemma 2.2. Fix a scheme S , a formally étale 1-morphism of S -groupoids X ! Y , an
X -scheme T , and a quasi-coherent OT -module I . Then, the natural functor

ExalX .T; I /! ExalY .T; I /

is an equivalence of categories.

Fix a scheme W and a quasi-coherent OW -module J . Then, the quasi-coherent OW -
module OW ˚ J is readily seen to be an OW -algebra. Indeed, for an open subset U � jW j
and .w; j /, .w0; j 0/ 2 �.U;OW /, let

.w; j / � .w0; j 0/ D .ww0; wj 0 C w0j /;

which makes OW ˚ J a sheaf of rings. The natural map OW ! OW ˚ J , w 7! .w; 0/

canonically defines an OW -algebra, which we denote as OW ŒJ �. Let W ŒJ � be the W -scheme
Spec

W
.OW ŒJ �/. Corresponding to the natural surjection of OW -algebras OW ŒJ � ! OW ,

there is a canonical W -extension of W by J , which we call the trivial W -extension of W by
J and denote as .iW;J WW ,! W ŒJ �/. In particular, the structure morphism rW;J WW ŒJ �! W

is a retraction of the morphism iW;J WW ! W ŒJ �.
For a morphism of X -schemes qWU ! V , let RetX .U=V / be the set of X -retractions to

the morphism qWU ! V . That is,

RetX .U=V / D ¹r 2 HomSch=X .V; U / W rq D IdU º:

Lemma 2.3. Fix a scheme S , an S -groupoid X , an X -scheme T , a quasi-coherent
T -module I , and an X -extension .i WT ,! T 0/ of T by I . Then, there is a natural bijection:

HomExalX .T;I /..i WT ,! T 0/; .iT;I WT ,! T ŒI �//! RetX .T=T 0/:

Proof. For a morphism of X -extensions .T ,! T 0/ ! .T ,! T ŒI �/, the composition

T 0 ! T ŒI �
rT;I

���! T defines an X -retraction to i . This assignment is bijective.

With some homogeneity assumptions, we are able to prove something meaningful.

Proposition 2.4. Fix a scheme S , an S -groupoid X , and an X -scheme T . Then the
functor ExalX .T / ! QCoh.T /ı is a fibration in groupoids. If the S -groupoid X is Nil-
homogeneous, then ExalX .T; I / is a Picard category for all I 2 QCoh.T /.
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Proof. Fix a morphism ˛ıWJ ! I in QCoh.T /ı. This corresponds to a morphism of
quasi-coherent OT -modules ˛W I ! J . Also, fix an X -extension .i WT ,! T 0I / of T by I . On
the topological space jT j we obtain a commutative diagram of sheaves of abelian groups with
exact rows

0 // I

˛

��

// OT 0Ię
��

// OT // 0

0 // J // OT 0I
˚I J // OT // 0,

where
OT 0I
˚I J D coker

�
I

i 7!.i;�˛.i//
���������! OT 0I

˚ J
�
:

It is easily verified that the sheaf of abelian groups OT 0J
D OT 0I

˚I J is a sheaf of rings and that
the homomorphism ę is a ring homomorphism. The subsheaf J � OT 0J

defines a square zero
sheaf of ideals and as J is quasi-coherent, one immediately concludes that the ringed space
.jT j;OT 0J

/ is an S -scheme, T 0J , and that we have defined an S -extension .i˛WT ,! T 0J / of T
by J . The morphism of S -schemes T 0J ! T 0I promotes the S -extension i˛ to an X -extension
of T by J . It is immediate that the resulting arrow i˛ ! i in ExalX .T / is strongly cartesian
over the arrow ˛ıWJ ! I in QCoh.T /ı, and we deduce the first claim.

For the second claim, the fibration ExalX .T / ! QCoh.T /ı induces for each M and
N 2 QCoh.T / a functor

�M;N WExalX .T;M �N/! ExalX .T;M/ � ExalX .T;N /:

Note that this functor is not unique, but for any other choice of such a functor � 0M;N , there is
a unique natural isomorphism of functors �M;N ) � 0M;N . This renders the Picard category
structure on ExalX .T; I / as essentially unique, and on the level of isomorphism classes of
objects, the abelian group structure is unique.

By [19, §1.2], it is sufficient to show that the functor �M;N is an equivalence, which we
show using the arguments of [17, 0IV.18.3]. For the essential surjectivity, we fix X -extensions
.iM WT ,! T 0M / and .iN WT ,! T 0N / of T by M and N , respectively. By Lemma 1.5 (3), there
is a geometric Nil-nil square over X

T
� � iM //
_�

iN
��

T 0M

��

T 0N
// T 0,

In particular, the resulting closed immersion i WT ,! T 0 defines anX -extension of T byM�N .
Moreover, it is plain to see that �M;N .i/ Š .iM ; iN /. The full faithfulness of the functor �M;N
follows from a similar argument.

Denote the set of isomorphism classes of the category ExalX .T; I / by ExalX .T; I /. By
Proposition 2.4, if X is Nil-homogeneous, then there are additive functors

DerX .T;�/WQCoh.T /! Ab; I 7! AutExalX .T;I /.iT;I /

and
ExalX .T;�/WQCoh.T /! Ab; I 7! ExalX .T; I /:
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We note that the 0-object of the abelian group DerX .T; I / corresponds to the identity auto-
morphism and the 0-object of the group ExalX .T; I / corresponds to the isomorphism class
containing the trivial X -extension of T by I , .iT;I WT ,! T ŒI �/. With a stronger homogeneity
assumption, there is an important exact sequence.

Corollary 2.5. Fix a scheme S , an rNil-homogeneous S -groupoidX , and anX -scheme
T . Then for every short exact sequence of quasi-coherent OT -modules,

0! K
k
�!M

c
�! C ! 0;

there is a natural 6-term exact sequence of abelian groups:

0 // DerX .T;K/ // DerX .T;M/ // DerX .T; C /
à

// ExalX .T;K/ // ExalX .T;M/ // ExalX .T; C /.

Proof. If X is algebraic, then the exact sequence is a trivial consequence of [36, The-
orem 1.1]. In general, the result can be recovered from [48, Proposition 2.3 (iv)], where it
was shown that the fibered category ExalX .T /! QCoh.T /ı is additive and left-exact, in the
sense of [19]. We will follow a similar route, but instead employ the results of Appendix B.

By Proposition 2.4, the morphisms k and c induce functors

k�WExalX .T;K/! ExalX .T;M/ and c�WExalX .T;M/! ExalX .T; C /:

By Lemma B.1, it remains to prove that the following sequence of Picard categories is exact:

0
iT;K

����! ExalX .T;K/
k�
��! ExalX .T;M/

c�
��! ExalX .T; C /:

Since c ı k D 0, it follows that there is a naturally induced 2-morphism ıW c� ı k�) 0iT;C
ı 0.

Hence, there is a naturally induced morphism of Picard categories

ExalX .T;K/! ExalX .T;M/ �c�;ExalX .T;C/;0iT;C
0:

It now remains to exhibit a quasi-inverse to the above functor. By Lemma 2.3, we may view an
object of the right-hand side as being given by a pair .i WT ,! T 0M ; r/, where r is a retraction
of the X -extension of T by C , c�i WT ,! T 0C . Note that since c is surjective with kernel K,
the X -morphism T 0C ! T 0M defines an X -extension of T 0C by K. In particular, we have an
rNil-nil pair

.T 0C ! T 0M ; T
0
C

r
�! T /

over X . Since X is rNil-homogeneous, Lemma 1.5 (3) implies that the rNil-nil pair over X
in question can be completed to a cocartesian rNil-nil square over X which is geometric. In
particular, the resulting morphism j WT ,! T 0 is an X -extension of T by K. Since j is
defined by a universal property, we have defined a functor from the right-hand side above to
ExalX .T;K/. The claim follows.

Further strengthening our homogeneity assumption, we obtain more structure.
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Corollary 2.6. Fix a scheme S , an Aff-homogeneous S -groupoid X , and an X -scheme
T . For all affine and étale morphisms pWV ! T and quasi-coherent OV -modules M , there is
an equivalence of Picard categories:

ExalX .V;M/! ExalX .T; p�M/:

Proof. Let eWW ! T be an étale morphism. If T ,! T 0 is an X -extension of T by
K, then there exists a unique X -extension W ,! W 0 of W by e�K together with an étale
morphism W 0 ! T 0 such that W 0 �T 0 T Š W and the second projection coincides with
eWW ! T ; see [17, IV.18.1.2]. This describes a functor e�WExalX .T;K/! ExalX .W; e�K/.
Taking K D p�M and e D p, we obtain a functor ExalX .T; p�M/ ! ExalX .V; p�p�M/.
By Proposition 2.4, corresponding to the OV -module homomorphism p�p�M ! M , there
is an induced functor ExalX .V; p�p�M/ ! ExalX .V;M/. Composing these two functors
produces a functor ExalX .T; p�M/! ExalX .V;M/.

Also, since p is affine, Aff-homogeneity implies that there is a functor

p�WExalX .V;M/! ExalX .T; p�M/:

Indeed, for any X -extension .j WV ,! V 0/ of V by M , the Aff-homogeneity of X and Lemma
1.5 (3) provide a cocartesian Aff-nil square over X as in (1.1) which is geometric. In par-
ticular, the X -morphism .i WT ,! T 0/ defines an X -extension of T by p�M . The functors
ExalX .T; p�M/ � ExalX .V;M/ are clearly quasi-inverse.

3. Limit preservation

In this section we prove that the functors defined in Section 2, M 7! DerX .T;M/ and
M 7! ExalX .T;M/, frequently preserve direct limits. We also relativize the notion of limit
preserving S -groupoid [7, §1].

Definition 3.1. Let S be a scheme and let ˆWY ! Z be a 1-morphism of S -groupoids.
The 1-morphism ˆ is limit preserving if for every inverse system of quasi-compact and quasi-
separated Z-schemes with affine transition maps ¹Tj ºj2J and every Y -scheme T , such that as
a Z-scheme T is an inverse limit of ¹Tj ºj2J , then the following two conditions hold.

(LP1) There exist j0 2 J and a Y -scheme structure on Tj0
such that the induced diagram of

Y -schemes ¹Tj ºj�j0
has inverse limit T .

(LP2) Let j1 2 J and let Tj1
have two Y -scheme structures such that both of the induced

diagrams of Y -schemes ¹Tj ºj�j1
have inverse limit T . Then for all j � j1, the two

Y -scheme structures on Tj are isomorphic.

An S -groupoid X is limit preserving if its structure morphism to Sch=S is so. Similarly, an
X -scheme T is limit preserving if its structure 1-morphism Sch=T ! X is so.

Analogous to Lemma 1.5, we have the following easily verified lemma.
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150 Hall, Openness of versality via coherent functors

Lemma 3.2. Fix a scheme S and a 1-morphism of S -groupoids ˆWY ! Z.

(1) If Z is a Zariski stack, then it is limit preserving if and only if for every inverse system of
affine S -schemes ¹SpecAj ºj2J with limit SpecA, the natural functor

lim
�!
j

Z.SpecAj /! Z.SpecA/

is an equivalence.

(2) If Z is an algebraic stack, then it is limit preserving if and only if it is locally of finite
presentation over S .

(3) If ˆ is limit preserving, then for every other limit preserving 1-morphism W ! Y the
composition W ! Z is limit preserving.

(4) The 1-morphismˆ is limit preserving if and only if for everyZ-scheme T the T -groupoid
Y �Z Sch=T is limit preserving.

(5) If ˆ is limit preserving, then for every 1-morphism of S -groupoids W ! Z, the
1-morphism Y �Z W ! W is limit preserving.

