
Topic 3

Correlation and Regression

In this section, we shall take a careful look at the nature of linear relationships found in the data used to construct a
scatterplot. The first of these, correlation, examines this relationship in a symmetric manner. The second, regression,
considers the relationship of a response variable as determined by one or more explanatory variables. Correlation
focuses primarily of association, while regression is designed to help make predictions. Consequently, the first does
not attempt to establish any cause and effect. The second is a often used as a tool to establish causality.
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Table I: Analogies between vectors and quantitative observations.

The covariance measures the linear relation-
ship between a pair of quantitative measures
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on the same sample of n individuals. Begin-
ning with the definition of variance, the defi-
nition of covariance is similar to the relation-
ship between the square of the norm ||v||2 of
a vector v and the inner product hv, wi of two
vectors v and w.

cov(x, y) =
1

n� 1

n
X
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(xi � x̄)(yi � ȳ).

A positive covariance means that the
terms (xi � x̄)(yi � ȳ) in the sum are more likely to be positive than negative. This occurs whenever the x and
y variables are more often both above or below the mean in tandem than not. Just like the situation in which the inner
product of a vector with itself yields the square of the norm, the covariance of x with itself cov(x, x) = s2x is the
variance of x.

Exercise 3.1. Explain in words what a negative covariance signifies, and what a covariance near 0 signifies.

We next look at several exercises that call for algebraic manipulations of the formula for covariance or closely
related functions.

Exercise 3.2. Derive the alternative expression for the covariance:
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Exercise 3.3. cov(ax+b, cy+d) = ac ·cov(x, y). How does a change in units (say from centimeters to meters) affect
the covariance?

Thus, covariance as a measure of association has the drawback that its value depends on the units of measurement.
This shortcoming is remedied by using the correlation.

Definition 3.4. The correlation, r, is the covariance of the standardized versions of x and y.

r(x, y) =
1

n� 1

n
X

i=1

✓

xi � x̄

sx

◆✓

yi � ȳ

sy

◆

=

cov(x, y)
sxsy

.

The observations x and y are called uncorrelated if r(x, y) = 0.

Exercise 3.5. r(ax + b, cy + d) = ±r(x, y). How does a change in units (say from centimeters to meters) affect the
correlation? The plus sign occurs if a · c > 0 and the minus sign occurs if a · c < 0.

Sometimes we will drop (x, y) if there is no ambiguity and simply write r for the correlation.

Exercise 3.6. Show that
s2x+y = s2x + s2y + 2cov(x, y) = s2x + s2y + 2rsxsy. (3.1)

Give the analogy between this formula and the law of cosines.
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Figure 3.1: The analogy of the sample standard deviations
and the law of cosines in equation (3.1). Here, the corrre-
lation r = � cos ✓.

In particular if the two observations are uncorrelated we have the
Pythagorean identity

s2x+y = s2x + s2y. (3.2)

We will now look to uncover some of the properties of correla-
tion. The next steps are to show that the correlation is always a num-
ber between �1 and 1 and to determine the relationship between the
two variables in the case that the correlation takes on one of the two
possible extreme values.

Exercise 3.7 (Cauchy-Schwarz inequality). For two sequences
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Written in terms of norms and inner products, the Cauchy-Schwarz
inequality becomes hv, wi2  ||v||2||w||2.

(Hint: Consider the expression
Pn
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(vi + wi⇣)2 � 0 as a quadratic expression in the variable ⇣ and consider
the discriminant in the quadratic formula.) If the discriminant is zero, then we have equality in (3.3) and we have that
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(vi + wi⇣)2 = 0 for exactly one value of ⇣.

We shall use inequality (3.3) by choosing vi = xi � x̄ and wi = yi � ȳ to obtain
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Figure 3.2: Scatterplots showing differing levels of the correlation r
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Consequently, we find that
r2  1 or � 1  r  1.

When we have |r| = 1, then we have equality in (3.3). In addition, for some value of ⇣ we have that

n
X

i=1

((xi � x̄) + (yi � ȳ)⇣)2 = 0.

The only way for a sum of nonnegative terms to add to give zero is for each term in the sum to be zero, i.e.,

(xi � x̄) + (yi � ȳ)⇣ = 0, for all i = 1, . . . , n. (3.4)

Thus xi and yi are linearly related.
yi = ↵+ �xi.

In this case, the sign of r is the same as the sign of �.

Exercise 3.8. For an alternative derivation that �1  r  1. Use equation (3.1) with x and y standardized observa-
tions. Use this to determine ⇣ in equation (3.4) (Hint: Consider the separate cases s2x+y for the r = �1 and s2x�y for
the r = 1.)

We can see how this looks for simulated data. Choose a value for r between �1 and +1.

>x<-rnorm(100)
>z<-rnorm(100)
>y<-r*x + sqrt(1-rˆ2)*z

Example of plots of the output of this simulation are given in Figure 3.1. For the moment, the object of this
simulation is to obtain an intuitive feeling for differing values for correlation. We shall soon see that this is the
simulation of pairs of normal random variables with the desired correlation. From the discussion above, we can see
that the scatterplot would lie on a straight line for the values r = ±1.

For the Archeopteryx data on bone lengths, we have the correlation

> cor(femur, humerus)
[1] 0.9941486

Thus, the data land very nearly on a line with positive slope.
For the banks in 1974, we have the correlation

> cor(income,assets)
[1] 0.9325191

3.2 Linear Regression
Covariance and correlation are measures of linear association. For the Archeopteryx measurements, we learn that the
relationship in the length of the femur and the humerus is very nearly linear.

We now turn to situations in which the value of the first variable xi will be considered to be explanatory or
predictive. The corresponding observation yi, taken from the input xi, is called the response. For example, can we
explain or predict the income of banks from its assets? In this case, assets is the explanatory variable and income is
the response.

