
Topic 2

Describing Distributions with Numbers

We next look at quantitative data. Recall that in this case, these data can be subject to the operations of arithmetic.
In particular, we can add or subtract observation values, we can sort them and rank them from lowest to highest.

We will look at two fundamental properties of these observations. The first is a measure of the center value for
the data, i.e., the median or the mean. Associated to this measure, we add a second value that describes how these
observations are spread about this given measure of center.

The median is the central observation of the data after it is sorted from the lowest to highest observations. In
addition, to give a sense of the spread in the data, we often give the smallest and largest observations as well as the
observed value that is 1/4 and 3/4 of the way up this list, known at the first and third quartiles. For the mean, we
commonly use the standard deviation to describe the spread of the data.

These concepts will be described in more detail in this section.

2.1 Measuring Center
2.1.1 Medians
The median take the middle value for x

1

, x
2

, . . . , xn after the data has been sorted from smallest to largest,

x
(1)

, x
(2)

, . . . , x
(n).

(x
(k) is called the k-th order statistic. Sorting can be accomplished in R by using the sort command.)

If n is odd, then this is just the value of the middle observation x
((n+1)/2). If n is even, then the two values closest

to the center are averaged.
1

2

(x
(n/2) + x

(n/2+1)

).

If we store the data in R in a vector x, we can write median(x) to compute the median.

2.1.2 Means
For a collection of numeric data, x

1

, x
2

, . . . , xn, the sample mean is the numerical average

x̄ =

1

n
(x

1

+ x
2

+ . . .+ xn) =
1

n

n
X

i=1

xi

Alternatively, if the value x occurs n(x) times in the data, then use the distributive property to see that

x̄ =

1

n

X

x

xn(x) =
X

x

xp(x), where p(x) =
n(x)

n
,
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Figure 2.1: Empirical Survival Function for the Bacterial Data. This figure displays how the area under the survival function to the right of the
y-axis and above the x-axis is the mean value x̄ for non-negative data. For x = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5. This area is the sum of the area
of the retangles displayed. The width of each of the rectangles is x and the height is equal to p(x). Thus, the area is the product xp(x). The sum of
these areas are presented in Example 2.2 to compute the sample mean.

So the mean x̄ depends only on the proportion of observations p(x) for each value of x.

Example 2.1. For the data set {1, 2, 2, 2, 3, 3, 4, 4, 4, 5}, we have n = 10 and the sum

1 + 2 + 2 + 2 + 3 + 3 + 4 + 4 + 4 + 5 = 1n(1) + 2n(2) + 3n(3) + 4n(4) + 5n(5)

= 1(1) + 2(3) + 3(2) + 4(3) + 5(1) = 30

Thus, x̄ = 30/10 = 3.

Example 2.2. For the data on the length in microns of wild type Bacillus subtilis data, we have

length x frequency n(x) proportion p(x) product xp(x)
1.5 18 0.090 0.135
2.0 71 0.355 0.710
2.5 48 0.240 0.600
3.0 37 0.185 0.555
3.5 16 0.080 0.280
4.0 6 0.030 0.120
4.5 4 0.020 0.090
sum 200 1 2.490

So the sample mean x̄ = 2.49.

If we store the data in R in a vector x, we can write mean(x) which is equal to sum(x)/length(x) to
compute the mean.
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Exercise 2.3. Let x̄n be the sample mean for the quantitative data x
1

, x
2

, . . . , xn. For an additional observation
xn+1

, use x̄ to give a formula for x̄n+1

, the mean of n + 1 observations. Generalize this formula for the case of k
additional observations xn+1

. . . , xn+k

Many times, we do not want to give the same weight to each observation. For example, in computing a student’s
grade point average, we begin by setting values xi corresponding to grades ( A 7! 4, B 7! 3 and so on) and giving
weights w

1

, w
2

, . . . , wn equal to the number of units in a course. We then compute the grade point average as a
weighted mean. To do this:

• Multiply the value of each course by its weight xiwi. This is called the number of quality points for the course.

• Add up the quality points:

x
1

w
1

+ x
2

w
2

+ . . .+ xnwn =

n
X

i=1

xiwi

• Add up the weights, i. e., the number of units attempted:

w
1

+ w
2

+ . . .+ wn =

n
X

i=1

wi

• Divide the total quality points by the number of units attempted:

x
1

w
1

+ x
2

w
2

+ . . .+ xnwn

w
1

+ w
2

+ . . .+ wn
=

Pn
i=1

xiwi
Pn

i=1

wi
. (2.1)

If we let

pj = wj/
n
X

i=1

wi

be the proportion or fraction of the weight given to the j-th observation, then we can rewrite (2.1) as

n
X

i=1

xipi.