(6) If ˆ is limit preserving, then the diagonal 1-morphism �ˆWY ! Y �Z Y is limit
preserving.

Proof. The claims (1), (3), (4), and (5) are all obvious, thus their proofs are omitted.
Claim (2) follows from (1) and [25, Propositions 4.15, 4.18]. For claim (6), combine (4) and
(LP2) (note that for a morphism of schemes, this just says that if a morphism is locally of finite
presentation, then so too is its diagonal [17, IV.1.4.3.1]).

Example 3.3. Fix a scheme S and a limit preserving S -groupoidX . Then, anX -scheme
is limit preserving if and only if it is locally of finite presentation over S .

We now have the main result of this section.

Proposition 3.4. Fix a scheme S , a Nil-homogeneous S -groupoid X , and a quasi-
compact, quasi-separated, limit preserving X -scheme T .

(1) The functor M 7! DerX .T;M/ preserves direct limits.

(2) If, in addition, X is limit preserving, then the functor M 7! ExalX .T;M/ preserves
direct limits.

Proof. Throughout we fix a directed system of quasi-coherent OT -modules ¹Mj ºj2J
with direct limit M . In particular, the natural map

T ŒM�! lim
 �
j

T ŒMj �

is an isomorphism of X -schemes. For (1), by Lemma 2.3, there are natural isomorphisms

DerX .T;M/ Š RetX .T=T ŒM�/ Š lim
�!
j

RetX .T=T ŒMj �/ Š lim
�!
j

DerX .T;Mj /:
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For (2), we first show that the map

(3.1) lim
�!
j

ExalX .T;Mj /! ExalX .T;M/

is injective. Lemma 2.3 shows that an X -extension .T ,! T 00/ of T by a quasi-coherent
OT -module N represents 0 in ExalX .T;N / if and only if RetX .T=T 00/ ¤ ;. So, consider a
compatible collection of X -extensions .T ,! T 0j / of T by Mi with limit .T ,! T 0/. Since

RetX .T=T 0/ D lim
�!
j

RetX .T=T 0j /;

it follows that the map (3.1) is injective.
We now show that the natural map (3.1) is surjective. First, we prove the result in the

case where X D S and S and T are affine. Since T is affine and of finite presentation over
S , there exist an integer n and a closed immersion kWT ,! AnS . By [17, 0IV.20.2.3], there
is a functorial surjection HomOT

.k��An
S=S

; K/ � ExalS .T;K/ for every quasi-coherent
OT -module K. Since the OT -module k��An

S=S
is finite free, it follows that the functor

K 7! HomOT
.k��An

S=S
; K/ preserves direct limits. Direct limits are exact, so the map

(3.2) lim
�!
j

ExalS .T;Mj / � ExalS .T;M/

is surjective.
If S and T are no longer assumed to be affine, then a straightforward Zariski descent ar-

gument combined with the affine case already considered shows that the map (3.2) is bijective.
For the general case, let .T ,! T 0/ 2 ExalX .T;M/. By the above considerations, there exist a
j0 and an S -extension of T by Mj0

, .T ,! T 0j0
/, such that its pushforward along Mj0

! M

is isomorphic to .T ,! T 0/ as an S -extension. If j � j0, then denote the pushforward of
.T ,! T 0j0

/ along the morphism Mj0
! Mj by .T ,! T 0j /. There is a natural morphism of

S -schemes T 0j ! T 0j0
and the resulting inverse system ¹T 0j ºj�j0

has limit T 0. Since X is a
limit preserving S -groupoid, there exist j1 � j0 and an X -scheme structure on T 0j1

such that
the resulting inverse system of X -schemes ¹T 0j ºj�j1

has limit T 0. The result follows.

4. Formal smoothness and formal versality

In this section we prove the main result of the paper.

Definition 4.1. Fix a scheme S , an S -groupoid X , and an X -scheme V . Consider
the following lifting problem in the category of X -schemes: given a pair of morphisms of
X -schemes .V

p
��! T; V

j
�! V 0/, where j is a locally nilpotent closed immersion, complete

the following diagram so that it commutes:
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(4.1) V_�

j
��

p
// T

V 0

>>

We say that the X -scheme T is

formally smooth if the lifting problem above can always be solved Zariski-locally on V 0;

formally versal at t 2 jT j if the lifting problem can be solved whenever V is local artinian
with closed point v such that p.v/ D t , the induced map �.t/! �.v/ is an isomorphism,
and j is an X -extension of V by �.v/.

We certainly have the following implication:

formally smooth) formally versal at every t 2 jT j:

In general, there is no reverse implication. We will see, however, that this subtlety vanishes
once the S -groupoid is Aff-homogeneous. The following lemma is hopefully clarifying. Note
that we cannot immediately apply [25, Proposition 4.15 (ii)], because there G. Laumon and
L. Moret-Bailly assume that solutions to the lifting problem exist étale-locally on V 0, whereas
we only assume that they exist Zariski-locally.

Lemma 4.2. Fix an S -groupoid X and an X -scheme T . If the 1-morphism T ! X is
representable by algebraic spaces that are locally of finite presentation, then the X -scheme T
is formally smooth if and only if the 1-morphism T ! X is representable by smooth morphisms
of algebraic spaces.

Proof. Suppose that T is a formally smooth X -scheme. To prove that T ! X is
representable by smooth morphisms, it is sufficient to prove that if W is an X -scheme, then
the induced morphism of algebraic spaces TW ! W , obtained by pulling back T ! X

along W , is smooth. Since TW is an algebraic space, there exists an étale and surjective mor-
phism QTW ! TW , where QTW is a scheme. It remains to prove that the morphism of schemes
QTW ! W is smooth. Since the morphism in question is locally of finite presentation, it re-

mains to show that it satisfies the infinitesimal lifting criterion for smooth morphisms. We will
use [17, IV.17.14.1], thus we must show that we can complete every 2-commutative diagram

SpecA0 //
� _

��

QTW

��

TW //

��

T

��

SpecA

DD

// W // X ,

where A ! A0 is a surjection of local rings with square 0 kernel. Since T ! X is formally
smooth and A is a local ring, there exists a morphism SpecA ! T that makes the diagram
2-commute. The universal property of the 2-fiber product further implies that there is an in-
duced morphism SpecA ! TW that makes the diagram commute. But QTW ! TW is étale,
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surjective, and representable by schemes. It now follows from étale descent and again from
[17, IV.17.14.1] that there is a unique morphism SpecA ! QTW completing the diagram. The
result follows. The other direction is similar, thus is omitted.

There is a tight connection between formal smoothness (resp. formal versality) and X -
extensions in the affine setting. The next result has arguments similar to those of [15, Satz 3.2],
but the definitions are slightly different.

Lemma 4.3. Fix a scheme S , an S -groupoid X , and an affine X -scheme T .

(1) If X is Aff-homogeneous and the abelian group ExalX .T; I / is trivial for every quasi-
coherent OT -module I , then the X -scheme T is formally smooth.

(2) If X is rCl-homogeneous and ExalX .T; �.t// D 0 at a closed point t 2 jT j, then the
X -scheme T is formally versal at t .

(3) If X is Cl-homogeneous and T is noetherian and formally versal at a closed point
t 2 jT j, then ExalX .T; �.t// D 0.

Proof. For (1), fix a locally nilpotent closed immersion of X -schemes j WV ,! V 0. It
suffices to construct an X -morphism V 0 ! T Zariski-locally on V 0 that makes the diagram
(4.1) commute. Thus we may assume V and V 0 are affine and the locally nilpotent closed
immersion j WV ! V 0 is defined by a quasi-coherent OV 0-ideal J such that J n D 0 for some
integer n. By induction on the integer n, we may further reduce to the situation where J 2 D 0.
In particular, j is a square zero extension of V by J and .V

p
��! T; V

j
�! V 0/ is an Aff-nil pair

overX . SinceX is Aff-homogeneous, Lemma 1.5 (3) implies that there is a cocartesian Aff-nil
square over X as in (1.1) that is geometric. In particular, the resulting X -morphism i WT ,! T 0

defines an X -extension of T by p�J . By hypothesis, ExalX .T; p�J / D 0. Lemma 2.3 now
provides an X -retraction T 0 ! T . The composition

V 0
p0

��! T 0 ! T

gives the required lifting.
The claim (2) follows from an identical argument just given for (1).
For (3), given an X -extension T ,! QT of T by �.t/, write T D SpecR, QT D Spec QR,

m D t 2 jT j, and I D ker. QR ! R/ Š R=m. Let the ideal Qm G QR denote the (unique)
maximal ideal induced by m. For n � 0 define Rn D R=mnC1, QRn D QR= QmnC1, and
In D ker. QRn ! Rn/. There is an induced surjective morphism lnW I ! In and since I is an
R-module of length 1, there is an n0 � 0 such that ln0

is an isomorphism. Let V D SpecRn0

and V 0 D Spec QRn0
and let j WV ,! V 0 be the resulting X -extension of V by �.t/.

Formal versality at t 2 jT j gives an X -morphism V 0 ! T as in (4.1). If pWV ! T is
the induced closed immersion, then .V

p
��! T; V

j
�! V 0/ is a Cl-nil pair. By Lemma 1.5 (3),

there exists a cocartesian Cl-nil square over X as in (1.1) which is geometric. In particular, the
resulting X -morphism i WT ,! T 0 defines an X -extension of T by �.t/. The compatible
X -morphism V 0 ! T and the cocartesian Cl-nil square (1.1) prove that the X -extension
i WT ,! T 0 admits a retraction r WT 0 ! T , thus defines a trivial extension of T by �.t/ over X
(Lemma 2.3). The cocartesian Cl-nil square (1.1) also produces a morphism of X -extensions
of T by �.t/ from T ,! QT to T ,! T 0, which is automatically an isomorphism. The result
follows.
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Fix an affine scheme T and an additive functor F WQCoh.T / ! Ab. The functor F is
finitely generated if there exist a quasi-coherent OT -module I and an object � 2 F.I / such
that for all M 2 QCoh.T / the induced morphism of abelian groups HomOT

.I;M/! F.M/

given by f 7! f�� is surjective. The notion of finite generation of a functor is due to M. Aus-
lander [9].

The functor F is half-exact if for every short exact sequence 0!M 0!M !M 00! 0

in QCoh.T /, the sequence F.M 0/! F.M/! F.M 00/ is exact.
If, in addition, T is noetherian and sends coherent OT -modules to coherent OT -modules,

then A. Ogus and G. Bergman have shown [33, Theorem 2.1] that if for all closed points t 2 jT j
we have F.�.t// D 0, then F is the zero functor. If F is finitely generated, then this result can
be refined. Indeed, it is shown in [20, Corollary 6.7] that if F.�.t// D 0, then there exists an
affine open subscheme pWU ,! T such that the composition F ı p�.�/WQCoh.U /! Ab is
identically zero. We now use this to prove the main technical result of the paper.

Theorem 4.4. Fix a locally noetherian scheme S , an Aff-homogeneous and limit pre-
serving S -groupoid X , and an affine X -scheme T , locally of finite type over S . If the functor
M 7! ExalX .T;M/ is finitely generated and T is formally versal at a closed point t 2 jT j,
then it is formally smooth in an open neighborhood of t .

Proof. By Lemma 4.3 (3), we have ExalX .T; �.t// D 0. By Corollary 2.5, the functor
M 7! ExalX .T;M/ is half-exact, and by Proposition 3.4 it commutes with direct limits. As
ExalX .T;�/ is finitely generated, Corollary 6.7 of [20] now applies. Thus, there exists an affine
open neighborhood pWU ,! T of t such that the functor ExalX .T; p�.�//WQCoh.U / ! Ab
is the zero functor. By Corollary 2.6, ExalX .U;�/ is also the zero functor. By Lemma 4.3 (1),
we conclude that U is a formally smooth X -scheme.

