Topic 9

Examples of Mass Functions and Densities

For a given state space, .S, we will describe several of the most frequently encountered parameterized families of both
discrete and continuous random variables

X: Q-8

indexed by some parameter 6. We will add the subscript 6 to the notation Py to indicate the parameter value used to
compute probabilities. This section is meant to serve as an introduction to these families of random variables and not
as a comprehensive development. The section should be considered as a reference to future topics that rely on this
information.

We shall use the notation

fx (x0)

both for a family of mass functions for discrete random variables and the density functions for continuous random
variables that depend on the parameter §. After naming the family of random variables, we will use the expression
Family(0) as shorthand for this family followed by the R command and state space S. A table of R commands,
parameters, means, and variances is given at the end of this situation.

9.1 Examples of Discrete Random Variables
Incorporating the notation introduced above, we write

fx(@]0) = Po{X = x}
for the mass function of the given family of discrete random variables.

1. (Bernoulli) Ber(p), S = {0,1}

0  with probability (1 — p),

_ o T(1 _ o\l
fX($|p)_{1 with probability p, }_p (L=p)

This is the simpiest random variable, taking on only two values, namely, O and 1. Think of it as the outcome of
a Bernoulli trial, i.e., a single toss of an unfair coin that turns up heads with probability p.

2. (binomial) Bin(n,p) (R command binom) S = {0,1,...,n}

fx (zlp) = (Z)pw(l -p)" "
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Figure 9.1: Binomial mass function f(z|p) forn = 12and p = 1/4,1/2,3/4.

We gave a more extensive introduction to Bernoulli trials and the binomial distribution in the discussion on
The Expected Value. Here we found that the binomial distribution arises from computing the probability of z
successes in 1 Bernoulli trials. Considered in this way, the family Ber(p) is also Bin(1, p).

Notice that by its definition if X; is Bin(n;,p),7 = 1,2 and are independent, then X; + X5 is Bin(n; + na, p)
3. (geometric) Geo(p) (R command geom) S =N = {0,1,2,...}.
fx(zlp) = p(1 —p)".

We previous described random variable as the number of failed Bernoulli trials before the first success. The name
geometric random variable is also to the number of Bernoulli trials Y until the first success. Thus, Y = X + 1.
As a consequence of these two choices for a geometric random variable, care should be taken to be certain which
definition is under considertion.

Exercise 9.1. Give the mass function for'Y .

4. (negative binomial) Negbin(n,p) (R command nbinom) S =N
n+xz—1\ , ©
ety = ("I o

This random variable is the number of failed Bernoulli trials before the n-th success. Thus, the family of
geometric random variable Geo(p) can also be denoted Negbin(1,p). As we observe in our consideration

Number of trials is n.

Distance between successes is a geometric random variable, parameter p.

e :
>

<
<

Number of successes is a binomial random varible, parameters n and p.

Figure 9.2: The relationship between the binomial and geometric random variable in Bernoulli trials.
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of Bernoulli trials, we see that the number of failures between consecutive successes is a geometric random
variable. In addition, the number of failures between any two pairs of successes (say, for example, the 2nd and
3rd success and the 6th and 7th success) are independent. In this way, we see that Negbin(n, p) is the sum of n
independent Geo(p) random variables.

To find the mass function, note that in order for X to take on a given value z, then the n-th success must occur
on the n + x-th trial. In other words, we must have n — 1 successes and x failures in first n + z — 1 Bernoulli
trials followed by success on the last trial. The first n 4 2 — 1 trials and the last trial are independent and so their
probabilities multiply.

P,{X =z} = P,{n — 1 successes in n + = — 1 trials, success in the n — x-th trial}

= P,{n — 1 successes in n + = — 1 trials} P,{success in the n — x-th trial}

_ <n+m—1)pn_1(1_p)z.p: (n+§—1>pn(1_p)x

n—1

The first factor is computed from the binomial distribution, the second from the Bernoulli distribution. Note the

use of the identity
my m
k) \m—k

in giving the final formula.
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Figure 9.3: Probability mass function for negative binomial random variables for n = 1,2,3,4 and p = 2/5.