If we store the weights in a vector w, then we can compute the weighted mean using weighted.mean(x,w)

If an extremely high observation is changed to be even higher, then the mean follows this change while the median
does not. For this reason, the mean is said to be sensitive to outliers while the median is not. To reduce the impact of
extreme outliers on the mean as a measure of center, we can also consider a truncated mean or trimmed mean. The
p trimmed mean is obtained by discarding both the lower and the upper p⇥100% of the data and taking the arithmetic
mean of the remaining data.

In R, we write mean(x, trim = p) where p, a number between 0 and 0.5, is the fraction of observations to
be trimmed from each end before the mean is computed.

Note that the median can be regarded as the 50% trimmed mean. The median does not change with a changes in
the extreme observations. Such a property is called a resistant measure. On the other hand, the mean is not a resistant
measure.

Exercise 2.4. Give the relationship between the median and the mean for a (a) left skewed, (b) symmetric, or (c) right
skewed distribution.
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2.2 Measuring Spread
2.2.1 Five Number Summary
The first and third quartile, Q

1

and Q
3

, are, respectively, the median of the lower half and the upper half of the data.
The five number summary of the data are the values of the minimum, Q

1

, the median, Q
3

and the maximum. These
values, along with the mean, are given in R using summary(x). Returning to the data set on the age of presidents:

> summary(age)
Min. 1st Qu. Median Mean 3rd Qu. Max.

42.00 51.00 54.50 54.64 57.25 69.00

We can display the five number summary using a boxplot.

> boxplot(age, main = c("Age of Presidents at the Time of Inauguration"))

●
●
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Age of Presidents at the Time of Inauguration

The value Q
3

�Q
1

is called the interquartile range and is denoted by IQR. It is found in R with the command IQR.
Outliers are somewhat arbitrarily chosen to be those above Q

3

+

3

2

IQR and below Q
1

� 3

2

IQR. With this criterion,
the ages of William Henry Harrison and Ronald Reagan, considered outliers, are displayed by the two circles at the top
of the boxplot. The boxplot command has the default value range = 1.5 in the choice of displaying outliers.
This can be altered to loosen or tighten this criterion.

Exercise 2.5. Create a boxplot for the age of the presidents at the time of their inauguration using as outliers any
value above Q

3

+ IQR and below Q
1

� IQR as the criterion for outliers. How many outliers does this boxplot have?

Example 2.6. Consider a two column data set. Column 1 - MPH - gives car gas milage. Column 2 - origin - gives
the country of origin for the car. We can create side by side boxplots with the command

> boxplot(MPG,Origin)
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to produce

2.2.2 Sample Variance and Standard Deviation
The sample variance averages the square of the differences from the mean

var(x) = s2x =

1

n� 1

n
X

i=1

(xi � x̄)2.

The sample standard deviation, sx, is the square root of the sample variance. We shall soon learn the rationale for
the decision to divide by n� 1. However, we shall also encounter circumstances in which division by n is preferable.
We will routinely drop the subscript x and write s to denote standard deviation if there is no ambiguity.

Example 2.7. For the data set on Bacillus subtilis data, we have x̄ = 498/200 = 2.49

length, x frequency, n(x) x� x̄ (x� x̄)2 (x� x̄)2n(x)
1.5 18 -0.99 0.9801 17.6418
2.0 71 -0.49 0.2401 17.0471
2.5 48 0.01 0.0001 0.0048
3.0 37 0.51 0.2601 9.6237
3.5 16 1.01 1.0201 16.3216
4.0 6 1.51 2.2801 13.6806
4.5 4 2.01 4.0401 16.1604
sum 200 90.4800

So the sample variance s2x = 90.48/199 = 0.4546734 and standard deviation sx = 0.6742947.
To accomplish this in R

> bacteria<-c(rep(1.5,18),rep(2.0,71),rep(2.5,48),rep(3,37),rep(3.5,16),rep(4,6),
+ rep(4.5,4))
> length(bacteria)
[1] 200
> mean(bacteria)
[1] 2.49
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> var(bacteria)
[1] 0.4546734
> sd(bacteria)
[1] 0.6742947

Exercise 2.8. Show that
Pn

i=1

(xi � x̄) = 0.

