
Topic 11

The Central Limit Theorem

11.1 Introduction
In the discussion leading to the law of large numbers, we saw visually that the sample means from a sequence of inde-
pendent random variables converge to their common distributional mean as the number of random variables increases.
In symbols,

¯Xn ! µ as n ! 1.

Using the Pythagorean theorem for independent random variables, we obtained the more precise statement that the
standard deviation of ¯Xn is inversely proportional to

p
n, the square root of the number of observations. For example,

for simulations based on observations of independent random variables, uniformly distributed on [0, 1], we see, as
anticipated, the running averages converging to

µ =

Z

1

0

xfX(x) dx =

Z

1

0

x dx =

x2

2

�

�

�

1

0

=

1

2

,

the distributional mean.
Now, we zoom around the mean value of µ = 1/2. Because the standard deviation �

¯X
n

/ 1/
p
n, we magnify the

difference between the running average and the mean by a factor of
p
n and investigate the graph of

p
n

✓

1

n
Sn � µ

◆

versus n. The results of a simulation are displayed in Figure 11.1.
As we see in Figure 11.2, even if we extend this simulation for larger values of n, we continue to see fluctuations

about the center of roughly the same size and the size of the fluctuations for a single realization of a simulation cannot
be predicted in advance.

Thus, we focus on addressing a broader question: Does the distribution of the size of these fluctuations have any
regular and predictable structure? This question and the investigation that led to led to its answer, the central limit
theorem, constitute one of the most important episodes in mathematics.

11.2 The Classical Central Limit Theorem
Let’s begin by examining the distribution for the sum of X

1

, X
2

. . . Xn, independent and identically distributed random
variables

Sn = X
1

+X
2

+ · · ·+Xn,

what distribution do we see? Let’s look first to the simplest case, Xi Bernoulli random variables. In this case, the
sum Sn is a binomial random variable. We examine two cases - in the first we keep the number of trials the same at
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Figure 11.1: a. Running average of independent random variables, uniform on [0, 1]. b. Running average centered at the mean value of 1/2 and
magnified by

p
n.

0 500 1000 1500 2000

-0
.6

-0
.4

-0
.2

0
.0

0
.2

n

(s
 -

 n
/2

)/
s
q

rt
(n

)

Figure 11.2: Running average centered at the mean value of 1/2 and magnified by
p

n extended to 2000 steps.

n = 100 and vary the success probability p. In the second case, we keep the success probability the same at p = 1/2,
but vary the number of trials.

The curves in Figure 11.3 look like bell curves. Their center and spread vary in ways that are predictable. The
binomial random variable Sn has

mean np and standard deviation
p

np(1� p).
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Figure 11.3: a. Successes in 100 Bernoulli trials with p = 0.2, 0.4, 0.6 and 0.8. b. Successes in Bernoulli trials with p = 1/2 and n = 20, 40

and 80.

Thus, if we take the standardized version of these sums of Bernoulli random variables

Zn =

Sn � np
p

np(1� p)
,

then these bell curve graphs would lie on top of each other.
For our next example, we look at the density of the sum of standardized exponential random variables. The

exponential density is strongly skewed and so we have have to wait for larger values of n before we see the bell curve
emerge. In order to make comparisons, we examine standardized versions of the random variables with mean µ and
variance �2.

To accomplish this,

• we can either standardize using the sum Sn having mean nµ and standard deviation �
p
n, or

• we can standardize using the sample mean ¯Xn having mean µ and standard deviation �/
p
n.

This yields two equivalent versions of the z-score.

Zn =

Sn � nµ

�
p
n

=

¯Xn � µ

�/
p
n

=

p
n

�
(

¯Xn � µ). (11.1)

In Figure 11.4, we see the densities approaching that of the bell curve for a standard normal random variables.
Even for the case of n = 32, we see a small amount of skewness that is a remnant of the skewness in the exponential
density.

The theoretical result behind these numerical explorations is called the classical central limit theorem:

Theorem 11.1. Let {Xi; i � 1} be independent random variables having a common distribution. Let µ be their mean
and �2 be their variance. Then Zn, the standardized scores defined by equation (11.1), converges in distribution to Z
a standard normal random variable. This statement is shorthand for the more precise statement that the distribution
function FZ

n

converges to �, the distribution function of the standard normal.
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Figure 11.4: Displaying the central limit theorem graphically. Density of the standardized version of the sum of n independent
exponential random variables for n = 2 (dark blue), 4 (green), 8 (red), 16 (light blue), and 32 (magenta). Note how the skewness
of the exponential distribution slowly gives way to the bell curve shape of the normal distribution.

lim

n!1
FZ

n

(z) = lim

n!1
P{Zn  z} =

1p
2⇡

Z z

�1
e�x2/2 dx = �(z).