Exercise 9.2. Use the fact that a negative binomial random variable Negbin(r,p) is the sum of independent
geometric random variable Geo(p) to find its mean and variance. Use the fact that a geometric random variable
has mean (1 — p)/p and variance (1 — p)/p>.

5. (Poisson) Pois(\) (R command pois) S =N,

fx(z|A) = %e_/\.

The Poisson distribution approximates of the binomial distribution when n is large, p is small, but the product
A = np is moderate in size. One example for this can be seen in bacterial colonies. Here, n is the number of
bacteria and p is the probability of a mutation and A, the mean number of mutations is moderate. A second is the
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number of recombination events occurring during meiosis. In this circumstance, n is the number of nucleotides
on a chromosome and p is the probability of a recombination event occurring at a particular nucleotide.

The approximation is based on the limit

lim (1 — A) = 9.1)

n—00 n

We now compute binomial probabilities, replace p by A/n and take a limit as n — co. In this computation, we
use the fact that for a fixed value of x,

(n)w

nfL’

A —XT
—1 and (1—) —1 asn— o

n

P{X =0} = (§)r°1—p)

Il
7 N
—

I
S>>
N———

3
Q
ml
>

PAX =1} = (Y)p'(1-p)"' = n% (1 - i)n_l ~ de

Pix = :c} - (Z)pl‘(; —pre = ) (A) (1 _ A)H - e X (1 _ A)"_x NP

The Taylor series for the exponential function

o Az
exp A = Z g
x=0
shows that

Z fX (.13) =1.
=0

Exercise 9.3. Take logarithms and use I’Hopital’s rule to establish the limit (9.1) above.

Exercise 9.4. We saw that the sum of independent binomial random variables with a common value for p, the
success probability, is itself a binomial random variable. Show that the sum of independent Poisson random
variables is itself a Poisson random variable. In particular, if X; are Pois(\;),i = 1,2, then X1 + X is
POiS()\l -+ )\2)

6. (uniform) U(a, b) (R command sample) S = {a,a+1,...,b},

1

Ixteled) =557

Thus each value in the designated range has the same probability.
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Figure 9.4: Probability mass function for binomial random variables for (a) n = 10, p = 0.3, (b) n = 100, p = 0.03, (c) n = 1000, p = 0.003
and for (d) the Poisson random varialble with A = np = 3. This displays how the Poisson random variable approximates the binomial random
variable with n large, p small, and their product A\ = np moderate.

7. (hypergeometric) Hyper(m,n, k) (R command hyper). The hypergeometric distribution will be used in com-
puting probabilities under circumstances that are associated with sampling without replacement. We will use
the analogy of an urn containing balls having one of two possible colors.

Begin with an urn holding m white balls and n black balls. Remove k and let the random variable X denote the
number of white balls. The value of X has several restrictions. X cannot be greater than either the number of
white balls, m, or the number chosen k. In addition, if £ > n, then we must consider the possibility that all of
the black balls were chosen. If X = z, then the number of black balls, k — x, cannot be greater than the number
of black balls, n, and thus, k —x <norx >k —n.

If we are considering equally likely outcomes, then we first compute the total number of possible outcomes,
#(Q), namely, the number of ways to choose k balls out of an urn containing m + n balls. This is the number

of combinations
m-+n
i .

This will be the denominator for the probability. For the numerator of P{X = z}, we consider the outcomes
that result in = white balls from the total number m in the urn. We must also choose & — = black balls from
the total number n in the urn. By the multiplication property, the number of ways #(A,) to accomplish this is
product of the number of outcomes for these two combinations,

()62

The mass function for X is the ratio of these two numbers.