In linear regression, the response variable is linearly related to the explanatory variable, but is subject to deviation
or to error. We write

yi = ↵+ �xi + ✏i. (3.5)

Our goal is, given the data, the xi’s and yi’s, to find ↵ and � that determines the line having the best fit to the
data. The principle of least squares regression states that the best choice of this linear relationship is the one that
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minimizes the square in the vertical distance from the y values in the data and the y values on the regression line. This
choice reflects the fact that the values of x are set by the experimenter and are thus assumed known. Thus, the “error”
appears in the value of the response variable y.

This principle leads to a minimization problem for

SS(↵,�) =
n
X

i=1

✏2i =

n
X

i=1

(yi � (↵+ �xi))
2. (3.6)

In other words, given the data, determine the values for ↵ and � that minimizes the sum of squares SS. Let’s the
denote by ↵̂ and ˆ� the value for ↵ and � that minimize SS.

Take the partial derivative with respect to ↵.

@

@↵
SS(↵,�) = �2

n
X

i=1

(yi � ↵� �xi)

At the values ↵̂ and ˆ�, this partial derivative is 0. Consequently

0 =

n
X

i=1

(yi � ↵̂� ˆ�xi)

n
X

i=1

yi =
n
X

i=1

(↵̂� ˆ�xi).

Now, divide by n.
ȳ = ↵̂+

ˆ�x̄. (3.7)

Thus, we see that the center of mass point (x̄, ȳ) is on the regression line. To emphasize this fact, we rewrite (3.5)
in slope-point form.

yi � ȳ = �(xi � x̄) + ✏i. (3.8)

We then apply this to the sums of squares criterion (3.6) to obtain a condition that depends on �,

˜SS(�) =
n
X

i=1

✏2i =

n
X

i=1

((yi � ȳ)� �(xi � x̄))2. (3.9)

Now, differentiate with respect to � and set this equation to zero for the value ˆ�.

d

d�
˜SS(�) = �2

n
X

i=1

((yi � ȳ)� ˆ�(xi � x̄))(xi � x̄) = 0.

Thus,

n
X

i=1

(yi � ȳ)(xi � x̄) = ˆ�
n
X

i=1

(xi � x̄)2

1

n� 1

n
X

i=1

(yi � ȳ)(xi � x̄) = ˆ�
1

n� 1

n
X

i=1

(xi � x̄)2

cov(x, y) = ˆ�var(x)

Now solve for ˆ�.

ˆ� =

cov(x, y)
var(x)

. (3.10)
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Figure 3.3: Scatterplot and the regression line for the six point data set below. The regression line is the choice that minimizes the square of the
vertical distances from the observation values to the line, indicated here in green. Notice that the total length of the positive residuals (the lengths of
the green line segments above the regression line) is equal to the total length of the negative residuals. This property is derived in equation (3.11).

In summary, to determine the regression line.

ŷi = ↵̂+

ˆ�xi,

we use (3.10) to determine ˆ� and then (3.7) to solve for

↵̂� ˆ�x̄� ȳ.

We call ŷi the fit for the value xi.

Example 3.9. Let’s begin with 6 points and derive by hand the equation for regression line.

x -2 -1 0 1 2 3
y -3 -1 -2 0 4 2

Add the x and y values and divide by n = 6 to see that x̄ = 0.5 and ȳ = 0.

xi yi xi � x̄ yi � ȳ (xi � x̄)(yi � ŷ) (xi � x̄)2

-2 -3 -2.5 -3 7.5 6.25
-1 -1 -1.5 -1 1.5 2.25
0 -2 -0.5 -2 1.0 0.25
1 0 0.5 0 0.0 0.25
2 4 1.5 4 6.0 2.25
3 2 2.5 2 5.0 6.25
sum 0 0 cov(x, y) = 21/5 var(x) = 17.50/5

Thus,

ˆ� =

21/5

17.5/5
= 1.2 and 0 = ↵̂+ 1.2⇥ 0.5 = ↵̂+ 0.6 or ↵̂ = �0.6
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As seen in this example, fits, however rarely perfect. The difference between the fit and the data is an estimate ✏̂i
for the error ✏i. This difference is called the residual. So,

RESIDUALi = DATAi � FITi = yi � ŷi

or, by rearranging terms,
DATAi = FITi + RESIDUALi, or yi = ŷi + ✏̂i.

⌘
⌘
⌘
⌘
⌘
⌘
⌘
⌘

⌘
⌘

⌘
⌘
⌘

⌘
⌘
⌘

⌘
⌘
⌘

⌘
⌘

s

c yi DATA

RESIDUAL = y
i

� ŷ
i

�

ŷi FIT

We can rewrite equation (3.6) with ✏̂i estimating the error in (3.5).

0 =

n
X

i=1

(yi � ↵̂� ˆ�xi) =

n
X

i=1

(yi � ŷi) =
n
X

i=1

✏̂i (3.11)

to see that the sum of the residuals is 0. Thus, we started with a criterion for a line of best fit, namely, least squares,
and discover that a consequence of this criterion the regression line has the property that the sum of the residual values
is 0. This is illustrated in Figure 3.3.

Let’s check this property for the example above.

DATA FIT RESIDUAL
xi yi ŷi ŷi � yi
-2 -3 -3.0 0
-1 -1 -1.8 0.8
0 -2 -0.6 -1.4
1 0 0.6 -0.6
2 4 1.8 2.2
3 2 3.0 -1.0

total 0

Generally speaking, we will look at a residual plot, the plot of the residuals versus the explanatory variable, to
assess the appropriateness of a regression line. Specifically, we will look for circumstances in which the explanatory
variable and the residuals have no systematic pattern.

Exercise 3.10. Use R to perform the following operations on the data set in Example 3.9.

1. Enter the data and make a scatterplot.

2. Use the lm command to find the equation of the regression line.

3. Use the abline command to draw the regression line on the scatterplot.

4. Use the resid and the predict command command to find the residuals and place them in a data.frame
with x and y
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5. Draw the residual plot and use abline to add the horizontal line at 0.

We next show three examples of the residuals plotting against the value of the explanatory variable.
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Prediction is less accurate for large x, an example of heteroscedasticity
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Data has a curve. A straight line fits the data poorly.

