
Topic 5

Basics of Probability

The theory of probability as mathematical discipline can and should be developed from axioms in exactly
the same way as Geometry and Algebra. - Andrey Kolmogorov, 1933, Foundations of the Theory of
Probability

5.1 Introduction
Mathematical structures like Euclidean geometry or algebraic fields are defined by a set of axioms. “Mathematical
reality” is then developed through the introduction of concepts and the proofs of theorems. These axioms are inspired,
in the instances introduced above, by our intuitive understanding, for example, of the nature of parallel lines or the
real numbers. Probability is a branch of mathematics based on three axioms inspired originally by calculating chances
from card and dice games.

Statistics, in its role as a facilitator of science, begins with the collection of data. From this collection, we are
asked to make inference on the state of nature, that is to determine the conditions that are likely to produce these data.
Probability, in undertaking the task of investigating differing states of nature, takes the complementary perspective. It
begins by examining random phenomena, i.e., those whose exact outcomes are uncertain. Consequently, in order to
determine the “scientific reality” behind the data, we must spend some time working with the concepts of the theory
of probability to investigate properties of the data arising from the possible states of nature to assess which are most
useful in making inference.

We will motivate the axioms of probability through the case of equally likely outcomes for some simple games of
chance and look at some of the direct consequences of the axioms. In order to extend our ability to use the axioms, we
will learn counting techniques, e.g, permutations and combinations, based on the fundamental principle of counting.

A probability model has two essential pieces of its description.

• ⌦, the sample space, the set of possible outcomes.

– An event is a collection of outcomes. We can define an event by explicitly giving its outcomes,

A = {!
1

,!
2

, · · · ,!n}

or with a description
A = {!;! has property P}.

In either case, A is subset of the sample space, A ⇢ ⌦.

• P , the probability assigns a number to each event.
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Thus, a probability is a function. We are familiar with functions in which both the domain and range are subsets of the
real numbers. The domain of a probability function is the collection of all events. The range is still a number. We will
see soon which numbers we will accept as probabilities of events.

You may recognize these concepts from a basic introduction to sets. In talking about sets, we use the term universal
set instead of sample space, element instead of outcome, and subset instead of event. At first, having two words for
the same concept seems unnecessarily redundant. However, we will later consider more complex situations which will
combine ideas from sets and from probability. In these cases, having two expression for a concept will facilitate our
understanding. A Set Theory - Probability Theory Dictionary is included at the end of this topic to relate to the new
probability terms with the more familiar set theory terms.

5.2 Equally Likely Outcomes and the Axioms of Probability
The essential relationship between events and the probability are described through the three axioms of probability.
These axioms can be motivated through the first uses of probability, namely the case of equal likely outcomes.

If ⌦ is a finite sample space, then if each outcome is equally likely, we define the probability of A as the fraction of
outcomes that are in A. Using #(A) to indicate the number of elements in an event A, this leads to a simple formula

P (A) =

#(A)

#(⌦)

.

Thus, computing P (A) means counting the number of outcomes in the event A and the number of outcomes in the
sample space ⌦ and dividing.

Exercise 5.1. Find the probabilities under equal likely outcomes.

(a) Toss a coin.

P{heads} =

#(A)

#(⌦)

= .

(b) Toss a coin three times.

P{toss at least two heads in a row} =

#(A)

#(⌦)

=

(c) Roll two dice.

P{sum is 7} =

#(A)

#(⌦)

=

Because we always have 0  #(A)  #(⌦), we always have

P (A) � 0 (5.1)

and
P (⌦) = 1 (5.2)

This gives us 2 of the three axioms. The third will require more development.

Toss a coin 4 times. #(⌦) = 16

A = {exactly 3 heads} = {HHHT, HHTH, HTHH, THHH} #(A) = 4

P (A) =

4

16

=

1

4

B = {exactly 4 heads} = {HHHH} #(B) = 1
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P (B) =

1

16

Now let’s define the set C = {at least three heads}. If you are asked the supply the probability of C, your intuition
is likely to give you an immediate answer.