5. Coherent functors

Fix a ring A. An additive functor F W Mod.A/ ! Ab is coherent, if there exist an A-
module homomorphism f W I ! J and an element � 2 F.I /, inducing an exact sequence for
every A-module M ,

HomA.J;M/! HomA.I;M/! F.M/! 0:

We refer to the data .f W I ! J; �/ as a presentation for F . For a comprehensive account of
coherent functors, we refer the interested reader to [9]. Some stronger results that are available
in the noetherian situation are developed in [23]. Here we record some simple consequences
of [9, p. 200].

Lemma 5.1. Fix a ringA. For each i D 1; : : : ; 5, letHi WMod.A/! Ab be an additive
functor fitting into an exact sequence

H1 ! H2 ! H3 ! H4 ! H5:

(1) If H2 and H4 are finitely generated and H5 is coherent, then H3 is finitely generated.

(2) If H1 is finitely generated and H2, H4, and H5 are coherent, then H3 is coherent.
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We now have the following important example of a coherent functor, which is a special
case of [9, p. 200].

Example 5.2. Let A be a ring. If Q� is a bounded above complex of A-modules, then
the functor M 7! ExtiA.Q

�;M/ is coherent for every integer i . Indeed, there is a quasi-
isomorphism P � ' Q�, where P � is a complex of A-modules that is term-by-term projective.
By definition, for every A-module M and integer i there is a natural isomorphism:

ExtiA.Q
�;M/ D

ker.HomA.P i ;M/! HomA.P i�1;M//

im.HomA.P iC1;M/! HomA.P i ;M//
:

Since the functor M 7! HomA.P j ;M/ is coherent for every integer j , Lemma 5.1 (2) im-
plies that the functor M 7! ExtiA.Q

�;M/ is coherent for every integer i . Using Spaltenstein
resolutions [43], this example extends to where Q� is unbounded.

Example 5.3. Let R be a noetherian ring. If Q� is a bounded above complex of R-
modules with coherent cohomology, then the functor M 7! TorRi .Q

�;M/ is coherent for
every integer i . Indeed, there is a quasi-isomorphism F � ! Q�, where F � is a bounded
above complex of finitely generated free R-modules. Arguing as in Example 5.2, it remains
to show that if F is a finitely generated and free R-module, then the functor M 7! F ˝R M

is coherent. But this is clear: there is a natural isomorphism F ˝R M D HomR.F _;M/ for
every R-module M . Thus the functor in question is isomorphic to HomR.F _;�/, which is
coherent.

The following lemma is crucial for the proof of Theorem A.

Lemma 5.4. Fix a scheme S and an algebraic S -stack X . If T is an affine X -scheme,
then the functors M 7! DerX .T;M/ and M 7! ExalX .T;M/ are coherent.

Proof. By [36, Theorem 1.1], there is a bounded above complex of OT -modules LT=X ,
with quasi-coherent cohomology sheaves, as well as functorial isomorphisms

DerX .T;M/ Š Ext0OT
.LT=X ;M/ and ExalX .T;M/ Š Ext1OT

.LT=X ;M/

for all quasi-coherent OT -modules M . By Example 5.2, the result follows.

The next example is [20, Theorem C] and is crucial for the applications in Sections 8–9.

Example 5.5. Fix an affine scheme S and a morphism of algebraic stacks f WX ! S

that is locally of finite presentation. If M 2 Dqc.X/ and N 2 QCoh.X/, where N is of finite
presentation, flat over S , with support proper over S , then the functor

HomOX
.M;N ˝OX

f �.�//WQCoh.S/! Ab

is coherent. Stated in this generality, the coherence of the above functor is non-trivial. If S
is noetherian, f is projective, and M 2 Coh.X/, then a direct proof of the coherence of the
above functor can be found in [23, Example 2.7]. If S is noetherian and admits a dualizing
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156 Hall, Openness of versality via coherent functors

complex (e.g., when S is of finite type over a field or Z; see [22, V.2]), f is a proper morphism
of algebraic stacks, and M 2 D�Coh.X/, then the coherence is simpler (see [20, Proposition 2.1],
which extends Flenner’s arguments in the analytic case [16, Satz 2.1] to algebraic stacks).

If S is noetherian, M 2 D�Coh.X/, and f is a proper morphism of schemes or algebraic
spaces, then the coherence is also a consequence of some (now) standard facts. Indeed, by
[28, Theorem 4.1] (if X is a scheme) or [44, Tag 08HP] (if X is an algebraic space), there
exist a perfect complex P onX and a morphism pWP !M that induces a quasi-isomorphism
��0P ! ��0M. There is now a natural sequence of isomorphisms for every I 2 QCoh.S/:

HomOX
.M;N ˝OX

f �I/ Š HomOX
.P ;N ˝OX

f �I/

Š H0
�
R�.X;P_ ˝L

OX
ŒN ˝OX

f �I�/
�
.P is perfect/

Š H0
�
R�.X;P_ ˝L

OX
N ˝L

OX
Lf �I/

�
.N is flat over S/

Š H0
�
R�.X;P_ ˝L

OX
N /˝L

OS
I
�
:

The last isomorphism is the projection formula, see [32, Proposition 5.3] (if X is a scheme) or
[44, Tag 08IN] (ifX is an algebraic space). Since f is proper, R�.X;P_˝L

OX
N / is a bounded

above complex of R D �.S;OS /-modules with coherent cohomology, see [10, III.2.2.1] (if
X is a scheme) or [44, Tag 08GK] (if X is an algebraic space). The result now follows from
Example 5.3.

6. Automorphisms, deformations, obstructions, and composition

A hypothesis in Theorem 4.4 is that the functorM 7! ExalX .T;M/ is finitely generated.
We have found the direct verification of this hypothesis to be difficult. In this section, we pro-
vide some exact sequences to remedy this situation. We also take the opportunity to formalize
and relativize obstruction theories.

Fix a scheme S and a 1-morphism of S -groupoids ˆWY ! Z. We write Defˆ for the
category with objects the pairs .i WT ,! T 0; r WT 0 ! T /, where i is a Y -extension and r is a
Z-retraction of i . A morphism .i1WT1 ,! T 01; r1WT

0
1 ! T1/ ! .i2WT2 ,! T 02; r2WT

0
2 ! T2/

in Defˆ is a morphism of Y -extensions i1 ! i2 such that the resulting diagram of Z-schemes
commutes,

T 01
r1 //

��

T1

��

T 02
r2 // T2.

By Lemma 2.3, Defˆ can be viewed as the category of completions of the following diagram:

T_�

��

// Y

ˆ
��

T ŒI �

==

// Z,

where I is a quasi-coherent OT -module and T ŒI � is the trivialZ-extension of T by I . There is
a natural functor Defˆ ! ExalY , which sends .i WT ,! T 0; r WT 0 ! T / to .i WT ,! T 0/. If T
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is a Y -scheme, then we denote the fiber of this functor over ExalY .T / by Defˆ.T /. It follows
that there is an induced functor Defˆ.T / ! QCoh.T /ı. We denote the fiber of this functor
over a quasi-coherent OT -module I as Defˆ.T; I /. This category is naturally pointed by the
trivial Y -extension of T by I . The following example is related to Example 2.1.

Example 6.1. Let S be a scheme and let ˆWY ! Z be a 1-morphism of algebraic
stacks. If T is a Y -scheme, which we regard as being given by a 1-morphism t WT ! Y ,
and I is a quasi-coherent OT -module, then the category Defˆ.T; I / is naturally equivalent
to the Picard category represented by the complex ��0RHomOT

.��0Lt���0LY=Z ; I /, where
��0LY=Z is the truncated cotangent complex defined in [25, Chapter 17]. In particular, many
of the results of this section, when ˆ is a 1-morphism of algebraic stacks, can be viewed
as mild generalizations or simple consequences of the results appearing in the latter parts of
[25, Chapter 17].

The following lemma, which is related to [25, Lemme 17.15.1], will be important and
explains why the groupoids Defˆ.T; I / are more amenable to calculation than ExalY .T; I /
and ExalZ.T; I /. Indeed, the groupoid Defˆ has base change properties, while ExalY .T; I /
typically does not. This will be revisited in Lemma 6.9 and Corollary 6.14.

Lemma 6.2. Fix a scheme S and a 2-cartesian diagram of S -groupoids:

YW
pY //

ˆW

��

Y

ˆ
��

W
p
// Z.

Let T be a YW -scheme and let I 2 QCoh.T /. Then the natural functor

DefˆW
.T; I /! Defˆ.T; I /

induces an equivalence of categories.

Proof. We prove that the functor in question induces an equivalence of categories by
constructing a quasi-inverse. If .i WT ,! T 0; r WT 0 ! T / belongs to Defˆ.T; I /, then the re-
traction r endows T 0 with a structure of aW -scheme, which as aZ-scheme is isomorphic to its
other Z-scheme structure obtained from its Y -scheme structure. The universal property of the
2-fiber product implies that T 0 becomes a YW -scheme, the Y -morphism i is a YW -morphism,
and the Z-morphism r is a W -morphism. It follows that we have functorially defined an ob-
ject of DefˆW

.T; I /, thus there is an induced functor Defˆ.T; I / ! DefˆW
.T; I /. That this

functor is quasi-inverse to DefˆW
.T; I /! Defˆ.T; I / is clear.

We record for future reference the following trivial observations.

Lemma 6.3. Fix a scheme S , 1-morphisms of S -groupoids X
‰
��! Y

ˆ
��!Z, an X -

scheme T , and a quasi-coherent OT -module I . If the 1-morphism ‰WX ! Y is formally
étale, then the natural functor

Defˆı‰.T; I /! Defˆ.T; I /

is an equivalence of categories.
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158 Hall, Openness of versality via coherent functors

Lemma 6.4. Fix a scheme S , a class of morphisms P � Aff, a 1-morphism of P -ho-
mogeneous S -groupoids ˆWY ! Z, a morphism of Y -schemes pWV ! T where p 2 P , and
K 2 QCoh.V /. Then the natural functor

Defˆ.T; p�K/! Defˆ.V;K/

is an equivalence of categories.

The proof of the next result is similar to Proposition 2.4, thus is omitted.

Proposition 6.5. Fix a scheme S , a 1-morphism of Nil-homogeneous S -groupoids
ˆWY ! Z, a Y -scheme T , and a quasi-coherent OT -module I . Then the category Defˆ.T; I /
admits a natural structure as a Picard category.

Denote the set of isomorphism classes of the Picard category Defˆ.T; I / by Defˆ.T; I /.
Thus, by Proposition 6.5, we obtain functors

Defˆ.T;�/WQCoh.T /! Ab; I 7! Defˆ.T; I /

and
Autˆ.T;�/WQCoh.T /! Ab; I 7! AutDefˆ.T;I /.iT;I /:

We include the following corollary for its intended reference in [21]. Its proof is almost
identical to that of Corollary 2.5 and [48, Proposition 2.2 (iv)], thus is omitted.

Corollary 6.6. Fix a scheme S , a 1-morphism of rNil-homogeneous S -groupoids
ˆWY ! Z, and a Y -scheme T . Then for every short exact sequence in QCoh.T /,

0! K
k
�!M

c
�! C ! 0:

there is a natural exact sequence of abelian groups

0 // Autˆ.T;K/ // Autˆ.T;M/ // Autˆ.T; C /

// Defˆ.T;K/ // Defˆ.T;M/ // Defˆ.T; C /.