For any value of x, we can use the regression line to estimate or predict a value for y. We must be careful in using
this prediction outside the range of x. This extrapolation will not be valid if the relationship between x and y is not
known to be linear in this extended region.
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Example 3.11. For the 1974 bank data set, the regression line

\income = 7.680 + 4.975 · assets.

So, each dollar in assets brings in about $5 income.
For a bank having 10 billion dollars in assets, the predicted income is 56.430 billion dollars. However, if we

extrapolate this down to very small banks, we would predict nonsensically that a bank with no assets would have
an income of 7.68 billion dollars. This illustrates the caution necessary to perform a reliable prediction through an
extrapolation.

In addition for this data set, we see that three banks have assets much greater than the others. Thus, we should con-
sider examining the regression lines omitting the information from these three banks. If a small number of observations
has a large impact on our results, we call these points influential.

Obtaining the regression line in R is straightforward:

> lm(income˜assets)

Call:
lm(formula = income ˜ assets)

Coefficients:
(Intercept) assets

7.680 4.975

Example 3.12 (regression line in standardized coordinates). Sir Francis Galton was the first to use the term regression
in his study Regression towards mediocrity in hereditary stature. The rationale for this term and the relationship
between regression and correlation can be best seen if we convert the observations into a standardized form.

First, write the regression line to point-slope form.

ŷi � ȳ =

ˆ�(xi � x̄).

Because the slope
ˆ� =

cov(x, y)
var(x)

=

rsxsy
s2x

=

rsy
sx

,

we can rewrite the point-slope form as

ŷi � ȳ =

rsy
sx

(xi � x̄) or
ŷi � ȳ

sy
= r

xi � x̄

sx
, ŷ⇤i = rx⇤

i . (3.12)

where the asterisk is used to indicate that we are stating our observations in standardized form. In words, if we use
this standardized form, then the slope of the regression line is the correlation.

For Galton’s example, let’s use the height of a male as the explanatory variable and the height of his adult son as
the response. If we observe a correlation r = 0.6 and consider a man whose height is 1 standard deviation above the
mean, then we predict that the son’s height is 0.6 standard deviations above the mean. If a man whose height is 0.5
standard deviation below the mean, then we predict that the son’s height is 0.3 standard deviations below the mean.
In either case, our prediction for the son is a height that is closer to the mean then the father’s height. This is the
“regression” that Galton had in mind.

From the discussion above, we can see that if we reverse the role of the explanatory and response variable, then
we change the regression line. This should be intuitively obvious since in the first case, we are minimizing the total
square vertical distance and in the second, we are minimizing the total square horizontal distance. In the most extreme
circumstance, cov(x, y) = 0. In this case, the value xi of an observation is no help in predicting the response variable.
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Figure 3.4: Scatterplots of standardized variables and their regression lines. The red lines show the case in which x is the explanatory variable and
the blue lines show the case in which y is the explanatory variable.

Thus, as the formula states, when x is the explanatory variable the regression line has slope 0 - it is a horizontal line
through ȳ. Correspondingly, when y is the explanatory variable, the regression is a vertical line through x̄. Intuitively,
if x and y are uncorrelated, then the best prediction we can make for yi given the value of xi is just the sample mean
ȳ and the best prediction we can make for xi given the value of yi is the sample mean x̄.

More formally, the two regression equations are

ŷ⇤i = rx⇤
i and x̂⇤

i = ry⇤i .

These equations have slopes r and 1/r. This is shown by example in Figure 3.2.

Exercise 3.13. Compute the regression line for the 6 pairs of observations above assuming that y is the explanatory
variable. Show that the two region lines differ by showing that the product of the slopes in not equal to one.

Exercise 3.14. Continuing the previous example, let ˆ�x be the slope of the regression line obtained from regressing y
on x and ˆ�y be the slope of the regression line obtained from regressing x on y. Show that the product of the slopes
ˆ�x ˆ�y = r2, the square of the correlation.

Because the point (x̄, ȳ) is on the regression line, we see from the exercise above that two regression lines coincide
precisely when the slopes are reciprocals, namely precisely when r2 = 1. This occurs for the values r = 1 and
r = �1.

Exercise 3.15. Show that the FIT, ŷ, and the RESIDUALS, y � ŷ are uncorrelated.
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Figure 3.5: The relationship of the standard deviations of the
DATA, the FIT, and the RESIDUALS. s2

DATA

= s2
FIT

+

s2
RESID

= r2s2
DATA

+ (1 � r2)s2
DATA

. In this case, we
say that r2 of the variation in the response variable is due to the fit
and the rest 1 � r2 is due to the residuals.

Let’s again write the regression line in point slope form

FITi � ȳ = ŷi � ȳ = r
sy
sx

(xi � x̄).

Using the quadratic identity for variance we find that

s2FIT = r2
s2y
s2x

s2x = r2s2y = r2s2DATA.

Thus, the variation in the FIT is reduced from the variation in
the DATA by a factor of r2 and

r2 =

s2FIT

s2DATA

.
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Exercise 3.16. Use the equation above to show that

r2 =

Pn
i=1

(ŷi � ȳ)2
Pn

i=1

(yi � ȳ)2
.

When the straight line fits the data well, the FIT and the RESIDUAL are uncorrelated and the magnitude of the
residual does not depend on the value of the explanatory variable. We have, in this circumstance, from equation (3.2),
the Pythagorean identity, that

s2DATA = s2FIT + s2RESID = r2s2DATA + s2RESIDUAL

s2RESIDUAL = (1� r2)s2DATA.

Thus, r2 of the variance in the data can be explained by the fit. As a consequence of this computation, many
statistical software tools report r2 as a part of the linear regression analysis. In the case the remaining 1 � r2 of the
variance in the data is found in the residuals.

Exercise 3.17. For some situations, the circumstances dictate that the line contain the origin (↵ = 0). Use a least
squares criterion to show that the slope of the regression line

ˆ� =

Pn
i=1

xiyi
Pn

i=1

x2

i

.

R accommodates this circumstance with the commands lm(y⇠x-1) or lm(y⇠0+x). Note that in this case,
the sum of the residuals is not necessarily equal to zero. For least squares regression, this property followed from
@SS(↵,�)/@↵ = 0 where ↵ is the y-intercept.