) _ ()G
O ()

fx(z|m,n, k) = z =max{0,k —n},...,min{m, k}.
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Exercise 9.5. Show that we can rewrite this probability as

Fx(alm,n k) = ——— TN = 9.2)

This gives probabilities using sampling without replacement. If we were to choose the balls one-by-one re-
turning the balls to the urn after each choice, then we would be sampling with replacement. This returns us to
the case of k& Bernoulli trials with success parameter p = m/(m + n), the probability for choosing a white ball.
In the case the mass function for Y, the number of white balls, is

sman= Qo= () () ()= (i oo

Note that the difference in the formulas between sampling with replacement in (9.3) and without replacement in
(9.2) is that the powers are replaced by the falling function, e.g., m? is replaced by (m).

Let X; be a Bernoulli random variable indicating whether or not the color of the i-th ball is white. Thus, its

mean

EX; = 2

m+n
The random variable for the total number of white balls X = X; + X5 + - -- + X}, and thus its mean

m

EX=EX,+EXo+ - +EXy; =k

m-4+n

Because the selection of white for one of the marbles decreases the chance for black for another selection,
the trials are not independent. One way to see this is by noting the variance (not derived here) of the sum
X=X1+Xo+ -+ X3

-k
Var(X) = k m n mitn

m+nm+n m+n—1
is not the sum of the variances.
If we write N = m + n for the total number of balls in the urn and p = m/(m + n) as above, then

N —k
N -1

Var(X) = kp(1 — p)

Thus the variance of the hypergeometric random variable is reduced by a factor of (N — k)/(N — 1) from the
case of the corresponding binomial random variable. In the cases for which &k is much smaller than N, then
sampling with and without replacement are nearly the same process - any given ball is unlikely to be chosen
more than once under sampling with replacement. We see this situation, for example, in a opinion poll with & at
1 or 2 thousand and n, the population of a country, typically many millions.

On the the other hand, if & is a significant fraction of IV, then the variance is significantly reduced under sampling
without replacement. We are much less uncertain about the fraction of white and black balls. In the extreme
case of k = NN, we have chosen every ball and know that X = m with probability 1. In the case, the variance
formula gives Var(X) = 0, as expected.

Exercise 9.6. Draw two balls without replacement from the urn described above. Let X1, X5 be the Bernoulli random
indicating whether or not the ball is white. Find Cov(X1, X3).

Exercise 9.7. Check that ), fx(2|0) = 1 in the examples above.
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9.2 Examples of Continuous Random Variables

For continuous random variables, we have for the density

Py{z < X <z+ Az}

fx(alo) =

1. (uniform) U(a,b) (R command unif) on S = [a, b],

Ix(z]a,b) = a4

1/(b-a)

|

a b

Figure 9.5: Uniform density

Independent U(0, 1) are the most common choice for generating random numbers. Use the R command
runif (n) to simulate n independent random numbers.

Exercise 9.8. Find the mean and the variance of a U(a,b) random variable.

Number of trials is npt = A t.

Distance between successes is an exponential random variable, parameter A

e o

o

Number of successes is a Poisson random varible, parameter A t.

Figure 9.6: The relationship between the Poission and exponential random variable in Bernoulli trials with large n, small p and moderate size
product A = np. Notice the analogies from Figure 9.2. Imagine a bacterial colony with individual bacterium produced at a constant rate n per
unit time. Then, the times between mutations can be approximated by independent exponential random variables and the number of mutations is
approximately a Poisson random variable.

2. (exponential) Ezp(\) (R command exp) on S = [0, c0),
fx(z[\) = Ae™2,

To see how an exponential random variable arises, consider Bernoulli trials arriving at a rate of n trials per time
unit and take the approximation seen in the Poisson random variable. Again, the probability of success p is
small, ns the number of trials up to a given time s is large, and A = np. Let T" be the time of the first success.
This random time exceeds a given time s if we begin with ns consecutive failures. Thus, the survival function

Fr(s)=P{T>s}=(1-p)"™ = (1 - 2) ~e
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Figure 9.7: Density for a gamma random variable. Here, 8 = 1, a = 1 (black), 2 (red), 3 (blue) and 4 (green)
The cumulative distribution function
Fr(s)=P{T<s}=1-P{T >s}~1—e
The density above can be found by taking a derivative of Frr(s).