In practical terms the central limit theorem states that P{a < Zn  b} ⇡ P{a < Z  b} = �(b)� �(a).
This theorem is an enormously useful tool in providing good estimates for probabilities of events depending on

either Sn or ¯Xn. We shall begin to show this in the following examples.

Example 11.2. For Bernoulli random variables, µ = p and � =

p

p(1� p). Sn is the number of successes in n
Bernoulli trials. In this situation, the sample mean is the fraction of trials that result in a success. This is generally
denoted by p̂ to indicate the fact that it is a sample proportion.

The normalized versions of Sn and p̂ are equal to

Zn =

Sn � np
p

np(1� p)
=

p̂n � p
p

p(1� p)/n
,

For example, in 100 tosses of a fair coin, µ = 1/2 and � =

p

1/2(1� 1/2) = 1/2. Thus,

Z
100

=

S
100

� 50

5

.

To find P{S
100

> 65}, convert the event {S
100

> 65} to an event concerning Z
100

.

P{S
100

> 65} = P{S
100

� 50 > 15} = P

⇢

S
100

� 50

5

> 3

�

= P{Z
100

> 3} ⇡ P{Z > 3} = 0.0013.

> 1-pnorm(3)
[1] 0.001349898
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Figure 11.5: Mass function for a Bin(100, 0.3) random variable (black) and approximating normal density N(100 · 0.3,
p

100 · ·0.3 · 0.7).

We could also write,

Z
100

=

p̂� 1/2

1/20
= 20(p̂� 1/2).

and

P{p̂  0.40} = P{p̂�1/2  0.40�1/2} = P{20(p̂�1/2)  20(0.4�1/2)} = P{Z
100

 �2} ⇡ P{Z  �2} = 0.023.

> pnorm(-2)
[1] 0.02275013

Remark 11.3. We can improve the normal approximation to the binomial random variable by employing the conti-
nuity correction. For a binomial random variable X , the distribution function

P{X  x} = P{X < x+ 1} =

x
X

y=0

P{X = y}

can be realized as the area of x+1 rectangles, height P{X = y}, y = 0, 1, . . . , x and width 1. These rectangles look
like a Riemann sum for the integral up to the value x+ 1/2. For the example in Figure 11.5, P{X  32} = P{X <
33} is the area of 33 rectangles. This right side of rectangles is at the value 32.5. Thus, for the approximating normal
random variable Y , this suggests computing P{Y  32.5}. In this example the exact value

> pbinom(32,100,0.3)
[1] 0.7107186

Comparing this to possible choices for the normal approximations

> n<-100
> p<-0.3
> mu<-n*p
> sigma<-sqrt(p*(1-p))
> prob<-pnorm((x-mu)/(sigma*sqrt(n)))
> x<-c(32,32.5,33)
> data.frame(x,prob)
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x prob
1 32.0 0.6687397
2 32.5 0.7073105
3 33.0 0.7436546

This shows a difference of 0.0034 for the choice x = 32.5 and larger differences for the choices x = 32 or x = 33.

Example 11.4. Opinion polls are generally designed to be modeled as Bernoulli trials. The number of trials n is set
to give a prescribed value m of two times the standard deviation of p̂. This value of m is an example of a margin of
error. The standard deviation

p

p(1� p)/n

takes on its maximum value for p = 1/2. For this case,

m = 2

s

1

2

✓

1� 1

2

◆

/n =

1p
n

Thus,

n =

1

m2

We display the results in R for typical values of m.

> m<-seq(0.01,0.05,0.01)
> n<-1/mˆ2
> data.frame(m,n)

m n
1 0.01 10000.000
2 0.02 2500.000
3 0.03 1111.111
4 0.04 625.000
5 0.05 400.000

So, a 5% margin of error can be achieved with a modest sample size of n = 400, whereas a 1% margin of error
requires 10,000 samples.

Exercise 11.5. We have two approximation methods for a large number n of Bernoulli trials - Poisson, which applies
then p is small and their product � = np is moderate and normal when the mean number of successes np or the mean
number of failures n(1�p) is sufficiently large. Investigate the approximation of the distribution, X , a Poisson random
variable, by the distribution of a normal random variable, Y , for the case � = 16. Use the continuity correction to
compare

P{X  x} to P{Y  x+

1

2

}.