3.2.1 Transformed Variables
For pairs of observations (x

1

, y
1

), . . . , (xn, yn), the linear relationship may exist not with these variables, but rather
with transformation of the variables. In this case we have,

 (yi) = ↵+ �g(xi) + ✏i. (3.13)

We then perform linear regression on the variables ỹ =  (y) and x̃ = g(x) using the least squares criterion. If

yi = Aekxi

+✏
i ,

we take logarithms,
ln yi = lnA+ kxi + ✏i

So, in (3.13),  (yi) = ln yi, g(xi) = xi is the transformation of the data, The parameters are ↵ = lnA and � = k.
Before we look at an example, let’s review a few basic properties of logarithms

Remark 3.18 (logarithms). We will use both log, the base 10 common logarthm, and ln, the base e natural log-
arithm. Common logarithms help us see orders of magnitude. For example, if log y = 5, then we know that
y = 10

5

= 100, 000. if log y = �1, then we know that y = 10

�1

= 1/10. We will use natural logarithms to
show instantaneous rates of growth. Consider the differential equation

dy

dt
= ky.

We are saying that the instantaneous rate of growth of y is proportional to y with constant of proportionality k. The
solution to this equation is

y = y
0

ekt or ln y = ln y
0

+ kt
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where y
0

is the initial value for y. This gives a linear relationship between ln y and t. The two values of logarithm
have a simple relationship. If we write

x = 10

a. Then log x = a and lnx = a ln 10.

Thus, by substituting for a, we find that

lnx = log x · ln 10 = 2.3026 log x.

In R, the command for the natural logarithm of x is log(x). For the common logarithm, it is log(x,10).

Example 3.19. In the data on world oil production, the relationship between the explanatory variable and response
variable is nonlinear but can be made to be linear with a simple transformation, the common logarithm. Call the new
response variable logbarrel. The explanatory variable remains year. With these variables, we can use a regression
line to help describe the data. Here the model is

log yi = ↵+ �xi + ✏i. (3.14)

Regression is the first example of a class of statistical models called linear models. At this point we emphasize
that linear refers to the appearance of the parameters ↵ and � linearly in the function (3.14). This acknowledges that,
in this circumstance, the values xi and yi are known. Indeed, they are the data. Our goal is to give an estimate ↵̂ and
ˆ� for the values of ↵ and �.

Thus, R uses the command lm. Here is the output.

> summary(lm(logbarrel˜year))

Call:
lm(formula = logbarrel ˜ year)

Residuals:
Min 1Q Median 3Q Max

-0.25562 -0.03390 0.03149 0.07220 0.12922

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.159e+01 1.301e+00 -39.64 <2e-16 ***
year 2.675e-02 6.678e-04 40.05 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1115 on 27 degrees of freedom
Multiple R-Squared: 0.9834,Adjusted R-squared: 0.9828
F-statistic: 1604 on 1 and 27 DF, p-value: < 2.2e-16

Note that the output states r2 = 0.9828. Thus, the correlation is r = 0.9914 is very nearly one and so the data
lies very close to the regression line.

For world oil production, we obtained the relationship

\
log(barrel) = �51.59 + 0.02675 · year.

If we rewrite the equation in exponential form, we obtain

\barrel = A10

0.02675·year
= Ae

ˆk·year.
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Thus, ˆk gives the instantaneous growth rate that best fits the data. This is obtained by converting from a common
logarithm to a natural logarithm.

ˆk = 0.02675 ln 10 = 0.0616

.
Consequently, the use of oil sustained a growth of 6% per year over a span of a hundred years.

Next, we will look for finer scale structure by examining the residual plot.

> use<-lm(logbarrel˜year)
> plot(year,resid(use))
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Exercise 3.20. Remove the data points after the oil crisis of the mid 1970s, find the regression line and the instanta-
neous growth rate that best fits the data. Look at the residual plot and use fact about American history to explain why
the residuals increase until 1920’s, decrease until the early 1940’s and increase again until the early 1970’s.

Example 3.21 (Michaelis-Menten Kinetics). In this example, we will have to use a more sophisticated line of reason-
ing to create a linear relationship between a explanatory and response variable. Consider the chemical reaction in
which an enzyme catalyzes the action on a substrate.

E + S
k1

�
k�1

ES
k2! E + P (3.15)

Here
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• E
0

is the total amount of enzyme.

• E is the free enzyme.

• S is the substrate.

• ES is the substrate-bound enzyme.

• P is the product.

• V = d[P ]/dt is the production rate.

The numbers above or below the arrows gives the reaction rates. Using the symbol [ · ] to indicate concentration,
notice that the enzyme, E

0

, is either free or bound to the substrate. Its total concentration is, therefore,

[E
0

] = [E] + [ES], and, thus [E] = [E
0

]� [ES] (3.16)

Our goal is to relate the production rate V to the substrate concentration [S].
The law of mass action turns the chemical reactions in (3.15) into differential equations. In particular, the reac-

tions, focusing on the substrate-bound enzyme and the product, gives the equations

d[ES]

dt
= k

1

[E][S]� [ES](k�1

+ k
2

) and V =

d[P ]

dt
= k

2

[ES] (3.17)

We can meet our goal if we can find an equation for V = k
2

[ES] that depends only on [S], the substrate concen-
tration. Let’s look at data,

[S] (mM) 1 2 5 10 20
V (nmol/sec) 1.0 1.5 2.2 2.5 2.9
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If we wish to use linear regression, then we will have to transform the data. In this case, we will develop the
Michaelis-Menten transformation applied to situations in which the concentration of the substrate-bound enzyme (and
hence also the unbound enzyme) changes much more slowly than those of the product and substrate.

0 ⇡ d[ES]

dt

In words, the substrate-bound enzyme is nearly in steady state. Using the law of mass action equation (3.17) for
d[ES]/dt, we can rearrange terms to conclude that
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Figure 3.6: Lineweaver-Burke double reciprocal plot for the data presented above. The y-intercept gives the reciprocal of the maximum production.
The dotted line indicates that negative concentrations are not physical. Nevertheless, the x-intercept give the negative reciprocal of the Michaelis
constant.

