
Topic 15

Maximum Likelihood Estimation

15.1 Introduction
The principle of maximum likelihood is relatively straightforward to state. As before, we begin with observations
X = (X

1

, . . . , Xn) of random variables chosen according to one of a family of probabilities P✓. In addition, f(x|✓),
x = (x

1

, . . . , xn) will be used to denote the density function for the data when ✓ is the true state of nature.
Then, the principle of maximum likelihood yields a choice of the estimator ˆ✓ as the value for the parameter that

makes the observed data most probable.

Definition 15.1. The likelihood function is the density function regarded as a function of ✓.

L(✓|x) = f(x|✓), ✓ 2 ⇥. (15.1)

The maximum likelihood estimate (MLE),
ˆ✓(x) = argmax

✓
L(✓|x). (15.2)

Thus, we are presuming that a unique global maximum exists.
We will learn that especially for large samples, the maximum likelihood estimators have many desirable properties.

However, especially for high dimensional data, the likelihood can have many local maxima. Thus, finding the global
maximum can be a major computational challenge.

This class of estimators has an important invariance property. If ˆ✓(x) is a maximum likelihood estimate for
✓, then g(ˆ✓(x)) is a maximum likelihood estimate for g(✓). For example, if ✓ is a parameter for the variance and ˆ✓

is the maximum likelihood estimate for the variance, then
p

ˆ✓ is the maximum likelihood estimate for the standard
deviation. This flexibility in estimation criterion seen here is not available in the case of unbiased estimators.

For independent observations, the likelihood is the product of density functions. Because the logarithm of a product
is the sum of the logarithms, finding zeroes of the score function, @ lnL(✓|x)/@✓, the derivative of the logarithm of
the likelihood, will be easier. Having the parameter values be the variable of interest is somewhat unusual, so we will
next look at several examples of the likelihood function.

15.2 Examples
Example 15.2 (Bernoulli trials). If the experiment consists of n Bernoulli trials with success probability p, then

L(p|x) = px1
(1� p)(1�x1) · · · pxn

(1� p)(1�x
n

)

= p(x1+···+x
n

)

(1� p)n�(x1+···+x
n

).

lnL(p|x) = ln p(
n
X

i=1

xi) + ln(1� p)(n�
n
X

i=1

xi) = n(x̄ ln p+ (1� x̄) ln(1� p)).
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Figure 15.1: Likelihood function (top row) and its logarithm (bottom row) for Bernouli trials. The left column is based on 20 trials having 8 and
11 successes. The right column is based on 40 trials having 16 and 22 successes. Notice that the maximum likelihood is approximately 10

�6 for 20
trials and 10

�12 for 40. In addition, note that the peaks are more narrow for 40 trials rather than 20. We shall later be able to associate this property
to the variance of the maximum likelihood estimator.
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@

@p
lnL(p|x) = n

✓

x̄

p
� 1� x̄

1� p

◆

= n
x̄� p

p(1� p)

This equals zero when p = x̄.

Exercise 15.3. Check that this is a maximum.

Thus,
p̂(x) = x̄.

In this case the maximum likelihood estimator is also unbiased.

Example 15.4 (Normal data). Maximum likelihood estimation can be applied to a vector valued parameter. For a
simple random sample of n normal random variables, we can use the properties of the exponential function to simplify
the likelihood function.

L(µ,�2|x) =
✓

1p
2⇡�2

exp

�(x
1

� µ)2

2�2

◆

· · ·
✓

1p
2⇡�2

exp

�(xn � µ)2

2�2

◆

=

1

p

(2⇡�2

)

n
exp� 1

2�2

n
X

i=1

(xi � µ)2.

The log-likelihood

lnL(µ,�2|x) = �n

2

(ln 2⇡ + ln�2

)� 1

2�2

n
X

i=1

(xi � µ)2.

The score function is now a vector.
⇣

@
@µ lnL(µ,�2|x), @

@�2 lnL(µ,�2|x)
⌘

. Next we find the zeros to determine the
maximum likelihood estimators µ̂ and �̂2

@

@µ
lnL(µ̂, �̂2|x) = 1

�̂2

n
X

i=1

(xi � µ̂) =
1

�̂2

n(x̄� µ̂) = 0

Because the second partial derivative with respect to µ is negative,

µ̂(x) = x̄

is the maximum likelihood estimator. For the derivative of the log-likelihood with respect to the parameter �2,

@

@�2

lnL(µ,�2|x) = � n

2�2

+

1

2(�2

)

2

n
X

i=1

(xi � µ)2 = � n

2(�2

)

2

 

�2 � 1

n

n
X

i=1

(xi � µ)2
!