P (C) =

5

16

.

Let’s have a look at this intuition. The events A and B have no outcomes in common,. We say that the two events
are disjoint or mutually exclusive and write A \B = ;. In this situation,

#(A [B) = #(A) + #(B).

If we take this addition principle and divide by #(⌦), then we obtain the following identity:

If A \B = ;, then
#(A [B)

#(⌦)

=

#(A)

#(⌦)

+

#(B)

#(⌦)

.

or
P (A [B) = P (A) + P (B). (5.3)

Using this property, we see that

P{at least 3 heads} = P{exactly 3 heads}+ P{exactly 4 heads} =

4

16

+

1

16

=

5

16

.

We are saying that any function P that accepts events as its domain and returns numbers as its range and satisfies
Axioms 1, 2, and 3 as defined in (5.1), (5.2), and (5.3) can be called a probability.

If we iterate the procedure in Axiom 3, we can also state that if the events, A
1

, A
2

, · · · , An, are mutually exclusive,
then

P (A
1

[A
2

[ · · · [An) = P (A
1

) + P (A
2

) + · · ·+ P (An). (5.30)

This is a sufficient definition for a probability if the sample space ⌦ is finite. However, we will want to examine
infinite sample spaces and to use the idea of limits. This introduction of limits is the pathway that allows to bring in
calculus with all of its powerful theory and techniques as a tool in the development of the theory of probability.

Example 5.2. For the random experiment, consider a rare event - a lightning strike at a given location, winning the
lottery, finding a planet with life - and look for this event repeatedly until it occurs, we can write

Aj = {the first occurrence appears on the j-th observation}.

Then, each of the Aj are mutually exclusive and

{event occurs eventually} = A
1

[A
2

[ · · · [An [ · · · =
1
[

j=1

Aj = {!;! 2 Aj for some j}.

We would like to say that

P{event occurs ventually} = P (A
1

) + P (A
2

) + · · ·+ P (An) + · · · =
1
X

j=1

P (Aj) = lim

n!1

n
X

j=1

P (Aj).
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A B

A

B

Figure 5.1: (left) Difference and Monotonicity Rule. If A ⇢ B, then P (B \ A) = P (B) � P (A). (right) The Inclusion-Exclusion Rule.
P (A [ B) = P (A) + P (B) � P (A \ B). Using area as an analogy for probability, P (B \ A) is the area between the circles and the area
P (A) + P (B) double counts the lens shaped area P (A \ B).

This would call for an extension of Axiom 3 to an infinite number of mutually exclusive events. This is the general
version of Axiom 3 we use when we want to use calculus in the theory of probability:

For mutually exclusive events, {Aj ; j � 1}, then

P

0

@

1
[

j=1

Aj

1

A

=

1
X

j=1

P (Aj) (5.300)

Thus, statements (5.1), (5.2), and (5.3”) give us the complete axioms of probability.

5.3 Consequences of the Axioms
Other properties that we associate with a probability can be derived from the axioms.

1. The Complement Rule. Because A and its complement Ac
= {!;! /2 A} are mutually exclusive

P (A) + P (Ac
) = P (A [Ac

) = P (⌦) = 1

or
P (Ac

) = 1� P (A).

For example, if we toss a biased coin. We may want to say that P{heads} = p where p is not necessarily equal
to 1/2. By necessity,

P{tails} = 1� p.

Example 5.3. Toss a coin 4 times.

P{fewer than 3 heads} = 1� P{at least 3 heads} = 1� 5

16

=

11

16

.

2. The Difference Rule. Write B \A to denote the outcomes that are in B but not in A. If A ⇢ B, then

P (B \A) = P (B)� P (A).