Example 11.6. For exponential random variables µ = 1/� and � = 1/� and therefore

Zn =

Sn � n/�p
n/�

=

�Sn � np
n

.

Let T
64

be the sum of 64 independent with parameter � = 1. Then, µ = 1 and � = 1. So,

P{T
64

< 60} = P

⇢

T
64

� 64

8

<
60� 64

8

�

= P

⇢

T
64

� 64

8

< �1

2

�

= P{Z
64

< �0.5} ⇡ 0.309.
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Example 11.7. Pictures on your smartphone have a mean size of 400 kilobytes (KB) and a standard deviation of 50
KB. You want to store 100 pictures on your cell phone. If we assume that the size of the pictures X

1

, X
2

, · · · , X
100

are independent, then ¯X has mean µ
¯X = 400 KB and standard deviation �

¯X = 50/
p
100 = 5 KB. So, the probability

that the average picture size is between 394 and 406 kilobytes is

P{394  ¯X  406} = P

⇢

394� 400

5


¯X � 400

5

 406� 400

5

�

= P{�1.2  Z
100

 1.2} ⇡ 0.230.

S
100

be the total storage space needed for the 100 pictures has mean 100 ⇥ 400 = 40, 000 KB and standard
deviation �S100 = 50

p
100 = 500 KB. To estimate the space required to be 99% certain that the pictures will have

storage space on the phone, note that

> qnorm(0.99)
[1] 2.326348

Thus,

Z
100

=

S
100

� 40000

500

� 2.326348, S
100

� 40000 � 1163.174, S
100

� 41163.174

kilobiyes.

Exercise 11.8. If your smartphone has 42000 KB of storage space for pictures, Use the central limit theorem to
estimate the number of pictures you can have necessary to have a 1% chance of running out of space.

Exercise 11.9. Simulate 1000 times, x̄, the sample mean of 100 random variables, uniformly distributed on [0, 1].
Show a histogram for these simulations to see the approximation to a normal distribution. Find the mean and standard
deviations for the simulations and compare them to their distributional values. Use both the simulation and the central
limit theorem to estimate the 35th percentile of ¯X .

11.3 Propagation of Error
Propagation of error or propagation of uncertainty is a strategy to estimate the impact on the standard deviation
of the consequences of a nonlinear transformation of a measured quantity whose measurement is subject to some
uncertainty.

For any random variable Y with mean µY and standard deviation �Y , we will be looking at linear functions aY +b
for Y . Using the linearity of expectation and the quadratic identity for variance, we have that

E[a+ bY ] = a+ bµY , Var(a+ bY ) = b2Var(Y ). (11.2)

Exercise 11.10. Show that

E[a+ b(Y � µY )] = a, Var(a+ b(Y � µY )) = b2Var(Y ).

We will apply this to the linear approximation of g(Y ) about the point µY .

g(Y ) ⇡ g(µY ) + g0(µY )(Y � µY ). (11.3)

If we take expected values, then

Eg(Y ) ⇡ E[g(µY ) + g0(µY )(Y � µY )] = g(µY ).

The variance
Var(g(Y )) ⇡ Var(g(µY ) + g0(µY )(Y � µY )) = g0(µY )

2�2

Y .

Thus, the standard deviation
�g(Y )

⇡ |g0(µY )|�Y (11.4)
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gives what is known as the propagation of error.
If Y is meant to be some measurement of a quantity q with a measurement subject to error, then saying that

q = µY = EY

is stating that Y is an unbiased estimator of q. In other words, Y does not systematically overestimate or under-
estimate q. The standard deviation �Y gives a sense of the variability in the measurement apparatus. However, if
we measure Y but want to give not an estimate for q, but an estimate for a function of q, namely g(q), its standard
deviation is approximation by formula (11.4).

Example 11.11. Let Y be the measurement of a side of a cube with length `. Then Y 3 is an estimate of the volume
of the cube. If the measurement error has standard deviation �Y , then, taking g(y) = y3, we see that the standard
deviation of the error in the measurement of the volume

�Y 3 ⇡ 3q2�Y .

If we estimate q with Y , then
�Y 3 ⇡ 3Y 2�Y .

To estimate the coefficient volume expansion ↵
3

of a material, we begin with a material of known length `
0

at
temperature T

0

and measure the length `
1

at temperature T
1

. Then, the coefficient of linear expansion

↵
1

=

`
1

� `
0

`
0

(T
1

� T
0

)

.

If the measure length of `
1

is Y . We estimate this by

↵̂
1

=

Y � `
0

`
0

(T
1

� T
0

)

.