We now begin to describe the rationale for the division by n� 1 rather than n in the definition of the variance. To
introduce the next exercise, define the sum of squares about the value ↵,

SS(↵) =
n
X

i=1

(xi � ↵)2.

Exercise 2.9. Flip a fair coin 16 times, recording the number of heads. Repeat this activity 20 times, giving x
1

, . . . , x
20

heads. Our instincts say that the mean should be 8. Compute SS(8). Next find x̄ for the data you generated and
compute SS(x̄). Notice that SS(8) > SS(x̄).

Note that in repeating the experiment of flipping a fair coin 16 times and recording the number of heads, we would
like to compute the variation about 8, the value that our intuition tells us is the true mean. In many circumstances, we
do not have such intuition. Thus, we doing the best we can by computing x̄, the mean from the data. In this case, the
variation about the sample mean is smaller than the variation about what may be called a true mean. Thus, division
of
Pn

i=1

(xi � x̄)2 by n systematically underestimates the variance. The definition of sample variance is based on the
fact that this can be compensated for this by dividing by something small than n. We will learn why the appropriate
choice is n� 1 when we investigate Unbiased Estimation in Topic 13.

To show that the phenomena in Exercise 2.9 is true more broadly, we next perform a little algebra. This is similar
to the computation of the parallel axis theorem in physics. The parallel axis theorem is used to determine the moment
of inertia of a rigid body about any axis, given the moment of inertia of the object about the parallel axis through the
object’s center of mass (x̄) and the perpendicular distance between the axes. In this case, we a looking at the rigid
motion of a finite number of equal point masses.

In the formula for SS(↵), divide the difference in the value of each observation xi to the value ↵ into the difference
to the sample mean x̄ and then the distance from the sample mean to ↵ (i.e. x̄� ↵).

SS(↵) =
n
X

i=1

((xi � x̄) + (x̄� ↵))2 =

n
X

i=1

(xi � x̄)2 + 2

n
X

i=1

(xi � x̄)(x̄� ↵) +
n
X

i=1

(x̄� ↵)2

=

n
X

i=1

(xi � x̄)2 +
n
X

i=1

(x̄� ↵)2 =

n
X

i=1

(xi � x̄)2 + n(x̄� ↵)2.

By Exercise 2.8, the cross term above 2

Pn
i=1

(xi � x̄)(x̄ � ↵) equals to zero. Thus, we have partitioned the sums of
squares into two levels. The first term gives the sums of squares about the sample mean x̄. The second gives square of
the difference between x̄ and the chosen value ↵. We shall see this idea of partitioning in other contexts.

Note that the minimum value of SS(↵) can be obtained by minimizing the second term. This takes place at ↵ = x̄.
Thus,

min

↵
SS(↵) = SS(x̄) =

n
X

i=1

(xi � x̄)2.

Our second use for this identity provides an alternative method to compute the variance. Take ↵ = 0 to see that

SS(0) =
n
X

i=1

x2

i =

n
X

i=1

(xi � x̄)2 + nx̄2. Thus,
n
X

i=1

(xi � x̄)2 =

n
X

i=1

x2

i � nx̄2.

Divide by n� 1 to see that

s2 =

1

n� 1

 

n
X

i=1

x2

i � nx̄2

!

. (2.2)
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Exercise 2.10. The following formulas may be useful in aggregating data. Suppose you have data sets collected on
two consecutive days with the following summary statistics.

number of standard
day observations mean deviation
1 n

1

x̄
1

s
1

2 n
2

x̄
2

s
2

Now combine the observations of the two days and use this to show that the combined mean

x̄ =

n
1

x̄
1

+ n
2

x̄
2

n
1

+ n
2

and the combined variance

s2 =

1

n
1

+ n
2

� 1

�

(n
1

� 1)s2
1

+ n
1

x̄2

1

+ (n
2

� 1)s2
2

+ n
2

x̄2

2

� (n
1

+ n
2

)x̄2

�

.

(Hint: Use (2.2)).

Exercise 2.11. For the data set x
1

, x
2

, . . . , xn, let

yi = axi + b.

Give the summary statistics for the y data set given the corresponding values of the x data set. (Consider carefully the
consequences of the fact that a might be less than 0.)