. (gamma) I'(«, 8) (R command gamma) on S = [0, 00),

flala ) = praga e

Observe that Exzp(\) is T'(1, A). A T'(n, \) can be seen as an approximation to the negative binomial random
variable using the ideas that leads from the geometric random variable to the exponential. Alternatively, for
a natural number n, I'(n, A) is the sum of n independent Exp()) random variables. This special case of the
gamma distribution is sometimes called the Erlang distribution and was originally used in models for telephone
traffic.

The gamma function
< L dx
I(s) = e —
0 X

This is computed in R using gamma (s) .

For the graphs of the densities in Figure 9.7,

> curve (dgamma (x,1,1),0,8)

> curve (dgamma (x,2,1),0, 8,add=TRUE, col="red")

> curve (dgamma (x,3,1),0, 8,add=TRUE, col="blue")
> curve (dgamma (x,4,1),0,8,add=TRUE, col="green")

Exercise 9.9. Use integration by parts to show that
T(t+1) =tT(¢). 94

If n is a non-negative integer, show that T'(n) = (n — 1)\.
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Figure 9.8 Histrogram of three simulations of 200 norimal random variables, mean 1, standard deviation 1/2

4. (beta) Beta(c, ) (R command beta)on S = [0, 1],

flala, ) = otra 1= 2

Beta random variables appear in a variety of circumstances. One common example is the order statistics.
Beginning with n observations, X, Xs, -, X,, of independent uniform random variables on the interval
[0, 1] and rank them

X1y, X@), -+ X(n)

from smallest to largest. Then, the A-th order statistic X is Beta(k,n — k + 1).

Exercise 9.10. Use the identity (9.4) for the gamma function to find the mean and variance of the beta distribu-
tion.

5. (normal) N (u,0) (R command norm)on S = R,

filalo) = ~——exp (‘”*”20“)> .

Thus, a standard normal random variable is NV (0, 1). Other normal random variables are linear transformations
of Z, the standard normal. In particular, X = 0Z + p has a N(u, o) distribution. To simulate 200 normal
random variables with mean 1 and standard deviation 1/2, use the R command x<-rnorm (200, 1,0.5).
Histograms of three simulations are given in the Figure 9.8.

We often move from a random variable X to a function g of the random variable. Thus, Y = ¢(X). The
following exercise give the density fy in terms of the density fx for X in the case that g is a monotone
function.

Exercise 9.11. Show that for g differentiable and monotone then g has a differentiable inverse g~' and the

density
fr(w) = fx(g7 () CZIg‘l(y)‘ : 9.5)
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Figure 9.9: Finding the density of Y = g(X) from the density of X. The areas of the two rectangles should be the same. Consequently, fy (y)Ay
~ x (97 W) 4597 (¥)Ay.

We can find this density geometrically by noting that for g increasing,

d
Y is between y and y + Ay if and only if X is between ¢~ *(y) and ¢! (y + Ay) ~ g7 (y) + d—yg’l(y)Ay.

Thus,

Ay =Ply<Y <y+Ay}~P{g'(y) < X <g'(y) + d%g’l(y)ﬁy}
d

~ fx(g’l(y))@g’l(y)Ay-

Dropping the factors Ay gives (9.5). (See Figure 9.9.)

6. (log-normal) In N (u, o) (R command 1norm)on .S = (0,00). A log-normal random variable is the exponen-
tial of a normal random variable. Thus, the logarithm of a log-normal random variable is normal. The density
of this family is

Inz — p)?
fx(@lp, o) = m;g exp (—W) :

Exercise 9.12. Use the exercise above to find the density of a log-normal random variable.