Then, if a measurement Y of `
1

has variance �2

Y , then

Var(↵̂
1

) =

�2

Y

`2
0

(T
1

� T
0

)

2

�↵̂1 =

�Y

`
0

|T
1

� T
0

| .

Now, we estimate

↵
3

=

`3
1

� `3
0

`3
0

(T
1

� T
0

)

by ↵̂
3

=

Y 3 � `3
0

`3
0

(T
1

� T
0

)

and
�↵̂3 ⇡ 3Y 2

�Y

`3
0

|T
1

� T
0

| .

Exercise 11.12. In a effort to estimate the angle ✓ of the sun, the length ` of a shadow from a 10 meter flag pole is
measured. If �

ˆ` is the standard deviation for the length measurement, use propagation of error to estimate �
ˆ✓, the

standard deviation in the estimate of the angle.

Often, the function g is a function of several variables. We will show the multivariate propagation of error in
the two dimensional case noting that extension to the higher dimensional case is straightforward. Now, for random
variables Y

1

and Y
2

with means µ
1

and µ
2

and variances �2

1

and �2

2

, the linear approximation about the point (µ
1

, µ
2

)

is
g(Y

1

, Y
2

) ⇡ g(µ
1

, µ
2

) +

@g

@y
1

(µ
1

, µ
2

)(Y
1

� µ
1

) +

@g

@y
2

(µ
1

, µ
2

)(Y
2

� µ
2

).

As before,
Eg(Y

1

, Y
2

) ⇡ g(µ
1

, µ
2

).
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For Y
1

and Y
2

independent, we also have that the random variables

@g

@y
1

(µ
1

, µ
2

)(Y
1

� µ
1

) and
@g

@y
2

(µ
1

, µ
2

)(Y
2

� µ
2

)

are independent. Because the variance of the sum of independent random variables is the sum of their variances, we
have the approximation

�2

g(Y1,Y2)
= Var(g(Y

1

, Y
2

)) ⇡ Var(
@g

@y
1

(µ
1

, µ
2

)(Y
1

� µ
1

)) + Var(
@g

@y
2

(µ
1

, µ
2

)(Y
2

� µ
2

))

=

✓

@g

@y
1

(µ
1

, µ
2

)

◆

2

�2

1

+

✓

@g

@y
2

(µ
1

, µ
2

)

◆

2

�2

2

. (11.5)

and consequently, the standard deviation,

�g(Y1,Y2)
⇡

s

✓

@g

@y
1

(µ
1

, µ
2

)

◆

2

�2

1

+

✓

@g

@y
2

(µ
1

, µ
2

)

◆

2

�2

2

.

Exercise 11.13. Repeat the exercise in the case that the height h if the flag poll is also unknown and is measured
independently of the shadow length with standard deviation �

ˆh. Comment on the case in which the two standard
deviations are equal.

Exercise 11.14. Generalize the formula for the variance to the case of g(Y
1

, Y
2

, . . . , Yd) for independent random
variables Y

1

, Y
2

, . . . , Yd.

Example 11.15. In the previous example, we now estimate the volume of an `
0

⇥ w
0

⇥ h
0

rectangular solid with
the measurements Y

1

, Y
2

, and Y
3

for, respectively, the length `
0

, width w
0

, and height h
0

with respective standard
deviations �`, �w, and �h. Here, we take g(`, w, h) = `wh, then

@g

@`
(`, w, h) = wh,

@g

@w
(`, w, h) = `h,

@g

@h
(`, w, h) = `w,

and �
g(Y1,Y2,Y3)

⇡

s✓
@g

@`
(`0, w0, h0)

◆2

�2
`

+

✓
@g

@w
(`0, w0, h0)

◆2

�2
w

+

✓
@g

@h
(`0, w0, h0)

◆2

�2
h

=
q

(wh)2�2
`

+ (`h)2�2
w

+ (`w)2�2
h

.

11.4 Delta Method
Let’s use repeated independent measurements, Y

1

, Y
2

, . . . Yn to estimate a quantity q by its sample mean ¯Y . If each
measurement has mean µY and variance �2

Y , then ¯Y has mean q = µY and variance �2

Y /n. By the central limit
theorem

11.4Zn =

¯Y � µY

�Y /
p
n

(11.6)

has a distribution that can be aproximated by a standard normal. We can apply the propagation of error analysis based
on a linear approximation of g( ¯Y ) to obtain

g( ¯Y ) ⇡ g(µY ), and Var(g( ¯Y )) ⇡ g0(µY )
2

�2

Y

n
.