= 0.

Recalling that µ̂(x) = x̄, we obtain

�̂2

(x) =
1

n

n
X

i=1

(xi � x̄)2.

Note that the maximum likelihood estimator is a biased estimator.

Example 15.5 (Lincoln-Peterson method of mark and recapture). Let’s recall the variables in mark and recapture:

• t be the number captured and tagged,

• k be the number in the second capture,

• r the the number in the second capture that are tagged, and let

• N be the total population.
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Here t and k is set by the experimental design; r is an observation that may vary. The total population N is
unknown. The likelihood function for N is the hypergeometric distribution.

L(N |r) =
�t
r

��N�t
k�r

�

�N
k

�

Exercise 15.6. Show that the maximum likelihood estimator

ˆN =



tk

r

�

.

where [·] mean the greater integer less than.

Thus, the maximum likelihood estimator is, in this case, obtained from the method of moments estimator by round-
ing down to the next integer.

Let look at the example of mark and capture from the previous topic. There N = 2000, the number of fish in the
population, is unknown to us. We tag t = 200 fish in the first capture event, and obtain k = 400 fish in the second
capture.

> N<-2000
> t<-200
> fish<-c(rep(1,t),rep(0,N-t))

This creates a vector of length N with t ones representing tagged fish and and N � t zeroes representing the untagged
fish.

> k<-400
> r<-sum(sample(fish,k))
> r
[1] 42

This samples k for the recaptured and adds up the ones to obtained, in this simulation, the number r = 42 of recaptured
fish. For the likelihood function, we look at a range of values for N that is symmetric about 2000. Here, the maximum
likelihood estimate ˆN = [200 · 400/42] = 1904.

> N<-c(1800:2200)
> L<-dhyper(r,t,N-t,k)
> plot(N,L,type="l",ylab="L(N|42)",col="green")

The likelihood function for this example is shown in Figure 15.2.

Example 15.7 (Linear regression). Our data are n observations with one explanatory variable and one response
variable. The model is that the responses yi are linearly related to the explanatory variable xi with an “error” ✏i, i.e.,

yi = ↵+ �xi + ✏i

Here we take the ✏i to be independent mean 0 normal random variables. The (unknown) variance is �2. Consequently,
our model has three parameters, the intercept ↵, the slope �, and the variance of the error, �2.

Thus, the joint density for the ✏i is

1p
2⇡�2

exp� ✏2
1

2�2

· 1p
2⇡�2

exp� ✏2
2

2�2

· · · 1p
2⇡�2

exp� ✏2n
2�2

=

1

p

(2⇡�2

)

n
exp� 1

2�2

n
X

i=1

✏2i

Since ✏i = yi � (↵+ �xi), the likelihood function

L(↵,�,�2|y,x) = 1

p

(2⇡�2

)

n
exp� 1

2�2

n
X

i=1

(yi � (↵+ �xi))
2.
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Likelihood Function for Mark and Recapture

Figure 15.2: Likelihood function L(N |42) for mark and recapture with t = 200 tagged fish, k = 400 in the second capture with r = 42 having
tags and thus recapture. Note that the maximum likelihood estimator for the total fish population is ˆN = 1904.

The logarithm

lnL(↵,�,�2|y,x) = �n

2

(ln 2⇡ + ln�2

)� 1

2�2

n
X

i=1

(yi � (↵+ �xi))
2. (15.3)

Consequently, maximizing the likelihood function for the parameters ↵ and � is equivalent to minimizing

SS(↵.�) =
n
X

i=1

(yi � (↵+ �xi))
2.

Thus, the principle of maximum likelihood is equivalent to the least squares criterion for ordinary linear regression.
The maximum likelihood estimators ↵ and � give the regression line

ŷi = ↵̂+

ˆ�xi.

with
ˆ� =

cov(x, y)
var(x)

, and ↵̂ determined by solving ȳ = ↵̂+

ˆ�x̄.

Exercise 15.8. Show that the maximum likelihood estimator for �2 is

�̂2

MLE =

1

n

n
X

k=1

(yi � ŷi)
2. (15.4)

Frequently, software will report the unbiased estimator. For ordinary least square procedures, this is

�̂2

U =

1

n� 2

n
X

k=1

(yi � ŷi)
2.
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For the measurements on the lengths in centimeters of the femur and humerus for the five specimens of Archeopteryx,
we have the following R output for linear regression.