(The symbol ⇢ denotes “contains in”. A and B \A are mutually exclusive and their union is B. Thus P (B) =

P (A) + P (B \A).) See Figure 5.1 (left).
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Exercise 5.4. Give an example for which P (B \A) 6= P (B)� P (A)

Because P (B \A) � 0, we have the following:

3. Monotonicity Rule. If A ⇢ B, then P (A)  P (B)

We already know that for any event A, P (A) � 0. The monotonicity rule adds to this the fact that

P (A)  P (⌦) = 1.

Thus, the range of a probability is a subset of the interval [0, 1].

4. The Inclusion-Exclusion Rule. For any two events A and B,

P (A [B) = P (A) + P (B)� P (A \B) (5.4).

(P (A) + P (B) accounts for the outcomes in A \B twice, so remove P (A \B).) See Figure 5.1 (right).

Exercise 5.5. Show that the inclusion-exclusion rule follows from the axioms. Hint: A [ B = (A \ Bc
) [ B

and A = (A \Bc
) [ (A \B).

Exercise 5.6. Give a generalization of the inclusion-exclusion rule for three events.

Deal two cards.
A = {ace on the second card}, B = {ace on the first card}

P (A [B) = P (A) + P (B)� P (A \B)

P{at least one ace} =

1

13

+

1

13

� ?

To complete this computation, we will need to compute P (A \B) = P{both cards are aces} =

#(A\B)

#(⌦)

We will learn a strategy for this when we learn the fundamental principles of counting. We will also learn a
simpler strategy in the next topic where we learn about conditional probabilities.

5. The Bonferroni Inequality. For any two events A and B,

P (A [B)  P (A) + P (B).

6. Continuity Property. If events satisfy

B
1

⇢ B
2

⇢ · · · and B =

1
[

i=1

Bi

Then, by the monotonicity rule, P (Bi) is an increasing sequence. In addition, they satisfy

P (B) = lim

i!1
P (Bi). (5.5)

Similarly, use the symbol � to denote “contains”. If events satisfy

C
1

� C
2

� · · · and C =

1
\

i=1

Ci

Again, by the monotonicity rule, P (Ci) is a decreasing sequence. In addition, they satisfying

P (C) = lim

i!1
P (Ci). (5.6)
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Figure 5.2: Continuity Property. (left) B
i

increasing to an event B. Here, equation (5.5) is satisfied. (right) C
i

decreasing to an event C. Here,
equation (5.6) is satisfied.

Exercise 5.7. Establish the continuity property. Hint: For the first, let A
1

= B
1

and Ai = Bi \Bi�1

, i > 1 in axiom
(5.3”). For the second, use the complement rule and de Morgan’s law

Cc
=

1
[

i=1

Cc
i

Exercise 5.8 (odds). The statement of a : b odds for an event A indicates that

P (A)

P (Ac
)

=

a

b

Show that
P (A) =

a

a+ b
.

So, for example, 1 : 2 odds means P (A) = 1/3 and 5 : 3 odds means P (A) = 5/8.

5.4 Counting
In the case of equally likely outcomes, finding the probability of an event A is the result of two counting problems
- namely finding #(A), the number of outcomes in A and finding #(⌦), the number of outcomes in the sample
space. These counting problems can become quite challenging and many advanced mathematical techniques have
been developed to address these issues. However, having some facility in counting is necessary to have a sufficiently
rich number of examples to give meaning to the axioms of probability. Consequently, we shall develop a few counting
techniques leading to the concepts of permutations and combinations.

5.4.1 Fundamental Principle of Counting
We start with the fundamental principle of counting.

Suppose that two experiments are to be performed.

• Experiment 1 can have n
1

possible outcomes and

• for each outcome of experiment 1, experiment 2 has n
2

possible outcomes.
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Then together there are n
1

⇥ n
2

possible outcomes.

Example 5.9. For a group of n individuals, one is chosen to become the president and a second is chosen to become
the treasurer. By the multiplication principle, if these position are held by different individuals, then this task can be
accomplished in

n⇥ (n� 1)

possible ways

Exercise 5.10. Find the number of ways to draw two cards and the number of ways to draw two aces.