Thus, the reduction in the variance in the estimate of q “propagates” to a reduction in variance in the estimate of g(q).
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Figure 11.6: Illustrating the delta method.
Here µ = 1.5 and the blue curve g(x) = x2.
Thus, g(X̄) is approximately normal with ap-
proximate mean 2.25 and �

g(X̄) ⇡ 3�
X̄

. The
bell curve on the y-axis is the reflection of the
bell curve on the x-axis about the (black) tan-
gent line y = g(µ) + g0(µ)(x� µ).

However, the central limit theorem gives us some additional informa-
tion. Returning to the linear approximation (11.3)

g( ¯Y ) ⇡ g(µY ) + g0(µY )(
¯Y � µY ). (11.7)

The central limit theorem tells us that ¯Y has a nearly normal distribution.
Thus, the linear approximation to g( ¯Y ) also has nearly a normal distribu-
tion. Moreover, with repeated measurements, the variance of ¯Y is the vari-
ance of a single measurement divided by n. As a consequence, the linear
approximation under repeated measurements yields a better approxima-
tion because the reduction in variance implies that the difference ¯Y � µY

is more likely to be small.
The delta method combines the central limit theorem and the propa-

gation of error. To see use (11.7) to write,

g( ¯Y )� g(µy)

�g( ¯Y )

⇡ g0(µY )(
¯Y � µY )

|g0(µY )|�Y /
p
n

= ±Zn.

The last equality uses () The ± sign depends on the sign of the deriva-
tive g0(µY ). Because the negative of a standard normal is also a standard
normal, we have the desired approximation to the standard normal.

Then, Zn converges in distribution to a standard normal random vari-
able. In this way, the delta method greatly extends the applicability of the
central limit theorem.

Let’s return to our previous example on thermal expansion.

Example 11.16. Let Y
1

, Y
2

, . . . , Yn be repeated unbiased measurement of
a side of a cube with length `

1

and temperature T
1

. We use the sample
mean ¯Y of these measurements to estimate the length at temperature T

1

for the coefficient of linear expansion.

↵̂
1

=

¯Y � `
0

`
0

(T
1

� T
0

)

.

Then, if each measurement Yi has variance �2

Y ,

Var(↵̂
1

) =

�2

Y

`2
0

(T
1

� T
0

)

2n
�↵̂1 =

�Y

`
0

|T
1

� T
0

|
p
n
.

Now, we estimate the coefficient of volume expansion by

↵̂
3

=

¯Y 3 � `3
0

`3
0

(T
1

� T
0

)

and

�↵̂3 ⇡ 3

¯Y 2�Y

`3
0

|T
1

� T
0

|
p
n
.

By the delta method,

Zn =

↵̂
3

� ↵
3

�↵̂3

has a distribution that can be well approximated by a standard normal random variable.
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Coefficient of
Material linear expansion
alumium 23.1

bradd 19
concrete 12
diamond 1
gasoline 317

glass 8.5
water 69

Table I: Coefficient of linear expansion at
20

�C in units 10

�6/�C.

The next natural step is to take the approach used for the propagation of
error in a multidimensional setting and extend the delta method. Focusing on the
three dimensional case, we have three independent sequences (Y

1,1, . . . , Y1,n1),
(Y

2,1, . . . , Y2,n2) and (Y
3,1, . . . , Y3,n3) of independent random variables. The

observations in the i-th sequence have mean µi and variance �2

i for i = 1, 2 and
3. We shall use ¯Y

1

, ¯Y
2

and ¯Y
3

to denote the sample means for the three sets of
observations. Then, ¯Yi has

mean µi and variance �2
i

n
i

for i = 1, 2, 3.

From the propagation of error linear approximation, we obtain

Eg( ¯Y
1

, ¯Y
2

, ¯Y
3

) ⇡ g(µ
1

, µ
2

, µ
3

).

For the variance, look to the multidimensional propagation of error variance formula (11.5) replacing the measure-
ments Yi by the sample mean ¯Yi .

�2

g( ¯Y1, ¯Y2, ¯Y3)
= Var(g( ¯Y

1

, ¯Y
2

, ¯Y
3

)) ⇡ @g

@y
1

(µ
1

, µ
2

, µ
3

)

2

�2

1

n
1

+

@g

@y
2

(µ
1

, µ
2

, µ
3

)

2

�2

2

n
2

+

@g

@y
3

(µ
1

, µ
2

, µ
3

)

2

�2

3

n
3

. (11.8)

To obtain the normal approximation associated with the delta method, we need to have the additional fact that the sum
of independent normal random variables is also a normal random variable. Thus, we have that, for n large,

Zn =

g( ¯Y
1

, ¯Y
2

, ¯Y
3

)� g(µ
1

, µ
2

, µ
3

)

�g( ¯Y1, ¯Y2, ¯Y3)

is approximately a standard normal random variable.