We now have an exact sequence that greatly aids computations.

Proposition 6.7. Fix a scheme S , a 1-morphism of Nil-homogeneous S -groupoids
ˆWY ! Z, a Y -scheme T , and a quasi-coherent OT -module I . Then there is a natural
exact sequence of abelian groups

0 // Autˆ.T; I / // DerY .T; I / // DerZ.T; I /

// Defˆ.T; I / // ExalY .T; I / // ExalZ.T; I /.
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Proof. By Lemma B.1, it is sufficient to show that the following sequence of Picard
categories is left-exact:

0
.iT;I ;rT;I /
��������! Defˆ.T; I /! ExalY .T; I /! ExalZ.T; I /:

By Lemma 2.3 and the explicit description of the 2-fiber product of Picard categories given in
Appendix B, this is clear, and the result follows.

We now introduce multi-step relative obstruction theories. For single-step obstruction
theories, this definition is similar to [7, (2.6)] and [34, Definition A.10].

Definition 6.8. Fix a scheme S , a 1-morphism of Nil-homogeneous S -groupoids
ˆWY ! Z, and an integer n � 1. For a Y -scheme T , an n-step relative obstruction theory
for ˆ at T is a sequence of additive functors (the obstruction spaces)

Oi .T;�/WQCoh.T /! Ab; I 7! Oi .T; I / for i D 1; : : : ; n

as well as natural transformations of functors (the obstruction maps)

o1.T;�/WExalZ.T;�/) O1.T;�/;

oi .T;�/W ker oi�1.T;�/) Oi .T;�/ for i D 2; : : : ; n;

such that the natural transformation of functors

ExalY .T;�/) ExalZ.T;�/

has image ker on.T;�/. For an affine Y -scheme T , an n-step relative obstruction theory at T
is coherent if the functors ¹Oi .T;�/ºniD1 are all coherent.

We feel that it is important to point out that simply taking the cokernel of the last mor-
phism in the exact sequence of Proposition 6.7 produces a 1-step relative obstruction theory,
which we denote as .obsˆ;Obsˆ/ and call the minimal relative obstruction theory. This ob-
struction theory generalizes to the relative setting the minimal obstruction theory described in
[15]. In practice, the minimal obstruction theory is a difficult object to explicitly describe. The
following base change result is useful, however.

Lemma 6.9. Fix a scheme S and a 2-cartesian diagram of Nil-homogeneous S -group-
oids:

YW //

ˆW

��

Y

ˆ
��

W
p
// Z.

If T is a YW -scheme and I 2 QCoh.T /, then

ObsˆW
.T; I / � Obsˆ.T; I /:
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160 Hall, Openness of versality via coherent functors

Proof. By Proposition 6.7, there is a commutative diagram with exact rows:

ExalYW
.T; I / //

��

ExalW .T; I /

��

// ObsˆW
.T; I / // 0

ExalY .T; I / // ExalZ.T; I / // Obsˆ.T; I / // 0.

It follows that there is a naturally induced morphism ObsˆW
.T; I / ! Obsˆ.T; I /, which we

will now prove to be injective. Fix a W -extension .T ,! T 0/ of T by I . If this W -extension
lifts, as a Z-extension, to a Y -extension, then the universal property of the 2-fiber product
implies that it lifts to a YW -extension. A standard diagram chase now shows that this proves
the injectivity of the map in question.

Example 6.10. Note that the injection of Lemma 6.9 is rarely a bijection. Indeed, if
ˆWY ! Z admits a section s, then for any Z-scheme T and quasi-coherent OT -module I
it follows that ExalY .T; I / ! ExalZ.T; I / also admits a section and is thus surjective. In
particular, Obsˆ.T; I / D 0. Note that this implies that ObsˆY

.T; I / D 0 for every Y -scheme
T and quasi-coherent OT -module I . To obtain an explicit counterexample, it suffices to find
a ˆ, a T , and an I such that Obsˆ.T; I / ¤ 0. For this, let ˆWY ! Z be the 1-morphism of
S -groupoids given by a non-smooth morphism of affine schemes. Let T D Y , which we view
as a Y -scheme in the obvious way. Then ExalY .T; I /D 0 for every quasi-coherent OT -module
I . Since T ! Z is not smooth, Lemmas 4.2 and 4.3 imply that ExalZ.T; I0/ ¤ 0 for some
quasi-coherent OT -module I0. In particular, Obsˆ.T; I0/ D ExalZ.T; I0/ ¤ 0.

Combining Lemmas 6.3 and 2.2, we obtain the following.

Lemma 6.11. Fix a scheme S , 1-morphisms of Nil-homogeneous S -groupoids

X
‰
��! Y

ˆ
��! Z;

an X -scheme T , and a quasi-coherent OT -module I . If ‰ is formally étale, then every n-step
relative obstruction theory for ˆ at T lifts to an n-step relative obstruction theory for ˆ ı ‰
with the same obstruction spaces.

What follows is an immediate consequence of Proposition 6.7 and Lemma 5.1.

Corollary 6.12. Fix a scheme S , a 1-morphism of Nil-homogeneous S -groupoids
ˆWY ! Z, an affine Y -scheme T , and an integer n � 1. Suppose there exists a coherent
n-step relative obstruction theory at T .

(1) If the functor M 7! ExalZ.T;M/ is coherent, then the minimal obstruction theory
.obsˆ;Obsˆ/ is coherent at T .

(2) If the functors M 7! Defˆ.T;M/, ExalZ.T;M/ are finitely generated, then the functor
M 7! ExalY .T;M/ is finitely generated.
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Proof. For (1), we note that for every quasi-coherent OT -module M and i D 2; : : : ; n

there are natural exact sequences

0! ker o1.T;M/! ExalZ.T;M/
o1.T;M/
������! O1.T;M/;

0! ker oi .T;M/! ker oi�1.T;M/
oi .T;M/
������! Oi .T;M/;

0! ker on.T;M/! ExalZ.T;M/! Obsˆ.T;M/! 0:

Combining the first exact sequence with Lemma 5.1 (2), we see that the functor ker o1.T;�/ is
coherent. Working by induction on i , the second exact sequence combined with Lemma 5.1 (2)
proves that the functor ker on.T;�/ is coherent. The third exact sequence and Lemma 5.1 (2)
now prove that Obsˆ.T;�/ is coherent.

The claim (2) is an immediate consequence of the exact sequence of Proposition 6.7 and
Lemma 5.1 (1).

The result that follows shows the stability of the conditions of Theorem A under com-
position, in the sense of J. Starr [45]. The following result also extends – by four terms to the
right – the exact sequence [34, §A.15].

Proposition 6.13. Fix a scheme S and 1-morphisms of Nil-homogeneous S -groupoids

X
‰
��! Y

ˆ
��! Z;

an X -scheme T , and a quasi-coherent OT -module I . Then there is a natural 9-term exact
sequence of abelian groups

0 // Aut‰.T; I / // Autˆı‰.T; I / // Autˆ.T; I /

// Def‰.T; I / // Defˆı‰.T; I / // Defˆ.T; I /

// Obs‰.T; I / // Obsˆı‰.T; I / // Obsˆ.T; I / // 0.

In particular, there are natural isomorphisms

Aut‰.T; I / Š Def�‰
.T; I / and Def‰.T; I / Š Obs�‰

.T; I /:

Proof. The latter claims follow by combining the result with the triple

X
�‰
���! X �Y X ! X

and Lemma 6.2.
By Lemma B.1, we will obtain the first seven terms of the exact sequence if the following

sequence of Picard categories is left-exact:

0
.iT;I ;rT;I /
��������! Def‰.T; I /! Defˆı‰.T; I /! Defˆ.T; I /:
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162 Hall, Openness of versality via coherent functors

By Lemma 2.3 and the explicit description of the 2-fiber product of Picard categories given in
Appendix B, this is clear. For the remaining four terms of the exact sequence: we first apply
the Snake Lemma to the commutative diagram with exact rows

ExalX .T; I / //

��

ExalY .T; I /

��

// Obs‰.T; I /

��

// 0

0 // ExalZ.T; I / // ExalZ.T; I / // 0,

which produces an exact sequence

(6.1) Kˆı‰.T; I /!Kˆ.T; I /!Obs‰.T; I /!Obsˆı‰.T; I /!Obsˆ.T; I /! 0;

where

Kˆı‰.T; I / D ker
�
ExalX .T; I /! ExalZ.T; I /

�
;

K‰.T; I / D ker
�
ExalY .T; I /! ExalZ.T; I /

�
:

By Proposition 6.7, we obtain a commutative diagram with exact rows

DerZ.T; I / //

��

Defˆı‰.T; I / //

��

Kˆı‰.T; I /

��

// 0

0 // DerZ.T; I /=DerY .T; I / // Defˆ.T; I / // Kˆ.T; I / // 0.

By the Snake Lemma, we thus obtain an isomorphism

coker
�
Defˆı‰.T; I /! Defˆ.T; I /

�
Š coker

�
Kˆı‰.T; I /! Kˆ.T; I /

�
:

Combining this isomorphism with the exact sequence (6.1), we deduce that the sequence

Defˆı‰.T; I /! Defˆ.T; I /! Obs‰.T; I /! Obsˆı‰.T; I /! Obsˆ.T; I /! 0

is exact. Splicing the 7-term exact sequence which we earlier obtained from the left-exact
sequence of Picard categories to the 6-term exact sequence above gives the result.

We now arrive at the final result of this section, which is instrumental to the bootstrapping
argument employed to prove Theorem A.

Corollary 6.14. Let ‰WX ! Y be a Nil-homogeneous 1-morphism of S -groupoids.
LetW be an .X �‰;Y;‰X/-scheme and let .�‰/W WD‰;W ! W be the pullback of�‰ along
W . If T is a D‰;W -scheme and M is a quasi-coherent OT -module, then

Aut.�‰/W .T;M/ D 0;

Def.�‰/W .T;M/ Š Aut‰.T;M/;

Obs.�‰/W .T;M/ � Def‰.T;M/:

Proof. The third diagonal of ‰ is an isomorphism, so Obs���‰
.T;M/ D 0. By Lem-

mas 6.2 and 6.9 and Proposition 6.13, there are natural isomorphisms:

Aut.�‰/W .T;M/ Š Aut�‰
.T;M/ Š Def��‰

.T;M/ Š Obs���‰
.T;M/ Š 0;

Def.�‰/W .T;M/ Š Def�‰
.T;M/ Š Aut‰.T;M/;

Obs.�‰/W .T;M/ � Obs�‰
.T;M/ Š Def‰.T;M/:
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7. Proof of Theorem A

In this section we prove Theorem A. Before we do this, however, we will prove the
following theorem.

Theorem 7.1. Fix an excellent scheme S . An S -groupoid X is an algebraic S -stack
that is locally of finite presentation over S if and only if the following conditions are satisfied.

(1) X is a stack over the site .Sch=S/ KEt.

(2) X is limit preserving.

(3) X is Aff-homogeneous.

(4) The diagonal �X=S WX ! X �S X is representable by algebraic spaces.

(5) For any m-adically complete local noetherian ring .B;m/ with an S -scheme structure
SpecB ! S such that the induced morphism Spec.B=m/ ! S is locally of finite type,
the natural functor

X.SpecB/! lim
 �
n

X.Spec.B=mn//

induces an equivalence of categories.

(6) For any affine X -scheme T that is locally of finite type over S , the functor

M 7! ExalX .T;M/

is finitely generated.