Exercise 5.11. Generalize the fundamental principle of counting to k experiments.

Assume that we have a collection of n objects and we wish to make an ordered arrangement of k of these objects.
Using the generalized multiplication principle, the number of possible outcomes is

n⇥ (n� 1)⇥ · · ·⇥ (n� k + 1).

We will write this as (n)k and say n falling k.

5.4.2 Permutations
Example 5.12 (birthday problem). In a list the birthday of k people, there are 365

k possible lists (ignoring leap year
day births) and

(365)k

possible lists with no date written twice. Thus, the probability, under equally likely outcomes, that no two people on
the list have the same birthday is

(365)k

365

k
=

365 · 364 · · · (365� k + 1)

365

k

and, by the complement rule,

P{at least one pair of individuals share a birthday} = 1� (365)k

365

k
(5.1)

Here is a short table of these probabilities. A graph is given in Figure 5.3.

k 5 10 15 18 20 22 23 25 30 40 50 100
probability 0.027 0.117 0.253 0.347 0.411 0.476 0.507 0.569 0.706 0.891 0.970 0.994

The R code and output follows. We can create an iterative process by noting that

(365)k

365

k
=

(365)k�1

365

k�1

(365� k + 1)

365

Thus, we can find the probability that no pair in a group of k individuals has the same birthday by taking the probability
that no pair in a group of k � 1 individuals has the same birthday and multiplying by (365� k + 1)/365. Here is the
output for k = 1 to 45.

> prob=rep(1,45)
> for (k in 2:45){prob[k]=prob[k-1]*(365-k+1)/365}
> data.frame(c(1:15),1-prob[1:15],c(16:30),1-prob[16:30],c(31:45),1-prob[31:45])

and the output
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c.1.15. X1...prob.1.15. c.16.30. X1...prob.16.30. c.31.45. X1...prob.31.45.
1 1 0.000000000 16 0.2836040 31 0.7304546
2 2 0.002739726 17 0.3150077 32 0.7533475
3 3 0.008204166 18 0.3469114 33 0.7749719
4 4 0.016355912 19 0.3791185 34 0.7953169
5 5 0.027135574 20 0.4114384 35 0.8143832
6 6 0.040462484 21 0.4436883 36 0.8321821
7 7 0.056235703 22 0.4756953 37 0.8487340
8 8 0.074335292 23 0.5072972 38 0.8640678
9 9 0.094623834 24 0.5383443 39 0.8782197
10 10 0.116948178 25 0.5686997 40 0.8912318
11 11 0.141141378 26 0.5982408 41 0.9031516
12 12 0.167024789 27 0.6268593 42 0.9140305
13 13 0.194410275 28 0.6544615 43 0.9239229
14 14 0.223102512 29 0.6809685 44 0.9328854
15 15 0.252901320 30 0.7063162 45 0.9409759

Definition 5.13. TThe number of ordered arrangements of all n objects (also called permutations) is

(n)n = n⇥ (n� 1)⇥ · · ·⇥ 1 = n!,

n factorial. We take 0! = 1

Exercise 5.14.

(n)k =

n!

(n� k)!
.

5.4.3 Combinations

0 10 20 30 40 50 60

0
.0

0
.2

0
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0
.6

0
.8

1
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people

p
ro
b
a
b
ili
ty

Figure 5.3: The Birthday Problem. For a room of con-
taining k individuals. Using (5.1), a plot of k versus
P
k

{at least one pair of individuals share a birthday}.

Write
✓

n

k

◆

for the number of different groups of k objects that can
be chosen from a collection of size n.

We will next find a formula for this number by count-
ing the number of possible outcomes in two different
ways. To introduce this with a concrete example, sup-
pose 3 cities will be chosen out of 8 under consideration
for a vacation. If we think of the vacation as visiting
three cities in a particular order, for example,

New York then Boston then Montreal.