As we stated previously, the normal family of random variables will be the most important collection of distri-
butions we will use. For example, the final three examples, each of them derived from normal random variables,
will be seen as densities of statistics used in hypothesis testing. Even though their densities are given explicitly,
in practice, these formulas are rarely used directly. Probabilities are generally computed using software.

7. (chi-squared) x2 (R command chisqg)on S = [0, c0)

xa/?—l /2
fx(x]a) = 24/2T(a/2)
The value a is called the number of degrees of freedom. For a a positive integer, let Z;, Zs, ..., Z, be inde-

pendent standard normal random variables. Then,
i+ 725+ + 22

has a x2 distribution.
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9.3

R can

9.4
94.1

Exercise 9.13. Modify the solution to the exercise above to find the density of a X3 random variable. (Hint: For
Y = X% P{Y <y} = P{~T < X < i}

(Student’s t) t,(p, 0?) (R command t) on S = R,

_ Ila+1)/2) (= )\~
fX(33|a) - MF(Q/Q)O_ <1 + = ) )

The value a is also called the number of degrees of freedom. If Z is the sample mean of n standard normal

random variables and
n

is the sample variance, then

has a t,—1(0, 1) distribution.

(Fisher’s F') Fy, o (R command £) on S = [0, 00),

(g +a)/2)g"?a"? )5
I(q/2)T(a/2)

The F' distribution will make an appearance when we see the analysis of variance test. It arises as the ratio of
independent chi-square random variables. The chi-square random variable in the numerator has a degrees of
freedom; the chi-square random variable in the denominator has ¢ degrees of freedom

fx(xlg,a) = (a + ga)~ (T2,

R Commands

compute a variety of values for many families of distributions.

dfamily (x, parameters) isthe mass function (for discrete random variables) or probability density (for
continuous random variables) of family evaluated at x.

gfamily (p, parameters) returns z satisfying P{X < z} = p, the p-th quantile where X has the given
distribution,

pfamily (x, parameters) returns P{X < z} where X has the given distribution.

rfamily (n, parameters) generates n random variables having the given distribution.

Summary of Properties of Random Variables

Discrete Random Variables

’ random variable H R \ parameters \ mean variance \ generating function ‘
Bernoulli * P P p(1 —p) (1 —-p)+pz
binomial binom n,p np np(l —p) (1 —=p)+p2)"
geometric geom P 1;% 1p—2p 1_(+p)z
hypergeometric hyper m,n, k o | kg - - Dnek
negative binomial || nbinom a,p aI%p a lp_f (1_(1’%17)2) "
Poisson pois A A A exp(—A(1 — 2))
uniform sample a,b bgtl % b_z;rl 17{%
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*For a Bernoulli random variable, use the binomial commands with n=1 trial.

94.2 Continuous Random Variables

’ random variable H R \ parameters \ mean \ variance \ characteristic function ‘
beta beta a, B aiﬁ (EiﬁY%giﬁiﬁ' EHJ(aJu%%)
chi-squared chisqg a a 2a W
exponential exp A % i% eiiA
log-normal lnorm Wy o exp(p+02/2) | (77 — 1) exp(2u + 02)

F f q,a 5,0 > 2 2a2%

gamma gamma a, B % é% (gﬁﬁ)a
normal norm i, o> U o2 exp(ipd — 30°6%)
t t a, i, o woa > 1 02af2,a>1

uniform unif a,b ath (b—a)" — 220D —exp(i0a]

Example 9.14. We give several short examples that use the R commands introduced above.

o To find the values of the mass function fx(x) = P{X = z} for a binomial random variable 4 trials with
probability of success p = 0.7

> x<-c(0:4)
binomprob<-dbinom(x, 4,0.7)

\Y%

> data.frame (x,binomprob)
X binomprob

10 0.0081

2 1 0.0756

32 0.2646

4 3 0.4116

54 0.2401

e 10 find the probability P{X < 3} for X a geometric random variable with probability of success p = 0.3 enter
pgeom (3, 0.3). R returns the answer 0.7599.