Among these, the quadratic identity
var(ax+ b) = a2var(x)

is one of the most frequently used and useful in all of statistics.

2.3 Quantiles and Standardized Variables
A single observation, say 87 on a exam, gives little information about the performance on the exam. One way to
include more about this observation would be to give the value of the empirical cumulative distribution function.
Thus,

Fn(87) = 0.7223

tells us that about 72% of the exam scores were below 87. This is sometimes reported by saying that 87 is the 0.7223
quantile for the exam scores.

We can determine this value using the R command quantile. For the ages of presidents at inauguration, we
have that the 72% quantile is 57 year old.

> quantile(age,0.72)
72%
57

Thus, for example, for the ages of the president, we have that IQR(age) can also be computed using the command
quantile(age,3/4) - quantile(age,1/4). R returns the value 7.

Another, and perhaps more common use of the term quantiles is a general term for partitioning ranked data into
equal parts. For example, quartiles partitions the data into 4 equal parts. Percentiles partitions the data into 100 equal
parts. Thus, the k-th q-tile is the value in the data for which k/q of the values are below the given value. This naturally
leads to some rounding issues which leads to a large variety of small differences in the definition of quantiles.

Exercise 2.12. For the example above, describe the quintile, decile, and percentile of the observation 87.
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Figure 2.2: study habits (left) side-by-side boxplots, 1=males, 2=females, (center) empirical cumulative distribution function red is the plot for
males, black for females, (right) Q-Q plot

A second way to evaluate a score of 87 is to related it to the mean. Thus, if the mean x̄ = 76. Then, we might say
that the exam score is 11 points above the mean. If the scores are quite spread out, then 11 points above the mean is
just a little above average. If the scores are quite tightly spread, then 11 points is quite a bit above average. Thus, for
comparisons, we will sometimes use the standardized version of xi,

zi =
xi � x̄

sx
.

The observations zi have mean 0 and standard deviation 1. The value zi is also called the standard score , the z-value,
the z-score, and the normal score. An individual z-score, zi, gives the number of standard deviations an observation
xi is above (or below) the mean.

Exercise 2.13. What are the units of the standard score? What is the relationship of the standard score of an obser-
vation xi and yi = axi + b?

2.4 Quantile-Quantile Plots
In addition to side by side boxplots or histograms, we can also compare two cumulative distribution function directly
with the quantile-quantile or Q-Q plot. If the quantitative data sets x and y have the same number of observations,
then this is simply plot(sort(x),sort(y)). In this case the Q-Q plot matches each of the quantiles for the two
data sets. If the data sets have an unequal number of observations, then observations from the larger data are reduced
by interpolation to create data sets of equal length and the Q-Q plot is plot(sort(xred),sort(yred)) for the
reduced data sets xred and yred.

Example 2.14. The Survey of Study Habits and Attitudes is a psychological test that measures motivation, attitude
toward school, and study habits. Scores range from 0 to 200. Below are side by side boxplots, empirical cumulative
distribution function, and Q-Q plots. The data sets and the R code are given below.

> females<-c(154,109,137,115,152,140,154,176,101,103,126,137,165,165,129,200,148)
> males<-c(108.140,114,91,180,115,126,92,169,146,109,132,75,88,113,151,70,

115,187,104)
> par(mfrow=c(1,3))
> boxplot(males, females)
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> plot(sort(females),1:length(females)/length(females),type="s",
ylab=c("fraction below"),xlim=c(60,200),col="red")

> par(new=TRUE)
> plot(sort(males),1:length(males)/length(males),type="s",ylab=c("fraction below"),

xlim=c(60,200))
> qqplot(males,females)

2.5 Answers to Selected Exercises
2.3. Check the formula

x̄n+1

=

n

n+ 1

x̄n +

1

n+ 1

xn+1

.

For k additional observations, write
x̄n,k+n =

1

k
(xn+1

+ · · ·+ xn+k).

Then the mean of the n+ k observations is

x̄n+k =

n

n+ k
x̄n +

k

n+ k
x̄n,k+n.

2.4 (a) If the distribution is skewed left, then the mean follows the tail and is less than the median. (b) For a symmetric
distribution, the mean and the median are equal. (c) If the distribution is skewed right, then the mean is greater than
the median.

2.5. The boxplot has 5 outliers. Three are above Q
3

+ IQR and two are below Q
3

� IQR.