Then we are counting the number of ordered arrangements. This results in

(8)

3

= 8 · 7 · 6

choices.
If we are just considering the 3 cities we visit, irrespective of order, then these unordered choices are combina-

tions. The number of ways of doing this is written
✓

8

3

◆

,
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a number that we do not yet know how to determine. After we have chosen the three cities, we will also have to pick
an order to see the cities and so using the fundamental principle of counting, we have

✓

8

3

◆

⇥ 3 · 2 · 1 =

✓

8

3

◆

3!

possible vacations if the order of the cities is included in the choice.
These two strategies are counting the same possible outcomes and so must be equal.

(8)

3

= 8 · 7 · 6 =

✓

8

3

◆

⇥ 3 · 2 · 1 =

✓

8

3

◆

3! or
✓

8

3

◆

=

8 · 7 · 6
3 · 2 · 1 =

(8)

3

3!

.

Thus, we have a formula for
�

8

3

�

. Let’s do this more generally.

Theorem 5.15.
✓

n

k

◆

=

(n)k
k!

=

n!

k!(n� k)!
.

The second equality follows from the previous exercise.

The number of ordered arrangements of k objects out of n is

(n)k = n⇥ (n� 2)⇥ · · ·⇥ (n� k + 1).

Alternatively, we can form an ordered arrangement of k objects from a collection of n by:

1. First choosing a group of k objects.
The number of possible outcomes for this experiment is

�n
k

�

.

2. Then, arranging this k objects in order.
The number of possible outcomes for this experiment is k!.

So, by the fundamental principle of counting,

(n)k =

✓

n

k

◆

⇥ k!.

Now complete the argument by dividing both sides by k!.

Exercise 5.16 (binomial theorem).

(x+ y)n =

n
X

k=0

✓

n

k

◆

xkyn�k.

Exercise 5.17. Verify the identities
✓

n

1

◆

=

✓

n

n� 1

◆

= n and
✓

n

k

◆

=

✓

n

n� k

◆

.

Thus, we set
✓

n

n

◆

=

✓

n

0

◆

= 1.

The number of combinations is computed in R using choose. In the vacation example above,
�

8

3

�

is determined
by entering

> choose(8,3)
[1] 56
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Theorem 5.18 (Pascal’s triangle).
✓

n

k

◆

=

✓

n� 1

k � 1

◆

+

✓

n� 1

k

◆

.

To see this using the example on vacations,
✓

8

3

◆

=

✓

7

2

◆

+

✓

7

3

◆

.

Assume that New York is one of 8 vacation cities. Then of the
�

8

3

�

possible vacations, Then of the
�

8

3

�

vacations, if
New York is on the list, then we must choose the remaining 2 cities from the remaining 7. If New York in not on the
list, then all 3 choices must be from the remaining 7. Because New York is either on the list or off the list, but never
both, the two types of choices have no overlap.

To establish this identity in general, distinguish one of the n objects in the collection. Say that we are looking at a
collection of n marbles, n� 1 are blue and 1 is red.

1. For outcomes in which the red marble is chosen, we must choose k � 1 marbles from the n � 1 blue marbles.
(The red marble is the k-th choice.) Thus,

�n�1

k�1

�

different outcomes have the red marble.

2. If the red marble is not chosen, then we must choose k blue marbles. Thus,
�n�1

k

�

outcomes do not have the red
marbles.

3. These choices of groups of k marbles have no overlap. And so
�n
k

�

is the sum of the values in 1 and 2.

This gives us an iterative way to compute the values of
�n
k

�

. Let’s build a table of values for n (vertically) and
k  n (horizontally). Then, by the Pascal’s triangle formula, a given table entry is the sum of the number directly
above it and the number above and one column to the left. We can get started by noting that

�n
0

�

=

�n
n

�

= 1.