[ES] ⇡ k
1

[E][S]

k�1

+ k
2

=

[E][S]

Km
. (3.18)

The ratio Km = (k�1

+ k
2

)/k
1

of the rate of loss of the substrate-bound enzyme to its production is called the
Michaelis constant. We have now met our goal part way, V is a function of [S], but it is also stated as a function of
[E].

Thus, we have [E] as a function of [ES] . Now, if we combine this with (3.18) and (3.16) and solve for [ES], then

[ES] ⇡ ([E
0

]� [ES])[S]

Km
, [ES] ⇡ [E

0

]

[S]

Km + [S]

Under this approximation, the production rate of the product is:

V =

d[P ]

dt
= k

2

[ES] = k
2

[E
0

]

[S]

Km + [S]
= V

max

[S]

Km + [S]

Here, V
max

= k
2

[E
0

] is the maximum production rate. (To see this, let the substrate concentration [S] ! 1.) To
perform linear regression, we need to have a function of V be linearly related to a function of [S]. This is achieved via
taking the reciprocal of both sides of this equation.

1

V
=

Km + [S]

V
max

[S]
=

1

V
max

+

Km

V
max

1

[S]
(3.19)

Thus, we have a linear relationship between

1

V
, the response variable, and

1

[S]
, the explanatory variable

subject to experimental error. The Lineweaver-Burke double reciprocal plot provides a useful method for analysis
of the Michaelis-Menten equation. See Figure 3.6.

For the data,
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[S] (mM) 1 2 5 10 20
V (nmol/sec) 1.0 1.5 2.2 2.5 2.9

The regression line is
1

V
= 0.3211 +

1

[S]
0.6813.

Here are the R commands

> S<-c(1,2,5,10,20)
> V<-c(1.0,1.5,2.2,2.5,2.9)
> Sinv<-1/S
> Vinv<-1/V
> lm(Vinv˜Sinv)

Call:
lm(formula = Vinv ˜ Sinv)

Coefficients:
(Intercept) Sinv

0.3211 0.6813

Using (3.19), we find that V
max

= 3.1141 and Km = 0.4713. With more access to computational software, this
method is not used as much as before. The measurements for small values of the concentration (and thus large value
of 1/[S]) are more variable and consequently the residuals are likely to be heteroscedastic. We look in the next section
for an alternative approach, namely nonlinear regression.

Example 3.22 (Frank Amscombe). Consider the three data sets:

x 10 8 13 9 11 14 6 4 12 7 5
y 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68
x 10 8 13 9 11 14 6 4 12 7 5
y 9.14 8.14 8.47 8.77 9.26 8.10 6.13 3.10 9.13 7.26 4.74
x 8 8 8 8 8 8 8 8 8 8 19
y 6.58 5.76 7.71 8.84 8.47 7.04 5.25 5.56 7.91 6.89 12.50

t
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Each of these data sets has a regression line ŷ = 3 + 0.5x and correlations between 0.806 and 0.816. However,
only the first is a suitable data set for linear regression. This example is meant to emphasize the point that software
will happily compute a regression line and an r2 value, but further examination of the data is required to see if this
method is appropriate for any given data set.

3.3 Extensions
We will discuss briefly two extensions - the first is a least squares criterion between x and y that is nonlinear in the
parameters � = (�

0

, . . . ,�k). Thus, the model is

yi = g(xi|�) + ✏i

for g, a nonlinear function of the parameters.
The second considers situations with more than one explanatory variable.

yi = �
0

+ �
1

xi1 + �
2

xi2 + · · ·+ �kxik + ✏i. (3.20)

This brief discussion does not have the detail necessary to begin to use these methods. It serves primarily as an
invitation to begin to consult resources that more fully develop these ideas.

3.3.1 Nonlinear Regression
Here, we continue using estimation of parameters using a least squares criterion.

SS(�) =
n
X

i=1

(yi � g(xi|�))2.

For most choices of g(x|�) the solution to the nonlinear least square criterion cannot be expressed in closed form.
Thus, a numerical strategy for the solution ˆ� is necessary. This generally begins with some initial guess of parameter
values and an iteration scheme to minimize SS(�). Such a scheme is likely to use local information about the first
and second partial derivatives of g with respect to the parameters �i. For example, gradient descent (also known as
steepest descent, or the method of steepest descent) is an iterative method in which produces a sequence of parameter
values. The increment of the parameter values for an iteration is proportional to the negative of the gradient of SS(�)
evaluated at the current point. The hope is that the sequence converges to give the desired minimum value for SS(�).

The R command gnls for general nonlinear least squares is used to accomplish this. As above, you should
examine the residual plot to see that it has no structure. For, example, if the Lineweaver-Burke method for Michaelis-
Mentens kinetics yields structure in the residuals, then linear regression is not considered a good method. Under these
circumstances, one can next try to use the parameter estimates derived from Lineweaver-Burke as an initial guess in a
nonlinear least squares regression using a least square criterion based on the sum of squares

SS(Vmax,Km) =

n
X

j=1

✓

Vj � Vmax
[S]j

Km + [S]j

◆

2

for data (V
1

, [S]
1

), (V
2

, [S]
2

), . . . (Vn, [S]n).

3.3.2 Multiple Linear Regression
Before we start with multiple linear regression, we first recall a couple of concepts and results from linear algebra.

• Let Cij denote the entry in the i-th row and j-th column of a matrix C.
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• A matrix A with rA rows and cA and a matrix B with rB rows and cB columns can be multiplied to form a
matrix AB provide that cA = rB , the number of columns in A equals the number of rows in B. In this case

(AB)ij =

c
A

X

k=1

AikBkj .

• The d-dimensional identity matrix I is the matrix with the value 1 for all entries on the diagonal (Ijj = 1, j =
1 . . . , d) and 0 for all other entries. Notice for and d-dimensional vector x,

Ix = x.

• A d⇥ d matrix C is called invertible with inverse C�1 provided that

CC�1

= C�1C = I.

only one matrix can have this property.