Proof. Fix a morphism xWSpec k ! S , where k is a field. Denote by AS .x/ the cate-
gory whose objects are pairs .A; a/, where A is a local artinian ring with residue field k, and
aWSpecA! S is a morphism of schemes, such that the composition SpecAred! SpecA! S

agrees with x. Morphisms .A; a/ ! .B; b/ in AS .x/ are ring homomorphisms A ! B

that preserve the data. For � 2 X.x/, there is an induced category fibered in groupoids
X� WC� ! AS .x/

ı. The Aff-homogeneity of the S -groupoid X implies the homogeneity
(in the sense of [12, Exposé VI, Definition 2.5]) of the cofibered category Xı

�
WCı
�
! AS .x/.

If the morphism x is locally of finite type, then, by (6) and [20, Lemma 6.6], the k-vector
space ExalX .�;k/ is finite dimensional. By Lemma 5.4 and again by [20, Lemma 6.6], the
k-vector space DerS .x;k/ is also finite dimensional. Thus, by Proposition 6.7, the k-vector
space DefX=S .�;k/ is finite dimensional. By definition, DefX=S .�;k/ is the set of isomorphism
classes of the category X�.�Œ��/.

Thus, by (5), Theorem 1.5 of [11] applies, and so for every such �, there is a pointed and
affine X -scheme .Q� ; q/, locally of finite type over S , such that the X -scheme Spec �.q/ is
isomorphic to � , and Q� is formally versal at q, and q is a closed point of Q� . We now apply
Theorem 4.4 to conclude that we may (by passing to an open subscheme) assume that Q� is
a formally smooth X -scheme containing q. Condition (4) and Lemma 4.2 now imply that the
X -scheme Q� is representable by smooth morphisms.

Define K to be the set of all morphisms xWSpec k ! S that are locally of finite type,
where k is a field. Set Q D q�2K;�2X.�/Q� . Then, we have seen that the X -scheme Q
is representable by smooth morphisms, and it remains to show that it is representable by sur-
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jective morphisms. Since the stack X is limit preserving, it suffices to show that if V is an
affine X -scheme that is locally of finite type over S , then the morphism of algebraic S -spaces
Q �X V ! V is surjective. But Q �X V ! V smooth and its image contains all the points
v 2 jV j such that the morphism Spec �.v/! S is locally of finite type. Since V is locally of
finite type over S , the result follows.

To deduce Theorem A from Theorem 7.1 we will use a bootstrapping process. This
process begins with the following corollary.

Corollary 7.2. Fix an excellent scheme S and an S -groupoid X . If X satisfies the
conditions of Theorem A and �X=S WX ! X �S X is representable, then X is an algebraic
stack that is locally of finite presentation over S .

Proof. Note that conditions (1) and (2), combined with Lemma 3.2 (1), imply that the
S -groupoid X is limit preserving. Also, conditions (1) and (3) combined with Lemma 1.5 (4)
imply that X is Aff-homogeneous. Conditions (5) and (6), together with Corollary 6.12,
imply that for every affine X -scheme V that is locally of finite type over S , the functor
M 7! ExalX .V;M/ is finitely generated. Thus, Theorem 7.1 implies that X is an algebraic
stack that is locally of finite presentation over S .

We now come to the proof of Theorem A.

Proof of Theorem A. By Corollary 7.2, it remains to prove that �X=S is representable.
To show this, it remains to prove that for any .X �S X/-scheme T , the T -groupoid DX=S;T ,
which is obtained by pulling back �X=S along T , is an algebraic stack.

Arguing as in the proof of Corollary 7.2, X is limit preserving and Aff-homogeneous.
By Lemmas 1.5 (8) and 3.2 (6), the diagonal 1-morphism�X=S WX ! X �S X is Aff-homoge-
neous and limit preserving. By Lemmas 1.5 (7), (5) and 3.2 (5), (3), the S -groupoid X �S X is
Aff-homogeneous and limit preserving. Thus, by Lemmas 1.5 (7) and 3.2 (5) the T -groupoid
DX=S;T is limit preserving and Aff-homogeneous. Representability of DX=S;T is local on T
for the Zariski topology, thus we may assume that T is an affine scheme. SinceX �S X is limit
preserving, every affine .X �S X/-scheme T factors through an affine .X �S X/-scheme T0
that is locally of finite type over S . Thus, we may assume henceforth that T is locally of finite
type over S , and is consequently excellent. By Corollary 6.14, the T -groupoidDX=S;T satisfies
all the conditions of Theorem A. Thus, by Corollary 7.2, it remains to prove that �DX=S;T =T

is representable. Replacing X ! S by DX=S;T ! T and repeating the above analysis we
are further reduced to proving that the diagonal of DDX=S;T ;V ! V is representable for every
affine .DX=S;T �T DX=S;T /-scheme V that is locally of finite type over T . Since ��X=S

is
a monomorphism, it follows that the diagonal of DX=S;T is a monomorphism. In particular,
DDX=S;T ;V ! V is a monomorphism. Thus, �DDX=S;T =T;V =V is an isomorphism, which is
representable, and the result follows.
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8. Application I: The stack of quasi-coherent sheaves

Fix a scheme S . For an algebraic S -stack Y and a property P of quasi-coherent OY -
modules, denote by QCohP .Y / the full subcategory of QCoh.Y / consisting of objects which
are P . We will be interested in the following properties P of quasi-coherent OY -modules and
their combinations:

fp – finitely presented,

fl – Y -flat,

flb – S -flat,

prb – S -proper support.

Fix a morphism of algebraic stacks f WX ! S . For any S -scheme T , consider a property P
of quasi-coherent OXT

-modules. Define

QCohP
X=S

to be the category with objects a pair .T;M/, where T is an S -scheme and M 2 QCohP .XT /.
A morphism .a; ˛/W .V;N / ! .T;M/ in the category QCohP

X=S
consists of an S -scheme

morphism aWV ! T together with an OXV
-isomorphism ˛W a�XT

M! N . Set

CohX=S D QCohflb;fp;prb
X=S

:

In this section, we will prove the following theorem.

Theorem 8.1. Fix a scheme S and a morphism of algebraic stacks f WX ! S . If f is
separated and locally of finite presentation, then CohX=S is an algebraic stack that is locally
of finite presentation over S with affine diagonal over S .

A proof of Theorem 8.1, without the statement about the diagonal, appeared in [26, The-
orem 2.1], though was light on details. In particular, no explicit obstruction theory was given
and, as we will see, the obstruction theory is subtle when f is not flat (and is not a standard
fact). There was also a minor error in the statement – that the morphism f is separated is essen-
tial [29]. The statement about the diagonal of CohX=S was addressed by M. Roth and J. Starr
[40, §2]. Their approach, however, is completely different, and relies on [26, Proposition 2.3].
In the setting of analytic spaces, the properties of the diagonal were addressed by H. Flenner
[16, Korollar 3.2].

Just as in [26, Proposition 2.7], an immediate consequence of Theorems 8.1 and [20,
Theorem D] is the existence of Quot spaces. Recall that for a quasi-coherent OX -module F ,
the presheaf Quot

X=S
.F /W .Sch=S/ı ! Sets is defined as follows:

Quot
X=S

.F /ŒT
�
�! S� D

®
��XF � Q W Q 2 QCohflb;fp;prb.XT /

¯
= Š :

Corollary 8.2. Fix a scheme S , a morphism of algebraic stacks f WX ! S , and
F 2 QCoh.X/. If f is separated and locally of finite presentation over S , then Quot

X=S
.F /

is an algebraic space that is separated over S . If, in addition, F is of finite presentation, then
Quot

X=S
.F / is locally of finite presentation over S .
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166 Hall, Openness of versality via coherent functors

When F is of finite presentation, Corollary 8.2 was proved by M. Olsson and J. Starr
[38, Theorem 1.1] and M. Olsson [35, Theorem 1.5]. When F is quasi-coherent and X ! S

is locally projective, Corollary 8.2 was recently addressed by G. Di Brino [13, Theorem 0.0.1]
using different methods.

To prove Theorem 8.1 we use Theorem A. Note that there are inclusions

QCohflb;fp;prb
X=S

� QCohflb;fp
X=S
� QCohflb

X=S
:

The first inclusion is trivially formally étale. By Lemma A.5 (1) the second inclusion is also
formally étale. Thus, by Lemma 1.5 (9), if QCohflb

X=S
is Aff-homogeneous, then CohX=S is Aff-

homogeneous. Also, by Lemmas 6.3 and 6.11, it is sufficient to determine the automorphisms,
deformations, and obstructions for QCohflb

X=S
.

Throughout, we fix a clivage for QCoh
X=S

. This gives an equivalence of S -groupoids
QCoh

X=S
! Sch=QCoh

X=S
, which we will use without further comment.

Lemma 8.3. Fix a scheme S and a morphism of algebraic stacks f WX ! S . Then the
S -groupoid QCohflb

X=S
is Aff-homogeneous.

Proof. First we check .HAff
1 /. Fix a commutative diagram of QCohflb

X=S
-schemes:

(8.1) .T0;M0/
� � .i;�/ //

.p;�/
��

.T1;M1/

.p0;� 0/
��

.T2;M2/
.i 0;�0/

// .T3;M3/,

where p is affine and i is a locally nilpotent closed immersion. Set

.g; 
/ D .i 0; �0/ ı .p; �/W .T0;M0/! .T3;M3/:

Lemma 1.5 (1) implies that if the diagram (8.1) is cocartesian in the category of QCohflb
X=S

-
schemes, then it remains cocartesian in the category of S -schemes. Conversely, suppose that
the diagram (8.1) is cocartesian in the category of S -schemes. By Lemma 1.5 (1) (applied to
Y D Z D S ), i 0 is a locally nilpotent closed immersion and p0 is affine. Let .W;N / be a
QCohflb

X=S
-scheme and for k ¤ 3 fix QCohflb

X=S
-scheme maps .yk;  k/W .Tk;Mk/! .W;N /.

Since the diagram (8.1) is cocartesian in the category of S -schemes, there exists a unique S -
morphism y3WT3 ! W that is compatible with this data. By adjunction, we obtain unique
maps of OXW

-modules

N ! .y1/�M1 �.y0/�M0
.y2/�M2 Š ¹.y3/�p

0
�M1º �¹.y3/�g�M0º

¹.y3/�i
0
�M2º:

The functor .y3/� is left-exact, so there is a functorial isomorphism of OXW
-modules

¹.y3/�p
0
�M1º �¹.y3/�g�M0º

¹.y3/�i
0
�M2º Š .y3/�¹p

0
�M1 �g�M0

i 0�M2º:

The commutativity of the diagram (8.1) posits a uniquely induced morphism

ıWM3 ! p0�M1 �g�M0
i 0�M2 Š p

0
�p
0�M3 �g�g�M3

i 0�i
0�M3:
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It suffices to prove that ı is an isomorphism, which is local for the smooth topology. So, we
immediately reduce to the affine case, where S D SpecA, X D SpecD, and f WX ! S is
given by a ring homomorphism A ! D. For each l we may take Tl D SpecAl and we set
Dl D D ˝A A3. Also, M3 ŠfM 3, where M3 is a D3-module which is A3-flat. Now, there is
an exact sequence of A3-modules

0! A3 ! A1 � A2 ! A0 ! 0:

Applying the exact functor M3 ˝A3
� to this sequence produces an exact sequence

0!M3 ! .M3 ˝A3
A1/ � .M3 ˝A3

A2/!M3 ˝A3
A0 ! 0:

Since M3 ˝A3
Al ŠM3 ˝D3

Dl , we obtain the required isomorphism ı:

M3 Š .M3 ˝A3
A1/ �.M3˝A3

A0/ .M3 ˝A3
A2/

Š .M3 ˝D3
D1/ �.M3˝D3

D0/ .M3 ˝D3
D2/:

Next we check condition .HAff
2 /. Fix a diagram of QCohflb

X=S
-schemes,

�
.T1;M1/

.i;�/
 ���� .T0;M0/

.p;�/
����! .T2;M2/

�
;

where i is a locally nilpotent closed immersion and p is affine. Given a cocartesian square of
S -schemes:

(8.2) T0
� � i //

p
��

T1

p0

��

T2
� � i 0 // T3,

write g D i 0p and set

M3 D ker
�
.p0XT3

/�M1 � .i
0
XT3

/�M2
d
��! g�M0

�
2 QCoh.XT3

/;

where d is the map .m1; m2/ 7! .g��/.m1/ � .g��/.m2/. It remains to show that M3 is
T3-flat, that the induced morphisms of quasi-coherent OX2

-modules �0W i 0�XT3

M3 ! M2 and
� 0Wp0�XT3

M3 !M1 are isomorphisms, and that the following diagram commutes:

i�XT1

p0�XT3

M3

tt

i�� 0 // i�XT1

M1 �

((
g�M3 M0.

p�XT2

i 0�XT3

M3

jj

p�XT2
�0

// p�XT2

M2

�

66

Indeed, this shows that the pairs .i 0; �0/ and .p0; � 0/ define QCohflb
X=S

-morphisms, and that the
resulting completion of the diagram (8.2) commutes.