Pascal’s triangle

k � 1 k
n� 1

�n�1

k�1

� �n�1

k

�

 the sum of these two numbers

n
�n
k

�

 equals this number

k
0 1 2 3 4 5 6 7 8

0 1

1 1 1

2 1 2 1

3 1 3 3 1

n 4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

Example 5.19. For the experiment on honey bee queen - if we rear 60 of the 90 queen eggs, the we have

> choose(90,60)
[1] 6.73133e+23

more than 10

23 different possible simple random samples.

Example 5.20. Deal out three cards. There are
✓

52

3

◆

possible outcomes. Let x be the number of hearts. Then we have chosen x hearts out of 13 and 3 � x cards that are
not hearts out of the remaining 39. Thus, by the multiplication principle there are

✓

13

x

◆

·
✓

39

3� x

◆
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possible outcomes.
If we assume equally likely outcomes, the probability of x hearts is the ratio of these two numbers. To compute

these numbers in R for x = 0, 1, 2, 3, the possible values for x, we enter

> x<-c(0:3)
> prob<-choose(13,x)*choose(39,3-x)/choose(52,3)
> data.frame(x,prob)

x prob
1 0 0.41352941
2 1 0.43588235
3 2 0.13764706
4 3 0.01294118

Notice that

> sum(prob)
[1] 1

Exercise 5.21. Deal out 5 cards. Let x be the number of fours. What values can x take? Find the probability of x
fours for each possible value. Repeat this with 6 cards.

5.5 Answers to Selected Exercises
5.1. (a) 1/2, (b) 3/8, (c) 6/36 = 1/6

5.3. Toss a coin 6 times. Let A = {at least 3 heads} and Let B = {at least 3 tails}. Then

P (A) = P (B) =

42

64

=

21

32

.

Thus, P (B)� P (A) = 0. However, the event

B \A = {exactly 3 tails} = {exactly 3 heads}

and P (B \A) = 20/64 = 5/16 6= 0.

5.5. Using the hint, we have that

P (A [B) = P (A \Bc
) + P (B)

P (A) = P (A \Bc
) + P (A [B)

Subtract these two equations
P (A [B)� P (A) = P (B)� P (A [B).

Now add P (A) to both sides of the equation to obtain (5.4).

5.6. Use the associativity property of unions to write A[B [C = (A[B)[C and use (5.4), the inclusion-exclusion
property for the 2 events A [B and C and then to the 2 events A and B,

P ((A [B) [ C) = P (A [B) + P (C)� P ((A [B) \ C)

= (P (A) + P (B)� P (A \B)) + P (C)� P ((A \ C) [ (B \ C))

For the final expression, we use one of De Morgan’s Laws. Now rearrange the other terms and apply inclusion-
exlcusion to the final expression.

P (A [B [ C) = P (A) + P (B)� P (A \B) + P (C)� P ((A \ C) [ (B \ C))

= P (A) + P (B) + P (C)� P (A \B)� (P (A \ C) + P (B \ C)� P ((A \ C) \ (B \ C)))

= P (A) + P (B) + P (C)� P (A \B)� P (A \ C)� P (B \ C) + P (A \B \ C)
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The last expression uses the identity (A \ C) \ (B \ C)) = A \B \ C.

5.7. Using the hint and writing B
0

= ;, we have that P (Ai) = P (Bi)� P (Bi�1

) and that

n
[

i=1

Bi =

n
[

i=1

Ai

Because the Ai are disjoint, we have by (5.3’)

P

 

n
[

i=1

Bi

!

= P

 

n
[

i=1

Ai

!

= P (An) + P (An�1

) + · · ·+ P (A
2

) + P (A
1

)

= (P (Bn)� P (Bn�1

)) + (P (Bn�1

)� P (Bn�2

)) + · · ·+ (P (B
2

)� P (B
1

)) + (P (B
1

)� P (B
0

))

= P (Bn)� (P (Bn�1

)� (P (Bn�1

))� P (Bn�2

)) + · · ·+ P (B
2

)� (P (B
1

)� (P (B
1

))� P (;)
= P (Bn)

because all of the other terms cancel. This is an example of a telescoping sum. Now use (5.3”) to obtain

P

 1
[

i=1

Bi

!