Example 11.17. In avian biology, the fecundity B is defined as the number of female fledglings per female per year.
B > 1 indicates a growing population and B < 1, a declining population. B is a product of three quantities,

B = F · p ·N,

where

• F equals the mean number of female fledglings per successful nest,

• p equals nest survival probability, and

• N equals the mean number of nests built per female per year.

Let’s

• collect measurement F
1

, . . . , Fn
F

on nF nests to count female fledglings in a successful nest, and determine the
sample mean ¯F ,

• check np nests for survival probability, and determine the sample proportion p̂, and

• follow nN females to count the number N
1

, . . . , Nn
N

of successful nests per year and determine the sample
mean ¯N .

Our experimental design is structured so that measurements are independent. Then, taking the appropriate partial
derivatives in (11.8) to B = g(F, p,N) = F · p ·N , we obtain an estimate for the variance of ˆB = g( ¯F , p̂, ¯N),

�2

ˆB
⇡ (pN)

2

�2

F

nF
+ (FN)

2

�2

p

np
+ (pF )

2

�2

N

nN
. (11.9)
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The checks of nest survival form a sequence of Bernoulli trials. Thus, �2

p = p(1� p) for a Bernoulli random variable,
we can write the expression above upon dividing by B2 as

 

�2

ˆB

B

!

2

⇡ 1

nF

⇣�F

F

⌘

2

+

1

np

✓

�p

p

◆

2

+

1

nN

⇣�N

N

⌘

2

=

1

nF

⇣�F

F

⌘

2

+

1

np

✓

1� p

p

◆

+

1

nN

⇣�N

N

⌘

2

.

This gives the individual contributions to the variance of B from each of the three data collecting activities - female
fledglings, nest survivability, nest building. The values of nF , np, and nN can be adjusted in the collection of data to
adjust the variance of ˆB under a variety of experimental designs.

Estimates for �2

ˆB
can be found from the field data. Compute sample means

¯F , p̂, and ¯N,

and sample variance
s2F , p̂(1� p̂) and s2N .

Using (11.9), we estimate the variance in fecundity

s2
ˆB
⇡ 1

nF
(p̂ ¯NsF )

2

+

1

np
(

¯F ¯N)

2p̂(1� p̂) +
1

nN
(p̂ ¯FsN )

2

Exercise 11.18. Give the formula for �2

B,n in the case that measurements for F , p, and N are not independent.

We will now move to a fundamental issue in statistic - estimation. The analysis of the properties an estimator,
namely, its accuracy and its precision, are based to a large extent on the tools in probability theory that we have
developed here - the law of large numbers, the central limit theorem and their extensions.

We finish the discussion on the central limit theorem with a summary of some of its applications.

11.5 Summary of Normal Approximations
The standardized score or z-score of some random quantity is

Z =

random quantity � mean
standard deviation

.
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Figure 11.7: The density function for S
n

for a random sample of size
n = 10 (red), 20 (green), 30 (blue), and 40 (purple). In this example,
the observations are normally distributed with mean µ = 1 and standard
deviation � = 10.

The central limit theorem and extensions like
the delta method tell us when the z-score has an
approximately standard normal distribution. Thus,
using R, we can find good approximations by com-
puting the probabilities of P{Z < z}, pnorm(z)
and P{Z > z} using 1-pnorm(z) or P{z

1

<
Z < z

2

} using the difference pnorm(z2) -
pnorm(z1)

11.5.1 Sample Sum
If we have a sum Sn of n independent random vari-
ables, X

1

, X
2

, . . . Xn whose common distribution
has mean µ and variance �2, then

• the mean ESn = nµ,
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• the variance Var(Sn) = n�2,

• the standard deviation is �
p
n.

Thus, Sn is approximately normal with mean nµ and variance n�2. The z-score in this case is

Zn =

Sn � nµ

�
p
n

.

We can approximate P{Sn < x}
by noting that this is the same as computing

Zn =

Sn � nµ

�
p
n

<
x� nµ

�
p
n

= z

and finding P{Zn < z} using the standard normal distribution.

11.5.2 Sample Mean
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Figure 11.8: The density function for X̄ � µ for a random sample
of size n = 1 (black), 10 (red), 20 (green), 30 (blue), and 40 (pur-
ple). In this example, the observations are normally distributed
with standard deviation � = 10.