Now, these claims may all be verified locally for the smooth topology. Thus, we reduce
to the affine situation as before, with the modification that for k ¤ 3 we have Mk Š

fM k ,
where Mk is a Dk-module which is flat over Ak , and M3 ŠfM 3 ŠfM 1 �eM0

fM 2. The result
now follows from [14, Théorème 2.2].
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168 Hall, Openness of versality via coherent functors

We now determine the automorphisms, deformations, and obstructions. Let .T;M/ be a
QCohflb

X=S
-scheme, and fix a quasi-coherent OT -module I . For an S -extension i WT ,! T 0 of

T by I , form the 2-cartesian diagram

XT

fT

��

� � j // XT 0

fT 0

��

// X

f
��

T

�

55
� � i // T 0

� 0 // S .

Set J D j � ker.OXT 0
! j�OXT

/. Fixing a QCoh
X=S

-extension .i; �/W .T;M/ ! .T 0;M0/,
we obtain a commutative diagram

M ˝OXT
f �T I

**

// //M ˝OXT
J

����

j � ker.M0 ! j�M/.

By the local criterion for flatness, M0 is T 0-flat if and only if the diagonal arrow above is an
isomorphism. Thus, if a QCohflb

X=S
-extension .i; �/W .T;M/ ! .T 0;M0/ exists, the top map

must be an isomorphism. This is how we will describe our first obstruction.

Example 8.4. This obstruction can be non-trivial when f is not flat and i is not split.
Indeed, let S D Spec CŒx; y� and take 0 D .x; y/ 2 jS j to be the origin. Set

X D Bl0S D Proj
S

OS ŒU; V �=.xV � yU /;

f WX ! S the induced map, and let E D f �1.0/ be the exceptional divisor. Now take
M D OE and consider the S -extension T D Spec �.0/ ,! T 0 D Spec CŒx; y�=.x2; y/. A
straightforward calculation shows that M˝OXT

J is the skyscraper sheaf supported at the point
of E corresponding to the y D 0 line in S . Also, f �T I D OXT

and so M ˝OXT
f �T I Š OE .

The resulting map M ˝OXT
f �T I !M ˝OXT

J is not injective.

Observe that there is a short exact sequence of OT 0-modules

0! i�I ! OT 0 ! i�OT ! 0:

By Theorem C.1 we obtain an exact sequence of quasi-coherent OXT 0
-modules

T orS;�
0;f

1 .i�OT ;OX /! f �T 0i�I ! j�J ! 0:

Since there is a functorial isomorphism f �T 0i�I Š j�f
�
T I , Corollary C.3 provides a natural

exact sequence of quasi-coherent OXT
-modules

T orS;�;f1 .OT ;OX /! f �T I ! J ! 0:

Applying the functor M ˝OXT
� to this sequence produces another exact sequence

M˝OXT
T orS;�;f1 .OT ;OX /

o1..T;M/;I /.i/
�����������!M˝OXT

f �T I !M˝OXT
J ! 0:
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Thus, we have defined a natural class

o1..T;M/; I /.i/ 2 HomOXT

�
M ˝OXT

T orS;�;f1 .OT ;OX /;M ˝OXT
f �T I

�
;

whose vanishing is necessary and sufficient for the map M ˝OXT
f �T I !M ˝OXT

J to be an
isomorphism. By functoriality of the class o1..T;M/; I /.i/, we obtain a natural transformation
of functors

o1..T;M/;�/WExalS .T;�/) HomOXT

�
M˝OXT

T orS;�;f1 .OT ;OX /;M˝OXT
f �T .�/

�
:

Suppose that the S -extension i WT ,! T 0 now has the property that the map

M ˝OXT
f �T I !M ˝OXT

J

is an isomorphism. Let 
M;I denote the inverse to this map. Then [24, IV.3.1.12] gives a
naturally defined obstruction

o2..T;M/; I /.i/ 2 Ext2j�OXT

�
j�M; j�.M ˝OXT

f �T I /
�
Š Ext2OXT

.M;M ˝OXT
f �T I /

whose vanishing is a necessary and sufficient condition for there to exist a lift of M over T 0.
Thus, there is a natural transformation

o2..T;M/;�/W ker o1..T;M/;�/) Ext2OXT
.M;M ˝OXT

f �T .�//

such that the pair ¹o1..T;M/;�/; o2..T;M/;�/º defines a 2-step obstruction theory for the
S -groupoid QCohflb

X=S
at .T;M/.

In the case where i D iT;I WT ,! T ŒI �, the trivial X -extension of T by I , then the
map M ˝OXT

f �T I ! M ˝OXT
J is an isomorphism. By [24, IV.3.1.12], we obtain natural

isomorphisms of abelian groups:

AutQCohflb
X=S

=S ..T;M/; I / Š Homj�OXT

�
j�M; j�.M ˝OXT

f �T I /
�
;

Š HomOXT
.M;M ˝OXT

f �T I /;

DefQCohflb
X=S

=S ..T;M/; I / Š Ext1j�OXT

�
j�M; j�.M ˝OXT

f �T I /
�
;

Š Ext1OXT
.M;M ˝OXT

f �T I /:

Proof of Theorem 8.1. Using standard reductions [41, Appendix B], we are free to as-
sume that f is, in addition, finitely presented, and the scheme S is affine and of finite type
over Spec Z (in particular, it is noetherian and excellent). We now verify the conditions of
Theorem A. Certainly, the S -groupoid CohX=S is a limit preserving étale stack over S . By
Lemma 8.3, it is also Aff-homogeneous. Also, for a noetherian local ring .B;m/ that is m-
adically complete and a map SpecB ! S , the canonical functor

QCohflb;fp;prb.XSpecB/! lim
 �
n

QCohflb;fp;prb.XSpec.B=mn//

is an equivalence of categories [35, Theorem 1.4].
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If .T;M/ is a CohX=S -scheme, then we have proved that

AutCohX=S=S
..T;M/;�/ D HomOXT

.M;M ˝OXT
f �T .�//;

DefCohX=S=S
..T;M/;�/ D Ext1OXT

.M;M ˝OXT
f �T .�//;

O1..T;M/;�/ D HomOXT

�
M ˝OXT

T orS;�;f1 .OT ;OX /;M ˝OXT
f �T .�/

�
;

O2..T;M/;�/ D Ext2OXT
.M;M ˝OXT

f �T .�//;

where ¹O1..T;M/;�/;O2..T;M/;�/º are the obstruction spaces for a 2-step obstruction
theory. If T is assumed to be locally noetherian, then by Theorem C.1, the OXT

-module
T orS;�;f1 .OT ;OX / is coherent. In addition, if T is affine, Example 5.5 implies that the func-
tors listed above are coherent. Having met the conditions of Theorem A, we see that the
S -groupoid QCohflb;fp;prb

X=S
is algebraic and locally of finite presentation over S .

It remains to show that the diagonal of CohX=S is affine. If .T;M/ and .T;N / are
CohX=S -schemes, then the commutative diagram in the category of T -presheaves

IsomQCoh
X=S

..T;M/; .T;N //

�7!.�;��1/

��

// HomT .�; T /

.IdM;IdN /

��

HomOXT
=T .M;N / � HomOXT

=T .N ;M/ // HomOXT
=T .M;M/ � HomOXT

=T .N ;N /,

where the morphism along the base is .�; �/ 7! .�ı�;�ı�/, is cartesian. By [20, Theorem D],
we deduce the result.

We conclude this section with the following observations. Let X ! S be a morphism of
algebraic stacks and let F be a quasi-coherent OX -module. Let

.T
�
�! S; 'W ��XF � G / D .T; '/

be a Quot
X=S

.F /-scheme. Then minor variations of the arguments given in the determination
of the deformation and obstruction theory for CohX=S show that there is a 2-step obstruction
theory for Quot

X=S
.F /:

o1..T; '/;�/WExalS .T;�/) HomOXT

�
T orS;�;f1 .OT ;F /;G ˝OXT

f �T .�/
�
;

o2..T; '/;�/W ker o1..T; '/;�/) Ext1OXT
.ker';G ˝OXT

f �T .�//:

Moreover, we also have a functorial isomorphism

DefQuot
X=S

.F /..T; '/;�/ Š HomOXT
.ker';G ˝OXT

f �T .�//:

9. Application II: The Hilbert stack and spaces of morphisms

Fix a scheme S and a 1-morphism of algebraic stacks f WX ! S . For an S -scheme T ,
consider a property P of a morphism Z ! XT . Such properties P could be (but not limited
to):
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qf – quasi-finite,

lfpb – the composition Z ! XT ! T is locally of finite presentation,

prb – the composition Z ! XT ! T is proper,

flb – the composition Z ! XT ! T is flat.

Define MorP
X=S

to be the category with objects pairs .T;Z
g
��! XT /, where T is an S -scheme

and gWZ ! XT is a representable morphism of algebraic S -stacks that is P . Morphisms

.p; �/W .V;W
h
�! XV /! .T;Z

g
��! XT /

in the category MorP
X=S

are 2-cartesian diagrams

W

�
��

h // XV
fV //

pXT

��

V

p
����

Z
g
// XT

fT

// T .

If the property P is reasonably well-behaved, the natural functor MorP
X=S
! Sch=S defines an

S -groupoid. We define the Hilbert stack, HSX=S , to be the S -groupoid Morflb;lfpb;prb;qf
X=S

. This
Hilbert stack contains Vistoli’s Hilbert stack [47] as well as the stack of branchvarieties [3].
We will prove the following theorem.

Theorem 9.1. Fix a scheme S and a morphism of algebraic stacks f WX ! S that is
separated and locally of finite presentation. Then HSX=S is an algebraic stack, which is locally
of finite presentation over S with affine diagonal over S .

Theorem 9.1 was the result alluded to in the title of M. Lieblich’s paper [26], though
a precise statement was not given. Theorem 9.1 was established in [26] using an auxiliary
representability result [26, Proposition 2.3] combined with [26, Theorem 2.1] (Theorem 8.1
above). In the non-flat case, the obstruction theory used in the proof of [26, Proposition 2.3]
is incorrect (a variant of Example 8.4 can be made into a counterexample in this setting also).
The stated obstruction theory can be made into the second step of a 2-step obstruction theory,
however. The properties of the diagonal of HSX=S have not been addressed previously.