• Suppose we have a d-dimensional vector a of known values and a d⇥ d matrix C and we want to determine the
vectors x that satisfy

a = Cx.

This equation could have no solutions, a single solution, or an infinite number of solutions. If the matrix C is
invertible, then we have a single solution

x = C�1a.

• The transpose of a matrix is obtained by reversing the rows and columns of a matrix. We use a superscript T to
indicate the transpose. Thus, the ij entry of a matrix C is the ji entry of its transpose, CT .

Example 3.23.
✓

2 1 3

4 2 7

◆T

=

0

@

2 4

1 2

3 7

1

A

• A square matrix C is invertible if and only if its determinant det(C) 6= 0. For a 2⇥ 2 matrix

C =

✓

a b
c d

◆

det(C) = ad� bc and the matrix inverse

C�1

=

1

det(C)

✓

d �b
�c a

◆

Exercise 3.24. (Cx)T = xTCT

Exercise 3.25. For
C =

✓

1 3

2 4

◆

,

find det(C) and C�1.

In multiple linear regression, we have more than one predictor or explanatory random variable. Thus can write
(3.20) in matrix form

y = X� + ✏ (3.21)
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• y = (y
1

, y
2

, . . . , yn)T is a column vector of responses,

• X is a matrix of predictors,

X =

0

B

B

B

@

1 x
11

· · · x
1k

1 x
21

· · · x
2k

...
...

. . .
...

1 xn1 · · · xnk

1

C

C

C

A

. (3.22)

The column of ones on the left give the constant term in a multilinear equation. This matrix X is an an example
of what is know as a design matrix.

• � = (�
0

,�
1

, . . . ,�k)T is a column vector of parameters, and

• ✏ = (✏
1

, ✏
2

, . . . , ✏n)T is a column vector of “errors”.

Exercise 3.26. Show that the least squares criterion

SS(�) =
n
X

i=1

(yi � �
0

� xi1�1 � · · ·� �kxik)
2. (3.23)

can be written in matrix form as
SS(�) = (y �X�)T (y �X�).

To minimize SS, we take the gradient and set it equal to 0.

Exercise 3.27. Check that the gradient is

r�SS(�) = �2(y �X�)TX. (3.24)

Based on the exercise above, the value ˆ� that minimizes SS is

(y �X ˆ�)TX = 0, yTX =

ˆ�TXTX.

Taking the transpose of this last equation
XTX ˆ� = XTy.

If XTX is invertible, then we can multiply both sides of the equation above by (XTX)

�1 to obtain an equation
for the parameter values ˆ� = (

ˆ�
0

, ˆ�
1

, . . . , ˆ�n) in the least squares regression.

ˆ� = (XTX)

�1XTy. (3.25)

Thus the estimates ˆ� are a linear transformation of the repsonses y through the so-called hat matrix H =

(XTX)

�1XT , i.e. ˆ� = Hy.

Exercise 3.28. Verify that the hat matrix H is a left inverse of the design matrix X .

This gives the regression equation

y =

ˆ�
0

+

ˆ�
1

x
1

+

ˆ�
2

x
2

+ · · ·+ ˆ�kxk

Example 3.29 (ordinary least squares regression). In this case,

XTX =

✓

1 1 · · · 1

x
1

x
2

· · · xn

◆

0

B

B

B

@

1 x
1

1 x
2

...
...

1 xn

1

C

C

C

A

=

0

@

n
Pn

i=1

xi

Pn
i=1

xi
Pn

i=1

x2

i

1

A
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and

XT y =

✓

1 1 · · · 1

x
1

x
2

· · · xn

◆

0

B

B

B

@

y
1

y
2

...
yn

1

C

C

C

A

=

0

@

Pn
i=1

yi

Pn
i=1

xiyi

1

A .

The determinant of XTX is

n
n
X

i=1

x2

i �
 

n
X

i=1

xi

!

2

= n(n� 1)var(x).

and thus

(XTX)

�1

=

1

n(n� 1)var(x)

0

@

Pn
i=1

x2

i �
Pn

i=1

xi

�
Pn

i=1

xi n

1

A

and

ˆ� = (XTX)

�1XTy =

1

n(n� 1)var(x)

0

@

Pn
i=1

x2

i �
Pn

i=1

xi

�
Pn

i=1

xi n

1

A

0

@

Pn
i=1

yi

Pn
i=1

xiyi

1

A .

For example, for the second row, we obtain

1

n(n� 1)var(x)

  

�
n
X

i=1

xi

! 

n
X

i=1

yi

!

+ n
n
X

i=1

xiyi

!

=

n(n� 1)cov(x, y)
n(n� 1)var(x)

=

cov(x, y)
var(x)

as seen in equation (??).

Example 3.30. The choice of xij = xj
i in (3.22) results in polynomial regression

yi = �
0

+ �
1

xi + �
2

x2

i + · · ·+ �kx
k
i + ✏i.

in equation (3.20).

Example 3.31 (US population). Below are the census populations

census census census census
year population year population year population year population
1790 3,929,214 1850 23,191,876 1910 92,228,496 1970 203,211,926
1800 5,236,631 1860 31,443,321 1920 106,021,537 1980 226,545,805
1810 7,239,881 1870 38,558,371 1930 123,202,624 1990 248,709,873
1820 9,638,453 1880 49,371,340 1940 132,164,569 2000 281,421,906
1830 12,866,020 1890 62,979,766 1950 151,325,798 2010 308,745,538
1840 17,069,453 1900 76,212,168 1960 179,323,175

To analyze this in R we enter the data:

> uspop<-c(3929214,5236631,7239881,9638453,12866020,17069453,23191876,31443321,
+ 38558371,49371340,62979766,76212168,92228496,106021537,123202624,132164569,
+ 151325798,179323175,203211926,226545805,248709873,281421906,308745538)
> year<-c(0:22)*10+1790
> plot(year,uspop)
> loguspop<-log(uspop,10)
> plot(year,loguspop)
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Figure 3.7: (a) United States census population from 1790 to 2010 and (b) its base 10 logarithm.