For a sample mean
¯X = (X

1

+X
2

+ · · ·+Xn)/n,

• the mean E ¯X = µ,

• the variance Var( ¯X) = �2/n,

• the standard deviation is �/
p
n.

Thus, ¯X is approximately normal with mean µ and vari-
ance �2/n. The z-score in this case is

Zn =

¯X � µ

�/
p
n
.

Thus,

¯X < x is equivalent to Zn =

¯X � µ

�/
p
n

<
x� µ

�/
p
n
. .

11.5.3 Sample Proportion
For Bernoulli trials X

1

, X
2

, . . . Xn with success probability p, Let p̂ = (X
1

+ X
2

+ · · · + Xn)/n be the sample
proportion. Then

• the mean Ep̂ = p,

• the variance Var(p̂) = p(1� p)/n,

• the standard deviation is
p

p(1� p)/n.

Thus, p̂ is approximately normal with mean p and variance p(1� p)/n. The z-score in this case is

Zn =

p̂� p
p

p(1� p)/n
.

For the special case of Bernoulli trials, normal approximations often use a continuity correction.
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11.5.4 Delta Method
For the delta method in one variable using ¯X and a function g, for a sample mean ¯X = (X

1

+X
2

+ · · ·+Xn)/n, we
have

• the mean Eg( ¯X) ⇡ g(µ),

• the variance Var(g( ¯X)) ⇡ g0(µ)2�2/n,

• the standard deviation is |g0(µ)|�/
p
n.

Thus, g( ¯X) is approximately normal with mean g(µ) and variance g0(µ)2�2/n. The z-score is

Zn =

g( ¯X)� g(µ)

|g0(µ)|�/
p
n
.

For the two variable delta method, we now have two independent sequences of independent random variables,
X

1,1, X1,2, . . . X1,n1 whose common distribution has mean µ
1

and variance �2

1

and X
2,1, X2,2, . . . X2,n2 whose com-

mon distribution has mean µ
2

and variance �2

2

. For a function g of the sample means, we have that

• the mean Eg( ¯X
1

, ¯X
2

) ⇡ g(µ
1

, µ
2

),

• the variance

Var(g( ¯X
1

, ¯X
2

)) = �2

g,n ⇡
✓

@

@x
g(µ

1

, µ
2

)

◆

2 �2

1

n
1

+

✓

@

@y
g(µ

1

, µ
2

)

◆

2 �2

2

n
2

,

• the standard deviation is �g,n.

Thus, g( ¯X
1

, ¯X
2

) is approximately normal with mean g(µ
1

, µ
2

) and variance �2

g,n. The z-score is

Zn =

g( ¯X
1

, ¯X
2

)� g(µ
1

, µ
2

)

�g,n
.

The generalization of the delta method to higher dimensional data will add terms to the variance formula.

11.6 Answers to Selected Exercises
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Figure 11.9: Circles indicate the mass function for a
Pois(16) random variable. The red curve is the den-
sity function of a N(16, 4) random variable. The plots
show that the Poisson random variable is slightly more
skewed to the right that the normal.

11.4. A Poisson random variable with parameter � = 16 has mean 16
and standard deviation 4 =

p
16. Thus, we first look at the maximum

difference in the distribution function of a Pois(4) random variable,
X , and a N(16, 4) random variable, Y , by comparing P{X  x} to
P{Y  x+

1

2

} in a range around the mean value of 16.

> x<-c(4:28)
> max(abs(pnorm(x+0.5,16,4)-ppois(x,16)))
[1] 0.01648312

The maximum difference between the distribution function is approxi-
mately 1.6%. To compare the density functions, we have the
R commands. (See Figure 11.9.)

> poismass<-dpois(x,16)
> plot(x,poismass,ylim=c(0,0.1),ylab="probability")
> par(new=TRUE)
> x<-seq(4,28,0.01)
> normd<-dnorm(x,16,4)
> plot(x,normd,ylim=c(0,0.1),ylab="probability",type="l",col="red")
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11.8. For Z a standard normal random variable to determine z
0.01 that satisfies P{Z > z

0.01} = 0.01, we use the R
command

> qnorm(0.99)
[1] 2.326348

Thus, we look for the value n that gives a standardized score of z
0.01.