e 710 find the deciles of a gamma random variable with o = 4 and B = 5

> decile<-seq(0,0.9,0.1)
> value<-ggamma (decile, 4,5)
> data.frame (decile, value)
decile value

0.0 0.0000000
.3489539
.4593574
.5527422
.64226406
.7344121
.8350525
.9524458
.1030091
.3361566

= O o0 J o U b WK
O O O O O O o o o
O 0 ~J o U b W N
P O OO0 OOoOOoOoOOo
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e To give independent observations uniformly on a set S, use the sample command using replace=TRUE.
Here is an example usingt 50 repeated rolls of a die

> S<-c(1l:6)
> x<-sample (S, 50, replace=TRUE)
> X
[1] 3344136435513 4635152634413165421
[33 2341 211651234513%635

e The command rnorm (200, 1, 0.5) was used to create the histograms in Figure 9.8.

e Use the curve command to plot density and distribution functions. Thus was accomplished in Figure 9.7 using
dgamma for the density of a gamma random variable. For cumulative distribution functions use pdist and
substiture for diet the appropriate command from the table above.

9.5 Answers to Selected Exercises

9.1.Fory=1,2,...,

fry)=PY =y} =P{X+1=y}=P{X=y—1}=p1—p)¥ "

9.2. Write X a Negbin(n, p) random variable as X = Y7 + - - - 4+ Y,, where the Y; are independent random variable.
Then,

1- 1— 1—
EX—EY, 4+ +FY, =P . . lzp_nl=p
P

and because the Y; are independent

Var(X) = Var(Y1) 4+ - - - + Var(¥,,) =

9.3. By taking the logarithm, the limit above is equivalent to

A
lim nln (1 - > = -\
n—00 n
Now change variables letting ¢ = 1/n, then the limit becomes

lim 2=

e—0 €

The limit has the indeterminant form 0/0. Thus, by I’Hopital’s rule, we can take the derivative of the numerator and
denominator to obtain the equivalent problem

1 —-A
im = —
e—=01 — el
9.4. We have mass functions
)\:11;1 —A1 )\.52 — Ao
le(l'l): Il!e fX2(I2): m2!6
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Thus,
. = =z} = =z, Xo=x — = = R
Pvixa(@) = PIXi+ Xo =} = 3 P{Xi=a1, Xp =w—m} = 3 PIXi=a}P{Xo o=}
931:0 CE1:0
= Z )\gfl e_’\lﬂe_>‘2 = Z ;)\rl)\r T1 | o= (AitA2)
21=0 1'1! (‘T*xl)' £1=0 xl'(xfl'l)
- xi'wv m | Lomonan = QrtA)” o)
A x1!(x — 21)! x! !
1=

This is the probability mass function for a Pois(A; +\2) random variable. The last equality uses the binomial theorem.

9.5. Using the definition of the choose function

fx($‘m,’ﬂ,k) = m—+n = = =
(™ (m:;l)k 2k —x)! (m+n)

0" G B () s (k> () ()1

9.6. COV(X1, X2) = EX1X2 — EXlEXg. NOW,

EX, = EXy =

and

m—1 m

EX1Xo=P{X1 X, =1} =P{Xo=1,X, =1} = P{Xo = 1|X; = 1} P{X; =1} = T

Thus,

Couty ) = I (Y (e )
mnln ((m—i_rz;(;j—;)l()m_frgn—%li_)n_ 1)> - mrj—n ((m+n)(;1n+n— 1)) B _N(]:flp— 1)

where, as above, N = m + n.