= lim

n!1
P (Bn).

For the second part. Write Bi = Cc
i . Then, the Bi satisfy the required conditions and that B = Cc. Thus,

1� P (C) = P (Cc
) = lim

i!1
P (Cc

i ) = lim

i!1
(1� P (Ci)) = 1� lim

i!1
P (Ci)

and
P (C) = lim

i!1
P (Ci)

5.8. If
a

b
=

P (A)

P (Ac
)

=

P (A)

1� P (A)

.

Then,
a� aP (A) = bP (A), a = (a+ b)P (A), P (A) =

a

a+ b
.

5.10. The number of ways to obtain two cards is 52 · 51. The number of ways to obtain two aces is 4 · 3.

5.11. Suppose that k experiments are to be performed and experiment i can have ni possible outcomes irrespective of
the outcomes on the other k � 1 experiments. Then together there are n

1

⇥ n
2

⇥ · · ·⇥ nk possible outcomes.

5.14.

(n)k = n⇥ (n� 1)⇥ · · ·⇥ (n� k + 1)⇥ (n� k)!

(n� k)!
=

n⇥ (n� 1)⇥ · · ·⇥ (n� k + 1)(n� k)!

(n� k)!
=

n!

(n� k)!
.

5.15. Expansion of (x+y)n = (x+y)⇥ (x+y)⇥ · · ·⇥ (x+y) will result in 2

n terms. Each of the terms is achieved
by one choice of x or y from each of the factors in the product (x+ y)n. Each one of these terms will thus be a result
in n factors - some of them x and the rest of them y. For a given k from 0, 1, . . . , n, we will see choices that will result
in k factors of x and n� k factors of y, i. e., xkyn�k. The number of such choices is the combination

✓

n

k

◆
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Add these terms together to obtain
✓

n

k

◆

xkyn�k.

Next adding these values over the possible choices for k results in

(x+ y)n =

n
X

k=0

✓

n

k

◆

xkyn�k.

5.17. The formulas are easy to work out. One way to consider
�n
1

�

=

� n
n�1

�

is to note that
�n
1

�

is the number of ways
to choose 1 out of a possible n. This is the same as

� n
n�1

�

, the number of ways to exclude 1 out of a possible n. A
similar reasoning gives

�n
k

�

=

� n
n�k

�

.

5.21. The possible values for x are 0, 1, 2, 3, and 4. When we have chosen x fours out of 4, we also have 5� x cards
that are not fours out of the remaining 48. Thus, by the multiplication principle, tthe probability of x fours is

�

4

x

�

·
�

52

5�x

�

�

52

5

� .

Similarly for 6 cards, the probability of x fours is
�

4

x

�

·
�

52

6�x

�

�

52

6

� .

To compute the numerical values for the probability of x fours:

> x<-c(0:4)
> prob5<-choose(4,x)*choose(48,5-x)/choose(52,5)
> sum(prob5)
[1] 1
> prob6<-choose(4,x)*choose(48,6-x)/choose(52,6)
> sum(prob6)
[1] 1
> data.frame(x,prob5,prob6)

x prob5 prob6
1 0 6.588420e-01 6.027703e-01
2 1 2.994736e-01 3.364300e-01
3 2 3.992982e-02 5.734602e-02
4 3 1.736079e-03 3.398282e-03
5 4 1.846893e-05 5.540678e-05
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5.6 Set Theory - Probability Theory Dictionary

Event Language Set Language Set Notation

sample space universal set ⌦

event subset A,B,C, · · ·

outcome element !

impossible event empty set ;

not A A complement Ac

A or B A union B A [B

A and B A intersect B A \B

A and B are A and B are A \B = ;
mutually exclusive disjoint

if A then B A is a subset of B A ⇢ B

88