2.326348 = z
0.01 =

400n� 42000

50 ·
p
n

=

8n� 840

·
p
n

2.326348
p
n = 8n� 840 = 8(n� 105)

0.08456085n = n2 � 210n+ 11025

0 = n2 � 209.9154n+ 11025

By the quadratic formula, we solve for n.

n =

209.9154 +
p

(209.9154)2 � 4 · 1 · 11025
2 · 1 = 388.70152

So, take n = 388.
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Figure 11.10: Histogram of the sample means of 100 random
variables, uniformly distrobuted on [0, 1].

11.9. The R code for the simulations is

> xbar<-rep(0,1000)
> for (i in 1:1000)

{x<-runif(100);xbar[i]<-mean(x)}
> hist(xbar)
> mean(xbar)
[1] 0.498483
> sd(xbar)
[1] 0.02901234
> quantile(xbar,0.35)

35%
0.488918
> qnorm(0.35)
[1] -0.3853205

The mean of a U [0, 1] random variable is µ = 1/2 and its
variance is �2

= 1/12. Thus the mean of ¯X is 1/2, its standard deviation is
p

1/(12 · 100) = 0.0289, close to the
simulated values.

Use qnorm(0.35) to see that the 35th percentile corresponds to a z-score of -0.3853205. Thus, the 35th per-
centile for ¯X is approximately

µ+ z
0.35

�p
n
= 0.5� 0.3853205

1p
1200

= 0.4888768,

agreeing to four decimal places the value given by the simulations of xbar.

11.10. Using (11.2)
E[a+ b(Y � µY )] = E[a� bµy + bY ] = a� bµY + bµY = b.

and
Var(a+ b(Y � µY )) = Var(a� bµy + bY ) = b2Var(Y ).
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11.12. Using right triangle trigonometry, we have that

✓ = g(`) = tan

�1

✓

`

10

◆

. Thus, g0(`) =
1/10

1 + (`/10)2
=

10

100 + `2
.

So, �
ˆ✓ ⇡ 10/(100 + `2) · �`. For example, set �` = 0.1 meter and ` = 5. Then, �

ˆ✓ ⇡ 10/125 · 0.1 = 1/125 radians
= 0.49�.

11.13. In this case,

✓ = g(`, h) = tan

1

✓

`

h

◆

.

For the partial derivatives, we use the chain rule

@g

@`
(`, h) =

1

1 + (`/h)2

✓

1

h

◆

=

h

h2

+ `2
@g

@h
(`, h) =

1

1 + (`/h)2

✓

�`

h2

◆

= � `

h2

+ `2

Thus,

�
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s
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h
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◆

2

�2
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✓

`

h2

+ `2

◆

2

�2

h =

1

h2

+ `2

q

h2�2

` + `2�2

h.

If �h = �`, let � denote their common value. Then

�
ˆ✓ ⇡ 1

h2

+ `2

p

h2�2

+ `2�2

=

�p
h2

+ `2
.

In other words, �
ˆ✓ is inversely proportional to the length of the hypotenuse.

11.14. Let µi be the mean of the i-th measurement. Then

�g(Y1,Y2,·,Yd

t) ⇡

s

✓

@g
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◆
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11.18. Recall that for random variables X
1

, X
2

, X
3

and constants c
1

, c
2

, c
3

,

Var(c
0

+ c
1

X
1

+ c
2

X
2

+ c
3

X
3

) =

3

X

i=1

3

X

j=3

cicjCov(Xi, Xj) =

3

X

i=1

3

X

j=3

cicj⇢i,j�i�j .

where ⇢i,j is the correlation of Xi and Xj . Note that the correlation of a random variable with itself, ⇢i,i = 1. Let
µF , p, µN be the means of the variables under consideration. Then we have the linear approximation,

g( ¯F , p̂, ¯N) ⇡ g(F, p,N) +

@g

@F
(F, p,N)(

¯F � F ) +

@g

@p
(F, p,N)(p̂� p) +

@g

@N
(F, p,N)(

¯N � µN ).

= g(F, p,N) + pN(

¯F � F ) + FN(p̂� p) + Fp( ¯N � µN )

Matching this to the covariance formula, we have

c
0

= g(F, p,N), c
1

= pN, c
2

= FN, c
3

= Fp,

X
1

=

¯F , X
2

= p̂, X
3

=

¯N.

Thus,

�2

B,n =

1

nF
(pN�F )

2

+

1

np
(FN�p)

2

+

1

nN
(pF�N )

2

+2FpN2⇢F,p
�F�pp
nFnp

+ 2Fp2N⇢F,N
�F�Np
nFnN

+ 2F 2pN⇢p,N
�p�Np
nFnN

.

The subscripts on the correlation coefficients ⇢ have the obvious meaning.
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