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Introduction

A probability model has two essential pieces of its description.
e (2, the sample space, the set of possible outcomes.

e An event is a collection of outcomes. We can define an event by explicitly giving its
outcomes,
A= {LU17W2,' o aw"}

or with a description
A = {w;w has property P}.
In either case, A is subset of the sample space, A C Q.

e P, the probability assigns a number to each event.
Thus, a probability is a function.
e The domain is the collection of all events.
e The range is a number.

We will see soon which numbers we will accept as probabilities of events.



Equally Likely Outcomes

If Q is a finite sample space, then if each outcome is equally likely, we define the
probability of A as the fraction of outcomes that are in A. This leads to the formula
#(A)

PIA) = Ty

Exercise. Find the probabilities under equal likely outcomes.
(a) Toss a coin.

P{heads} = igé; =

(b) Toss a coin three times.

#(A)

(©)

P{toss at least two heads in a row} =

(c) Roll two dice.
P{sum is 9} = i(A) =
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Equally Likely Outcomes
Because we always have 0 < #(A) < #(), we always have

P(A) >0, P(Q2) =1 (1&2)
This gives us 2 of the three axioms.

Toss a coin 4 times. #(Q) =16
A = {exactly 3 heads} ={HHHT, HHTH, HTHH, THHH} #(A) =4
P(A)=4/16 =1/4
B = {exactly 4 heads} = {HHHH} #(B)=1
P(B) =1/16

Now let's define the set C = {at least three heads}. If you are asked the supply the
probability of C, your intuition is likely to give you an immediate answer.

P(C) = 5/16.



Axioms of Probability
The events A and B have no outcomes in common. We say that the two events are
disjoint or mutually exclusive and write AN B = (). In this situation, we have an
addition principle

#(AU B) = #(A) + #(B).
Divide by #(), then we obtain the following identity:  If AN B = (), then

#AUB) _ #(A) | #(B)

#(Q)  #(Q)  #(Q)
or P(AUB) = P(A)+ P(B). (3)
Using this property, we see that
4 1
P{at least 3 heads} = P{exactly 3 heads} + P{exactly 4 heads} = 16 + 6= %

Any function P that accepts events as its domain, returns numbers as its range and
satisfies Axioms 1, 2, and 3 as defined in (1), (2), and (3) can be called a probability.
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Axioms of Probability
By iterating the procedure in Axiom 3, we can also state that if the events,
A1, A, -+, A, are mutually exclusive, then

P(AiUAU---UA,) = P(A1) + P(A2) + - - + P(Ap). (3"

This is a sufficient definition for a probability if the sample space €2 is finite.

Consider a rare event - a lightning strike at a given location, winning the lottery,
finding a planet with life - and look for this event repeatedly, we can write

A;j = {the first occurrence appears on the j-th observation}.
Then, each of the A; are mutually exclusive and {event occurs eventually}

:A1UA2U---UA,,U--~:UAj:{w;wEAj for some j}.
j=1
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Axioms of Probability
We would like to say that

P{event occurs eventually} = P(A;)+ P(A2)+---+ P(A,) +
= 2P = Jim, Z P(A
j=

This would call for an extension of Axiom 3 to an infinite number of mutually exclusive
events. This is the general version of Axiom 3 we use when we want to use calculus:

For mutually exclusive events, {A;;j > 1}, then
UA | =) P4) (3")
j=1 j=1

Thus, statements (1), (2), and (3") give us the complete axioms of probability.
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Consequences of the Axioms

e Complement Rule. Because A and its complement A€ = {w;w ¢ A} are mutually
exclusive,
P(A)+ P(A°) = P(AUA°) =P(Q) =1
or
P(A%) = 1 — P(A).

For example, if we toss a biased coin. We may want to say that P{heads} = p
where p is not necessarily equal to 1/2. By necessity,

P{tails} =1 — p.

Toss a fair coin 4 times.

5 11
P{fewer than 3 heads} =1 — P{at least 3 heads} =1 — 6= 16°
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Consequences of the Axioms

Consequences of the Axioms

e Difference Rule. Let B\ A denote
the outcomes in B but not in A.
If AC B, then

P(B\ A) = P(B) — P(A).

e Monotonicity Rule. If AC B,
then P(B\ A) > 0 and

Figure: Monotonicity Rule

By the monotonicity rule,

P(A) < P(B).

We already know that for any

P(A) < P(Q) = 1.

event A, P(A) > 0. The range of a probability is a subset of [0, 1].
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Consequences of the Axioms

e Inclusion-Exclusion Rule. For any two
events A and B,

P(AU B) = P(A) + P(B)—P(AN B).

e Bonferroni Inequality. For any two
events A and B,

P(AU B) < P(A) + P(B).

Figure: Inclusion-Exclusion Rule
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Consequences of the Axioms
e Continuity Property. If events satisfy

o0
&cBﬂ:~mdB:UB,
i=1

Then, P(B;)) is increasing. In addition,

P(B) = lim P(B;). .Figure:. Continuity Property.l (left) B; .
=00 increasing to an event B. (right) C; decreasing

Similarly, use the symbol O to denote to an event C.

contains. If events satisfy
Then P(C;) is decreasing and

G2GD-and C=()G P(C) = lim P(C).

i=1 i—00
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Consequences of the Axioms

Exercise. The statement of a: b odds for an event A indicates that

P(A) _a
P(A¢) b’
Show that ;5
P(a) = a+b

Consequences of the Axioms

So, for example, 1: 2 odds means P(A) =1/3 and 5 : 3 odds means P(A) =5/8.
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