Corollary 9.2. Fix a scheme S and morphisms of algebraic stacks f WX ! S and
gWY ! S . Assume that f is locally of finite presentation, proper, and flat and that g is locally
of finite presentation with finite diagonal. Then HomS .X; Y / is an algebraic stack, which is
locally of finite presentation over S with affine diagonal over S .

Corollary 9.2 can be used in the construction of the stack of twisted stable maps [1, Propo-
sition 4.2]. The original construction of the stack of twisted stable maps utilized an incorrect
obstruction theory in the non-flat case [2, Lemma 5.3.3]. The original proof of Corollary 9.2,
due to M. Aoki [4, §3.5], also has an incorrect obstruction theory in the case of a non-flat
target. The stated obstruction theories, as before, can be realized as the second step of a 2-
step obstruction theory. A variant of Example 8.4 can be made into counterexamples in these
settings too.
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To prove Theorem 9.1, we will apply Theorem A directly (though as mentioned previ-
ously, this could be done as in [26] using Theorem 8.1). With Theorem 9.1 proven it is easy to
deduce Corollary 9.2 via the standard method of associating to a morphism its graph, thus the
proof is omitted. Now, just as in Section 8, there are inclusions

Morflb;lfpb;prb;qf
X=S

� Morflb;lfpb;prb
X=S

� Morflb;lfpb
X=S

� Morflb
X=S :

The first two inclusions are trivially formally étale. By Lemma A.6, the third inclusion is
formally étale. By Lemma 1.5 (9), they will all be Aff-homogeneous if Morflb

X=S
is Aff-homo-

geneous. Also, by Lemmas 6.3 and 6.11, descriptions of the automorphisms, deformations,
and obstructions for Morflb

X=S
descend to the subcategories listed above.

Lemma 9.3. Fix a scheme S and a morphism of algebraic stacks f WX ! S . Then the
S -groupoid Morflb

X=S
is Aff-homogeneous.

Proof. First we check .HAff
2 /. Fix a diagram of Morflb

X=S
-schemes

�
.T1; Z1

g1
��! XT1

/
.i;�/
 ���� .T0; Z0

g0
��! XT0

/
.p;�/
����! .T2; Z2

g2
��! XT2

/
�
;

where i is a locally nilpotent closed immersion and p is affine, and a cocartesian square of
S -schemes

T0
� � i //

p
��

T1

p0

��

T2
� � i 0 // T3.

By Proposition A.2, there exists a 2-commutative diagram of algebraic S -stacks

Z0

��

�

}}

� // Z1

� 0}}

��

Z2

��

�0 // Z3

��

T0 i //

p

}}

T1

p0}}

T2 i 0 // T3,

where the left and rear faces of the cube are 2-cartesian, and the top and bottom faces are 2-
cocartesian in the 2-category of algebraic S -stacks. Thus, the universal properties guarantee the
existence of a unique T3-morphism Z3

g3
��! XT3

. By Lemma A.4, the morphism Z3 ! T3
is flat and all faces of the cube are 2-cartesian. In particular, the resulting Morflb

X=S
-scheme

diagram

.T0; Z0
g0
��! XT0

/

.p;�/
��

� � .i;�/ // .T1; Z1
g1
��! XT1

/

.p0;� 0/
��

.T2; Z2
g2
��! XT2

/
� � .i
0;�0/

// .T3; Z3
g3
��! XT3

/
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is cocartesian in the category of Mor
X=S

-schemes. Condition .HAff
1 / follows from a similar

argument as that given in the proof Lemma 8.3.

Fix a Morflb
X=S

-scheme .T;Z
g
��! XT / and a quasi-coherent OT -module I . Unravelling

the definitions and applying the results of [36] demonstrates that there are natural isomorphisms
of abelian groups

AutMorflb
X=S

=S ..T;Z
g
��! XT /; I / Š HomOZ

.LZ=XT
; g�f �T I /;

DefMorflb
X=S

=S ..T;Z
g
��! XT /; I / Š Ext1OZ

.LZ=XT
; g�f �T I /:

Using identical ideas to those developed in Section 8, together with [36], we obtain a 2-term
obstruction theory for the S -groupoid Morflb

X=S
at .T;Z

g
��! XT /:

o1..T;Z
g
��! XT /;�/WExalS .T;�/) HomOZ

�
g�T orS;�;f1 .OT ;OX /; g

�f �T .�/
�
;

o2..T;Z
g
��! XT /;�/W ker o1..T;Z

g
��! XT /;�/) Ext2OZ

.LZ=XT
; g�f �T .�//:

Proof of Theorem 9.1. The proof that the S -groupoid HSX=S is algebraic and locally
of finite presentation is essentially identical to the proof of Theorem 8.1, thus is omitted. It
remains to show that the diagonal is affine. If

.T;Z1
g1
��! XT / and .T;Z2

g2
��! XT /

are HSX=S -schemes, then the inclusion of T -presheaves

IsomHSX=S

�
.T;Z1

g1
��! XT /; .T;Z2

g2
��! XT /

�
� IsomQCoh

X=S

�
.T; .g2/�OZ2

/; .T; .g1/�OZ1
/
�

is representable by closed immersions. By Theorem 8.1, the result follows.

A. Homogeneity of stacks

The results of this section are routine bootstrapping arguments. They are included so that
Aff-homogeneity can be proved for moduli problems involving stacks.

Definition A.1. Fix a 2-commutative diagram of algebraic stacks

X0
� � i //

f

��
}� ˛

X1

f 0

��

X2
� �

i 0
// X3;

where i and i 0 are closed immersions and f and f 0 are affine. If the induced map

OX3
! i 0�OX2

�.i 0f /�OX0
f 0�OX1
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174 Hall, Openness of versality via coherent functors

is an isomorphism of sheaves, then we say that the diagram is a geometric pushout, and that
X3 is a geometric pushout of the diagram�

X2
f
 �� X0

i
�! X1

�
:

The main result of this section is the following proposition.

Proposition A.2. Any diagram of algebraic stacks ŒX2
f
 �� X0

i
�! X1�, where i is a

locally nilpotent closed immersion and f is affine, admits a geometric pushout X3. The result-
ing geometric pushout diagram is 2-cartesian and 2-cocartesian in the 2-category of algebraic
stacks.

We now need to collect some results which aid with the bootstrapping process.

Lemma A.3. Fix a 2-commutative diagram of algebraic stacks

X0
� � i //

f
��
}�

X1

f 0

��

X2
� �

i 0
// X3.

(1) If the diagram above is a geometric pushout diagram, then it is 2-cartesian.

(2) If the diagram above is a geometric pushout diagram, then it remains so after flat base
change on X3.

(3) If after fppf base change on X3, the above diagram is a geometric pushout diagram, then
it was a geometric pushout prior to base change.

Proof. The claim (1) is local on X3 for the smooth topology, thus we may assume that
everything in sight is affine; whence the result follows from [14, Théorème 2.2]. Claims (2)
and (3) are trivial applications of flat descent.

Lemma A.4. Consider a 2-commutative diagram of algebraic stacks

U0

��

ww

� � // U1
ww

��

U2

��

� � // U3

��

X0
� � //

ww

X1
ww

X2
� � // X3

where the back and left faces of the cube are 2-cartesian, the top and bottom faces are geomet-
ric pushout diagrams, and for j D 0, 1, 2, the morphisms Uj ! Xj are flat. Then all faces of
the cube are 2-cartesian and the morphism U3 ! X3 is flat.

Proof. By Lemma A.3 (2), this is all smooth local on X3 and U3, thus we immediately
reduce to the case where everything in sight is affine. Fix a diagram of rings ŒA2 ! A0

p
 �� A1�

where pWA1 ! A0 is surjective. For j D 0, 1, 2 fix flatAj -algebrasBj , andA0-isomorphisms
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Hall, Openness of versality via coherent functors 175

B2 ˝A2
A0 Š B0 and B1 ˝A1

A0 Š B0. Set A3 D A2 �A0
A1 and B3 D B2 �B0

B1, then
we have to prove that the A3-algebra B3 is flat, the natural maps B3 ˝A3

Aj ! Bj are
isomorphisms, and that these isomorphisms are compatible with the given isomorphisms. This
is an immediate consequence of [14, Théorème 2.2], since these are questions about modules.

We omit the proof of the following easy result from commutative algebra.

Lemma A.5. Fix a surjection of rings A ! A0 and let I D ker.A ! A0/. Suppose
that there is a k such that I k D 0.

(1) Given a map of A-modules uWM ! N such that u ˝A A0 is surjective, then u is
surjective.

(2) For an A-module M , if M ˝A A0 is finitely generated, then M is finitely generated.

(3) Given an A-algebra B and a B-module M , let M0 D A0 ˝AM .

(1) If M is A-flat and M0 is B0-finitely presented, then M is B-finitely presented.

(2) If B0 is a finite type A0-algebra, then B is a finite type A-algebra.

(3) If B is a flat A-algebra and B0 is a finitely presented A0-algebra, then B is a finitely
presented A-algebra.

Lemma A.6. Fix a flat morphism f WX ! Y of algebraic stacks and a locally nilpotent
closed immersion Y0 ,! Y . Then f is locally of finite presentation, respectively smooth, if and
only if the same is true of X �Y Y0 ! Y0.

Proof. Observe that for flat morphisms which are locally of finite presentation, smooth-
ness is a fibral condition, thus follows from the first claim. The first claim is smooth local on
Y and X , thus follows from Lemma A.5 (3).

Lemma A.7. Let X ,! X 0 be a locally nilpotent closed immersion of algebraic stacks
and let U ! X be a smooth morphism, where U is an affine scheme. Then there exists a
smooth morphism U 0 ! X 0 which pulls back to U ! X .

Proof. Since U is quasi-compact, it is sufficient to treat the case where the locally
nilpotent closed immersion X ,! X 0 is square zero. By [36, Theorem 1.4], the only ob-
struction to the existence of a flat lift of U ! X over X 0 lies in an abelian group of the
form Ext2

OU
.LU=X ;M/, where M is a quasi-coherent OU -module. The morphism U ! X is

smooth, U is affine, and the OU -module HomOU
.�U=X ;M/ is quasi-coherent, thus

Ext2OU
.LU=X ;M/ D H 2

�
U;HomOU

.�U=X ;M/
�
D 0:

Finally, by Lemma A.6, any such lift that is flat, is also smooth.

The following result is a variation of [48, Proposition 2.1].
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Lemma A.8. Fix a 2-commutative diagram of algebraic stacks

X0
� � i //

f

��
}� ˛

X1

f 0

��

X2
� �

i 0
// X3:

If the diagram is a geometric pushout diagram and i is a locally nilpotent closed immersion,
then it is 2-cartesian and 2-cocartesian in the 2-category of algebraic stacks.

Proof. That the diagram is 2-cartesian is Lemma A.3 (1). It remains to show that we
can uniquely complete all 2-commutative diagrams of algebraic stacks

X0
/�
i
??

f ��

�� ˛

X1
f 0

��

 1

""

X2
/� i 0

??

 2

==X3 �� ˇ W:

By smooth descent, this is smooth-local on X3, so we may reduce to the situation where the
Xj D SpecAj are all affine schemes. Since X3 is a geometric pushout of the diagram

�
X2

f
 �� X0

i
�! X2

�
;

it follows that A3 Š A2 �A0
A1.