Note that the logarithm of the population still has a bend to it, so we will perform a quadratic regression on the
logarithm of the population. In order to keep the numbers smaller, we shall give the year minus 1790, the year of the
first census for our explanatory variable.

log(uspopulation) = �
0

+ �
1

(year � 1790) + �
2

(year � 1790)

2.

> year1<-year-1790
> year2<-year1ˆ2

Thus, loguspop is the reponse variable. The + sign is used in the case of more than one explanatory variable
and here is placed between the response variables year1 and year2.

> lm.uspop<-lm(loguspop˜year1+year2)
> summary(lm.uspop)

Call:
lm(formula = loguspop ˜ year1 + year2)

Residuals:
Min 1Q Median 3Q Max

-0.037387 -0.013453 -0.000912 0.015281 0.029782

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.582e+00 1.137e-02 578.99 <2e-16 ***
year1 1.471e-02 2.394e-04 61.46 <2e-16 ***
year2 -2.808e-05 1.051e-06 -26.72 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Figure 3.8: Residual plot for US population regression.

Residual standard error: 0.01978 on 20 degrees of freedom
Multiple R-squared: 0.999,Adjusted R-squared: 0.9989
F-statistic: 9781 on 2 and 20 DF, p-value: < 2.2e-16

The R output shows us that

ˆ�
0

= 6.587 ˆ�
1

= 0.1189 ˆ�
2

= �0.00002808.

So, taking the the regression line to the power 10, we have that

\uspopulation = 3863670⇥ 10

0.1189(year�1790)�0.00002808(year�1790)

2

In Figure 3.8, we show the residual plot for the logarithm of the US population.

> resid.uspop<-resid(lm.uspop)
> plot(year,resid.uspop)

3.4 Answers to Selected Exercises

3.1. Negative covariance means that the terms (xi� x̄)(yi� ȳ) in the sum are more likely to be negative than positive.
This occurs whenever one of the x and y variables is above the mean, then the other is likely to be below.
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3.2. We expand the product inside the sum.

cov(x, y) =
1

n� 1

n
X

i=1

(xi � x̄)(yi � ȳ) =
1

n� 1

 

n
X

i=1

xiyi � ȳ
n
X

i=1

xi � x̄
n
X

i=1

yi + nx̄ȳ

!

=

1

n� 1

 

n
X

i=1

xiyi � nx̄ȳ � nx̄ȳ + nx̄ȳ

!

=

1

n� 1

 

n
X

i=1

xiyi � nx̄ȳ

!

The change in measurements from centimeters to meters would divide the covariance by 10,000.

3.3. We rearrange the terms and simplify.

cov(ax+ b, cy + d) =
1

n� 1

n
X

i=1

((axi + b)� (ax̄+ b)((cyi + d)� (cȳ � d))

=

1

n� 1

n
X

i=1

(axi � ax̄)(cyi � cȳ) = ac · 1

n� 1

n
X

i=1

(xi � x̄)(yi � ȳ) = ac · cov(x, y)

3.5. Assume that a 6= 0 and c 6= 0. If a = 0 or c = 0, then the covariance is 0 and so is the correlation.

r(ax+ b, cy + d) =
cov(ax+ b, cy + d)

sax+bscy+d
=

ac · cov(x, y)
|a|sx · |c|sy

=

ac

|ac|
·cov(x, y)
sx · sy

= ±r(x, y)

We take the plus sign if the sign of a and c agree and the minus sign if they differ.

3.6. First we rearrange terms

s2x+y =

1

n� 1

n
X

i=1

((xi + yi)� (x̄+ ȳ))2 =

1

n� 1

n
X

i=1

((xi � x̄) + (yi � ȳ))2

=

1

n� 1

n
X

i=1

(xi � x̄)2 + 2

1

n� 1

n
X

i=1

(xi � x̄)(yi � ȳ) +
1

n� 1

n
X

i=1

(yi � ȳ)2

= s2x + 2cov(x, y) + s2y = s2x + 2rsxsy + s2y

For a triangle with sides a, b and c, the law of cosines states that

c2 = a2 + b2 � 2ab cos ✓

where ✓ is the measure of the angle opposite side c. Thus the analogy is

sx corresponds to a, sy corresponds to b, sx+y corresponds to c, and r corresponds to � cos ✓

Notice that both r and cos ✓ take values between �1 and 1.

3.7. Using the hint,

0 
n
X

i=1

(vi + wi⇣)
2

=

n
X

i=1

v2i + 2

 

n
X

i=1

viwi

!

⇣ +

 

n
X

i=1

w2

i

!

⇣2 = A+B⇣ + C⇣2

For a quadratic equation to always take on non-negaitive values, we must have a non-positive discriminant, i. e.,

0 � B2 � 4AC = 4

 

n
X

i=1

viwi

!

2

� 4

 

n
X

i=1

v2i

! 

n
X

i=1

w2

i

!

.
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Now, divide by 4 and rearrange terms.
 

n
X

i=1

v2i

! 

n
X

i=1

w2

i

!

�
 

n
X

i=1

viwi

!

2

.

3.8. The value of the correlation is the same for pairs of observations and for their standardized versions. Thus, we
take x and y to be standardized observations. Then sx = sy = 1. Now, using equation (3.1), we have that

0  s2x+y = 1 + 1 + 2r = 2 + 2r. Simplifying, we have � 2  2r and r � �1.

For the second inequality, use the similar identity to (3.1) for the difference in the observations

s2x�y = s2x + s2y � 2rsxsy.

Then,
0  sx�y = 1 + 1� 2r = 2� 2r. Simplifying, we have 2r  2 and r  1.

Thus, correlation must always be between -1 and 1.
In the case that r = �1, we that that s2x+y = 0 and thus using the standardized coordinates

xi � x̄

sx
+

yi � ȳ

sy
= 0.

Thus, ⇣ = sy/sx.
In the case that r = 1, we that that s2x�y = 0 and thus using the standardized coordinates

xi � x̄

sx
� yi � ȳ

sy
= 0.

Thus, ⇣ = �sy/sx.

3.10.