9.8. For the mean

E(a b)X / fo lea b 7/ rdr = bi—a)

the average of endpoints a and b. For the variance, we first find the second moment

b¥»—a*> (b—a)(b+a) b+a

o« 20—a)  20b-a) 2

b b 3_ .3 2 2 2 2
1 1 b b —a® (b—a)(a®*+ab+b°) a*4ab+b
B X? = [ #ixtelat e == [1a% e = -0l 30-a 80w 3
Thus,
a® + ab + b2 b+a\® 4b2+4ab+4b>  3a® +6ab+3a2 a2 —2ab+b>  (a—b)?
Vartn(X) = 3\ 2 ) 12 N 12 - 12 T2
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9.9. Using integration by parts

Examples of Mass Functions and Densities

u(z) = xt v(z)=—e"
u'(2) = tot! v(z) =e®
0 00
Nit+1)= / rle ™ dr = —a'e™
0

The first term is O because 2fe™* — 0 as z — oo.
Forthe case n = 1, (1) = [;" e *ds = 1 = (1 — 1)!. Now assume that I'(n)
this identity in the case n = 1. Now,

(n — 1)! We have just shown
F(n+1)=nT'(n)=n-(n—-1)!=nl
Thus, by induction we have the formula for all integer values.

9.10. In order to be a probability density, we have that

[(a)T !
(a) (b) :/ J,‘a_l(l —.T)b_l de.
I'(a+b) 0
We use this identity and (9.4) to compute the first two moments
1 1
I'(a+5) / 51 Lla+p)
E,nX = zfx(z|a, B) doe = —————~ (1 -z dx =
X = | optelon ) e = s | ’
T+ (a+1)

. T(a+ 1DT(B)
L@)I'(8) T(a+p+1)
_ I(a+ B)al () __«a
MNa+ B+ 1Dl(a) (a+B)T(a+ B (a) a+8
and
2 _ ', _ D(a+8) Dol 1, DPla+p) T'a+2)'(B)
BawX® = [ 2 fx(alasd) do = i a0 -0 b = e TETETS
_ Na+ )T (a+2) _ Ila+ B)(a+ 1)al'(a) _ (a+1)a
Fla+8+2)0(a) (a+p+1)(a+B)(a+p)(a) (a+B+1)(a+p)
Thus,
— 2 2 (Oé + 1)06 _ « 2
Vit () = B X* = (B X = e = (55)
:(a+1)a(a+,8)—a2(oz+ﬁ+1): af
(a+B+1)(a+B)?2 (a+ B+ 1)(a+ )2
increasing function.

9.11. We first consider the case of ¢ increasing on the range of the random variable X. In this case, g~

!is also an
To compute the cumulative distribution of Y = ¢g(X) in terms of the cumulative distribution of X, note that
Fy(y) = P{Y <y} = P{g(X) <y} = P{X < g7 '(»)} = Fx (97" (v))

Now use the chain rule to compute the density of Y

fr(y) = Fy(y) = d

d
—F -1 _ -1 &1 )
gy x0T W) = fxlm W) g 0™ )
For g decreasing on the range of X,

Fy(y)=P{Y <y} =P{g(X) <y} =P{X >g ' (y)} =1- Fx (97" (¥)),
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and the density
fr(y) = Fy(y) = —d%Fx(g‘l(w) = —fx(g‘l(y))d%g‘l(y)

For g decreasing, we also have g~ decreasing and consequently the density of Y is indeed positive,
We can combine these two cases to obtain

Fr(w) = Fxla~ () \jygl(y)\ .

9.12. Let X be a normal random variable, then Y = exp X is log-normal. Thus y = g(z) = €%, g~ !(y) = Iny, and

%g’l (y) = % Note that y must be positive. Thus,

Fr ) = Fxla— ) jyg-l@’ - e (—““ZU"‘)) !

9.13. Let X be a standard normal random variable, then Y = X2 is X% From the hint, the distribution function of Y,

Fy(y) = P{Y <y} =P{—y < X <y} = Fx(\y) — Fx(=y)

Now take a derivative with respect to y.

fr () = PIY <} = Fx (Vi) (2\1@) ey (—2%)

= (i) + Vi gz = (m e (<5) + e (-4)) 72
- = (5) 7

Finally, T'(1/2) = /=.
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