Let qWSpecB ! W be a smooth morphism such that the pullback vj WUj ! Xj of q
along  j is surjective for j 2 ¹0; 1; 2º, which exists because the Xj are all quasi-compact.
There are compatibly induced morphisms of algebraic spaces  j;B WUj ! SpecB for j D 1

and 2 and fB WU0 ! U2 and iB WU0 ,! U1.
Let c2WSpecC2 ! Uj be an étale morphism such that v2 ı c2 is smooth and surjective.

The morphism c2 pulls back along fB to give an étale morphism c0WSpecC0 ! U0 such that
v0 ı c0 is smooth and surjective. Let Qf WSpecC0 ! SpecC2 and Q 2WSpecC2 ! SpecB be
the resulting morphisms.

Since c0 is étale and i is a locally nilpotent closed immersion, there is an étale morphism
c1WSpecC1 ! X1 whose pullback along iB is isomorphic to c0; see [17, IV.18.1.2]. Let
C3 D C2�C0

C1. Then there is a uniquely induced ring homomorphismA3 ! C3. By Lemma
A.4, the morphism c3WSpecC3 ! SpecA3 is flat and surjective and by Lemma A.6 it follows
that c3 is smooth and surjective. Hence, we may replace SpecAj by SpecCj and further
assume that the j for j D 0, 1, and 2 factor through some smooth morphism qWSpecB ! W .
In particular, there is an induced morphism  3WSpecA3 ! SpecB ! W . It remains to
prove that the morphism  3 is unique up to a unique choice of 2-morphism. Let  3 and
 03WSpecA3 ! W be two compatible morphisms. That these morphisms are isomorphic
can be checked smooth-locally on SpecA3. But smooth-locally, the morphisms  3 and  03
both factor through some SpecB ! W and the morphisms SpecAj ! SpecA3 ! SpecB
coincide for j D 0, 1, and 2, thus  3 and  03 are isomorphic. To show that the isomorphism
between  3 and  03 is unique, we just repeat the argument, and the result follows.
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We finally come to the proof of Proposition A.2.

Proof of Proposition A.2. By Lemma A.8, it suffices to prove the existence of geometric
pushouts. Let C0 denote the category of affine schemes. For d D 1, 2, 3, let Cd denote the full
2-subcategory of the 2-category of algebraic stacks with affine d th diagonal. Note that C3 is
the full 2-category of algebraic stacks. We will prove by induction on d � 0 that if

(A.1)
�
X2

f
 �� X0

i
�! X1

�
belongs to Cd , then it admits a geometric pushout. For the base case, where d D 0, take
X3 D Spec.OX2

.X2/ �OX0
.X0/ OX1

.X1// and the result is clear. Now let d > 0 and assume
that (A.1) belongs to Cd . Fix a smooth surjection ql2ƒX l2 ! X2, where X l2 is an affine
scheme for all l 2 ƒ. Set X l0 D X l2 �X2

X0. Then as f is affine, the scheme X l0 is also
affine. By Lemma A.7, the resulting smooth morphism X l0 ! X0 lifts to a smooth morphism
X l1 ! X1, with X l1 affine, and X l0 Š X

l
1 �X1

X0. For m D 0, 1, and 2 and u, v, w 2 ƒ set

Xuvm D X
u
m �Xm

Xvm and Xuvwm D Xum �Xm
Xvm �Xm

Xwm :

Note that for m D 0, 1, and 2 and all u, v, w 2 ƒ we have Xuvm , Xuvwm 2 Cd�1. By
the inductive hypothesis, for I D u, uv or uvw, a geometric pushout XI3 of the diagram
ŒXI2  XI0 !XI1 � exists. By Lemma A.8, there are uniquely induced morphisms Xuvm !Xum.
For m ¤ 3, these morphisms are clearly smooth, and by Lemmas A.4 and A.6 the morphisms
Xuv3 ! Xu3 are smooth. It is easily verified that the universal properties give rise to a smooth
groupoid Œqu;v2ƒXuv3 � qw2ƒX

w
3 �. The quotient X3 of this groupoid in the category of

stacks is algebraic. By Lemma A.3 (3), it is also a geometric pushout of (A.1). The result
follows.

B. Fibre products of Picard categories

For background material and conventions on Picard categories, we refer the reader to
[8, XVIII.1.4]. In this appendix, we describe a variant of the exact sequence appearing in
[19, (2.5.2)].

Let f WP 0 ! P and gWP ! Q be 1-morphisms of Picard categories. DefineP 0�f;P;gQ
to be the groupoid with objects .p0; q; �/, where p0 2 P 0 and q 2 Q and �Wf .p0/ ! g.q/,
and morphisms .�; �/W .p01; q1; �1/ ! .p02; q2; �2/, where �Wp01 ! p02 and �W q1 ! q2 are
morphisms such that the following diagram commutes:

f .p01/
f�� //

�1

��

f .p02/

�2

��

g.q1/
g�� // g.q2/:

It is easily shown that P 0 �f;P;g Q admits a natural structure of a Picard category such that
the induced projections f 0WP 0 �f;P;g Q ! Q and g0WP 0 �f;P;g Q ! P are 1-morphisms
of Picard categories. There is also a canonically induced 2-morphism ˛Wf ı g0 ) g ı f 0. In
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particular, there is a 2-commutative diagram of Picard categories,

P 0 �f;P;g Q
g 0
//

f 0

��

�	 ˛

P 0

f

��

Q
g

// P:

It is easily shown that the 2-commutative diagram above is 2-cartesian in the 2-category of
Picard categories.

Let 0 denote the Picard category with one object, whose abelian group of automorphisms
is 0. If P is a Picard category and 0P is a zero object of P , then there is an induced 1-
morphism of Picard categories 0P W 0 ! P . Also, there is a unique 1-morphism of Picard
categories 0WP ! 0. Finally, let P be the abelian group of isomorphism classes of P .

Let f1WP1 ! P2 and f2WP2 ! P3 be 1-morphisms of Picard categories and let 0P1
be

a 0-object of P1. Let 0P3
D f2 ı f1.0P1

/. We say that the sequence of Picard categories

0
0P1
���! P1

f1
��! P2

f2
��! P3

is left-exact if there exists a 2-morphism ıWf2 ı f1 ) 0P3
ı 0 that makes the 2-commutative

diagram

P1
f1 //

0
��
}� ı

P2

f2

��

0
0P3 // P3

2-cartesian in the 2-category of Picard categories.
The main result of this appendix is the following lemma.

Lemma B.1. Consider a left-exact sequence of Picard categories

0
0P1
���! P1

f1
��! P2

f2
��! P3:

Let 0P2
D f1.0P1

/ and 0P3
D f2.0P2

/. Then there is an exact sequence of abelian groups

0 // AutP1
.0P1

/
.f1/� // AutP2

.0P2
/
.f2/� // AutP3

.0P3
/

à

// P1
f1 // P2

f2 // P3:

Proof. By the explicit description of the 2-fiber product of Picard categories, we may
assume that P1 is expressed in the following way: it is the Picard category with objects
pairs .p2; a/, where p2 2 P2 and aWf2.p2/ ! 0P3

is a morphism in P3, and morphisms
�W .p2; a/ ! .p02; a

0/, where �Wp2 ! p02 is a morphism such that a0 ı .f2/�.�/ D Id0P3
.

The functor f1WP1 ! P2 is the forgetful functor: .p2; a/ 7! p2. We also take 0P1
to be

.0P2
; Id0P3

/. Finally, the 2-morphism ıWf2 ı f1 ) 0P3
ı 0 sends .f2 ı f1/.p2; a/ D f2.p2/

to .0P3
ı 0/.p2; a/ D 0P3

via a.
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In this case it is trivial from the definitions that the sequence

0! AutP1
.0P1

/
.f1/�
����! AutP2

.0P2
/
.f2/�
����! AutP3

.0P3
/

is exact. The morphism à is described as follows: it sends an automorphism l W 0P3
! 0P3

to the isomorphism class of the object .0P2
; l/ 2 P1. Note that this shows, in particular, that

à.l/ D 0 if and only if there is an isomorphism �W .0P2
; l/! .0P2

; Id0P3
/. That is, à.l/ D 0 if

and only if there is an automorphism �W 0P2
! 0P2

such that l ı .f2/�.�/ D IdP3
. It follows

that à.l/ D 0 if and only if l 2 im.f2/�, thus the sequence

AutP2
.0P2

/
.f2/�
����! AutP3

.0P3
/
à
�! P1

is exact. If .p2; a/ 2 P1, then f1.p2; a/ D 0 in P2 if and only if there is an isomorphism
qWp2 ! 0P2

. In particular, it follows that q induces an isomorphism

.p2; a/!
�
0P2

; .f2/�.q/ ı a
�1
�

in P1 and so .p2; a/ belongs to im à if and only if f1.p2; a/. Finally, if p2 2 P2, then
f2.p2/ D 0 in P3 if and only if there is an isomorphism mWf2.p2/! 0P3

. This is manifestly
equivalent to p2 lying in the image of f1. We have thus shown that the sequence

AutP3
.0P3

/
à
�! P1

f1
��! P2

f2
��! P3

is exact. The result follows.

C. Local Tor functors on algebraic stacks

The aim of the section is to state some easy generalizations of [17, III.6.5] to algebraic
stacks.

Theorem C.1. Fix a scheme S and a 2-cartesian diagram of algebraic S -stacks:

X3
f 01 //

f 02
��

X2

f2

��

X1
f1 // X0:

Then for every integer i � 0 there exists a natural bifunctor

T orX0;f1;f2

i .�;�/WQCoh.X1/ �QCoh.X2/! QCoh.X3/;

such that the family of bifunctors ¹T orX0;f1;f2

i .�;�/ºi�0 forms a à-functor in each variable.
Moreover, there is a natural isomorphism for all M 2 QCoh.X1/ and N 2 QCoh.X2/,

T orX0;f1;f2

0 .M;N / Š f 0�2 M ˝OX3
f 0�1 N:

If M or N is X0-flat, then for all i > 0 we have T orX0;f1;f2

i .M;N / D 0. In addition, if
the algebraic stacks X1 and X0 are locally noetherian and the morphism f2 is locally of finite
type, then the bifunctor above restricts to a bifunctor:

T orX0;f1;f2

i .�;�/WCoh.X1/ � Coh.X2/! Coh.X3/:
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Proof. We will describe the quasi-coherent sheaves T orX0;f1;f2

i .M;N / smooth-locally
onX3 and deduce their existence via descent. The other properties will be trivial consequences
of this construction. We begin by observing that X3 admits a smooth cover by affine schemes
of the form Spec.A1 ˝A0

A2/, where for each j D 0, 1, and 2 there is a smooth morphism
SpecAj ! X . For each integer i � 0 let

T orX0;f1;f2

i .M;N /jSpec.A1˝A0
A2/ D TorA0

i

�
�.SpecA1;M/; �.SpecA2; N /

�
:

Clearly, the above is an .A1 ˝A0
A2/-module with the relevant properties. The result follows.

Remark C.2. Unless X1 and X2 are tor-independent over X0, the quasi-coherent OX3
-

modules T orX0;f1;f2

i .M;N / are not isomorphic to H�i .ŒLf 0�1 N�˝
L
OX3

ŒLf 02M�/.

An immediate consequence of the proof of Theorem C.1 is the following corollary.

Corollary C.3. Fix a scheme S and a 2-cartesian diagram of algebraic S -stacks

W �Z Y

gW

��

h0 // X �Z Y
fY //

gX

��

Y

g

��

W
h // X

f
// Z;

where the morphism h is affine. Then, for any M 2 QCoh.W /, N 2 QCoh.Y /, and i � 0,
there is a natural isomorphism of quasi-coherent OX�ZY -modules:

T orZ;f;gi .h�M;N/ Š h
0
�T orZ;f ıh;gi .M;N /:
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