1. First the data and the scatterplot, preparing by using mfrowto have side-by-side plots

> x<-c(-2:3)
> y<-c(-3,-1,-2,0,4,2)
> par(mfrow=c(1,2))
> plot(x,y)

2. Then the regression line and its summary.

> regress.lm<-lm(y˜x)
> summary(regress.lm)

Call:
lm(formula = y ˜ x)

Residuals:
1 2 3 4 5 6

-2.776e-16 8.000e-01 -1.400e+00 -6.000e-01 2.200e+00 -1.000e+00

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.6000 0.6309 -0.951 0.3955
x 1.2000 0.3546 3.384 0.0277 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.483 on 4 degrees of freedom
Multiple R-squared: 0.7412,Adjusted R-squared: 0.6765
F-statistic: 11.45 on 1 and 4 DF, p-value: 0.02767

3. Add the regression line to the scatterplot.

> abline(regress.lm)

4. Make a data frame to show the predictions and the residuals.

> residuals<-resid(regress.lm)
> predictions<-predict(regress.lm,newdata=data.frame(x=c(-2:3)))
> data.frame(x,y,predictions,residuals)

x y predictions residuals
1 -2 -3 -3.0 -2.775558e-16
2 -1 -1 -1.8 8.000000e-01
3 0 -2 -0.6 -1.400000e+00
4 1 0 0.6 -6.000000e-01
5 2 4 1.8 2.200000e+00
6 3 2 3.0 -1.000000e+00

5. FInally, the residual plot and a horizontal line at 0.

> plot(x,residuals)
> abline(h=0)

3.13. Use the subscript y in ↵̂y and ˆ�y to emphasize that y is the explanatory variable. We still have x̄ = 0.5, ȳ = 0.

yi xi yi � ȳ xi � x̄ (xi � x̄)(yi � ŷ) (yi � ȳ)2

-3 -2 -3 -2.5 7.5 9
-1 -1 -1 -1.5 1.5 1
-2 0 -2 -0.5 1.0 4
0 1 0 0.5 0.0 0
4 2 4 1.5 6.0 16
2 3 2 2.5 5.0 4
total 0 0 cov(x, y) = 21/5 var(y) = 34/5

So, the slope ˆ�y = 21/34 and
x̄ = ↵̂y +

ˆ�y ȳ, 1/2 = ↵̂y.

Thus, to predict x from y, the regression line is x̂i = 1/2 + 21/34yi. Because the product of the slopes

6

5

⇥ 21

34

=

63

85

6= 1,
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Figure 3.9: (left) scatterplot and regression line (right) residual plot and horizontal line at 0

this line differs from the line used to predict y from x.

3.14. Recall that the covariance of x and y is symmetric, i.e., cov(x, y) = cov(y, x). Thus,

ˆ�x · ˆ�y =

cov(x, y)
s2x

· cov(y, x)
s2y

=

cov(x, y)2

s2xs
2

y

=

✓

cov(x, y)
sxsy

◆

2

= r2.

In the example above,

r2 =

cov(x, y)2

s2xx
2

y

=

(21/5)2

(17.5/5) · (34/5) =

21

2

17.5 · 34 =

21

35

· 21
17

=

3

5

· 21
17

=

63

85

3.15 To show that the correlation is zero, we show that the numerator in the definition, the covariance is zero. First,

cov(ŷ, y � ŷ) = cov(ŷ, y)� cov(ŷ, ŷ).

The first term in this difference,

cov(ŷ, y) = cov
✓

cov(x, y)
s2x

x, y

◆

=

cov(x, y)2

s2x
=

r2s2xs
2

y

s2x
= r2s2y.

For the second,
cov(ŷ, ŷ) = s2ŷ = r2s2y.

So, the difference is 0.

3.16. For the denominator

s2DATA =

1

n� 1

n
X

i=1

(yi � ȳ)2
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For the numerator, recall that (x̄, ȳ) is on the regression line. Consequently, ȳ = ↵̂+

ˆ�x̄. Thus, the mean of the fits

ŷ =

1

n

n
X

i=1

ŷi =
1

n

n
X

i=1

(↵̂+

ˆ�xi) = ↵̂+

ˆ�x̄ = ȳ.

This could also be seen by using the fact (3.11) that the sum of the residuals is 0. For the denominator,

s2FIT =

1

n� 1

n
X

i=1

(ŷi � ŷ)2 =

1

n� 1

n
X

i=1

(ŷi � ȳ)2.

Now, take the ratio and notice that the fractions 1/(n� 1) in the numerator and denominator cancel.

3.17. The least squares criterion becomes

S(�) =
n
X

i=1

(yi � �xi)
2.

The derivative with respect to � is

S0
(�) = �2

n
X

i=1

xi(yi � �xi).

S0
(�) = 0 for the value

ˆ� =

Pn
i=1

xiyi
Pn

i=1

x2

i

.

3.21. The i-th component of (Cx)T is
n
X

j=1

Cijxj .

Now the i-th component of xTCT is
n
X

j=1

xjC
T
ji =

n
X

j=1

xjCij .

3.24. det(C) = 4� 6 = �2 and

C�1

=

1

�2

✓

4 �3

�2 1

◆

=

✓

�2 3/2
1 �1/2

◆

.

3.25. Using equation (3.21), the i-th component of y �X�,

(y �X�)i = yi �
n
X

j=0

�jxjk = yi � �
0

� xi1�1 � · · ·� �kxin.

Now, (y �X�)T (y �X�) is the dot product of y �X� with itself. This gives (3.23).

3.26. Write xi0 = 1 for all i, then we can write (3.23) as

SS(�) =
n
X

i=1

(yi � xi0�0 � xi1�1 � · · ·� �kxik)
2.
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Then,

@

@�j
S(�) = �2

n
X

i=1

(yi � xi0�0 � xi1�1 � · · ·� �kxik)xij

= �2

n
X

i=1

(yi � (X�)i)xij = �2((y �X�)TX))j .

This is the j-th coordinate of (3.24).

3.27. HX = (XTX)

�1XTX = (XTX)

�1

(XTX) = I , the identity matrix.
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