2.8. Divide the sum into 2 terms.
n
X

i=1

(xi � x̄) =
n
X

i=1

xi � nx̄ = n

 

1

n

n
X

i=1

xi � x̄

!

= 0.

2.9. This can be obtained by flipping coins. In R, we shall learn that the command to simulate this is rbinom(20,16,0.5).
Here are the data. Focusing on the first three columns, we see a total of 166 heads in the 20 observations. Thus,
x̄ = 8.3.

heads counts heats⇥counts counts⇥(heads-8)2 counts⇥(heads-x̄)2

4 1 4 1 · (4� 8)

2

= 16 1 · (4� 8.3)2 = 18.49
5 1 5 1 · (5� 8)

2

= 9 1 · (5� 8.3)2 = 10.89
6 2 12 2 · (6� 8)

2

= 8 2 · (6� 8.3)2 = 10.58
7 2 14 2 · (7� 8)

2

= 2 2 · (7� 8.3)2 = 5.07
8 5 40 5 · (8� 8)

2

= 0 5 · (8� 8.3)2 = 0.45
9 3 27 3 · (9� 8)

2

= 3 3 · (9� 8.3)2 = 1.47
10 3 30 3 · (10� 8)

2

= 12 3 · (10� 8.3)2 = 8.67
11 2 22 2 · (11� 8)

2

= 18 2 · (11� 8.3)2 = 14.58
12 1 12 1 · (12� 8)

2

= 16 1 · (12� 8.3)2 = 13.69
sum 20 166 SS(8) = 84 SS(↵) = 82.2

Notice that SS(8) > SS(x̄).

2.10. Let x
1,1, x1,2 . . . , x1,n1 denote the observed values on day 1 and x

2,1, x2,2 . . . , x2,n2 denote the observed values
on day 2. The mean of the combined data

x̄ =

1

n
1

+ n
2

 

n1
X

i=1

x
1,i +

n2
X

i=1

x
2,i

!

=

1

n
1

+ n
2

(n
1

x̄
1

+ n
2

x̄
2

)
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Using (2.2), we find that

s2 =

1

n
1

+ n
2

� 1

 

n1
X

i=1

x2

1,i +

n2
X

i=1

x2

2,i � (n
1

+ n
2

)x̄2

!

.

Use (2.2) twice more to see that

n1
X

i=1

x2

1,i = (n
1

� 1)s2
1

+ n
1

x̄2

1

and
n2
X

i=1

x2

2,i = (n
2

� 1)s2
2

+ n
2

x̄2

2

Now substitute the sums in the line above into the equation for s2.

2.11.

statistic
median If mx is the median for the x observations, then amx + b is the median of the y observations.
mean ȳ = ax̄+ b

variance var(y) = a2var(x)
standard deviation sy = |a|sx

first quartile If Q
1

is the first quartile of the x observations and if a > 0, then aQ
1

+ b is the first quartile
of the y observations. If a < 0, then aQ

3

+ b is the first quartile of the y observations.
third quartile If Q

3

is the third quartile of the x observations and if a > 0, then aQ
3

+ b is the third quartile
of the y observations. If a < 0, then aQ

1

+ b is the third quartile of the y observations.
interquartile range IQR(y) = |a|IQR(x).

To verify the quadratic identity for the variance:

var(y) =
1

n� 1

n
X

i=1

(yi � ȳ)2 =

1

n� 1

n
X

i=1

((axi + b)� (ax̄+ b))2 =

1

n� 1

n
X

i=1

(a(xi � x̄))2 = a2var(x).

2.12.

S(↵) =
n
X

i=1

(xi � ↵)2. Thus, S0
(↵) = �2

n
X

i=1

(xi � ↵)

and S0
(x̄) = 0. Next, S00

(↵) = 2n for all ↵ and thus S00
(x̄) = 2n > 0. Consequently, x̄ is a minimum.

2.13. 87 is between the 3-rd and the 4-th quintile, between the 7-th and the 8-th decile and the 72-nd and 73-rd
percentile.

2.14. Both the numerator and the denominator of the z-score have the same units. Their ratio is thus unitless. The
standard score for y,

zyi =

yi � ȳ

sy
=

(axi + b)� (ax̄+ b)

|a|sx
=

a(xi � x̄)

|a|sx
=

a

|a|z
x
i .

Thus, if a > 0, the two standard scores are the same. If a < 0, the two standard scores are the negative of one another.
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