> femur<-c(38,56,59,64,74)
> humerus<-c(41,63,70,72,84)
> summary(lm(humerus˜femur))

Call:
lm(formula = humerus ˜ femur)

Residuals:
1 2 3 4 5

-0.8226 -0.3668 3.0425 -0.9420 -0.9110

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.65959 4.45896 -0.821 0.471944
femur 1.19690 0.07509 15.941 0.000537 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.982 on 3 degrees of freedom
Multiple R-squared: 0.9883,Adjusted R-squared: 0.9844
F-statistic: 254.1 on 1 and 3 DF, p-value: 0.0005368

The residual standard error of 1.982 centimeters is obtained by squaring the 5 residuals, dividing by 3 = 5� 2 and
taking a square root.

Example 15.9 (weighted least squares). If we know the relative size of the variances of the ✏i, then we have the model

yi = ↵+ �xi + �(xi)✏i

where the ✏i are, again, independent mean 0 normal random variable with unknown variance �2. In this case,

✏i =
1

�(xi)
(yi � ↵+ �xi)

are independent normal random variables, mean 0 and (unknown) variance �2. the likelihood function

L(↵,�,�2|y,x) = 1

p

(2⇡�2

)

n
exp� 1

2�2

n
X

i=1

w(xi)(yi � (↵+ �xi))
2

where w(x) = 1/�(x)2. In other words, the weights are inversely proportional to the variances. The log-likelihood is

lnL(↵,�,�2|y,x) = �n

2

ln 2⇡�2 � 1

2�2

n
X

i=1

w(xi)(yi � (↵+ �xi))
2.

Exercise 15.10. Show that the maximum likelihood estimators ↵̂w and ˆ�w have formulas

ˆ�w =

covw(x, y)

varw(x)
, ȳw = ↵̂w +

ˆ�wx̄w
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where x̄w and ȳw are the weighted means

x̄w =

Pn
i=1

w(xi)xi
Pn

i=1

w(xi)
, ȳw =

Pn
i=1

w(xi)yi
Pn

i=1

w(xi)
.

The weighted covariance and variance are, respectively,

covw(x, y) =

Pn
i=1

w(xi)(xi � x̄w)(yi � ȳw)
Pn

i=1

w(xi)
, varw(x) =

Pn
i=1

w(xi)(xi � x̄w)
2

Pn
i=1

w(xi)
,

The maximum likelihood estimator for �2 is

�̂2

MLE =

Pn
k=1

w(xi)(yi � ŷi)2
Pn

i=1

w(xi)
.

In the case of weighted least squares, the predicted value for the response variable is

ŷi = ↵̂w +

ˆ�wxi.

Exercise 15.11. Show that ↵̂w and ˆ�w are unbiased estimators of ↵ and �. In particular, ordinary (unweighted) least
square estimators are unbiased.

In computing the optimal values using introductory differential calculus, the maximum can occur at either critical
points or at the endpoints. The next example show that the maximum value for the likelihood can occur at the end
point of an interval.

Example 15.12 (Uniform random variables). If our data X = (X
1

, . . . , Xn) are a simple random sample drawn from
uniformly distributed random variable whose maximum value ✓ is unknown, then each random variable has density

f(x|✓) =
⇢

1/✓ if 0  x  ✓,
0 otherwise.

Therefore, the joint density or the likelihood

f(x|✓) = L(✓|x) =
⇢

1/✓n if 0  xi  ✓ for all i,
0 otherwise.

Consequently, the joint density is 0 whenever any of the xi > ✓. Restating this in terms of likelihood, no value
of ✓ is possible that is less than any of the xi. Conseuently, any value of ✓ less than any of the xi has likelihood 0.
Symbolically,

L(✓|x) =
⇢

0 for ✓ < maxi xi = x
(n),

1/✓n for ✓ � maxi xi = x
(n).

Recall the notation x
(n) for the top order statistic based on n observations.

The likelihood is 0 on the interval (0, x
(n)) and is positive and decreasing on the interval [x

(n),1). Thus, to
maximize L(✓|x), we should take the minimum value of ✓ on this interval. In other words,

ˆ✓(x) = x
(n).

Because the estimator is always less than the parameter value it is meant to estimate, the estimator

ˆ✓(X) = X
(n) < ✓,

Thus, we suspect it is biased downwards, i. e..
E✓X

(n) < ✓. (15.5)

227



Introduction to the Science of Statistics Maximum Likelihood Estimation

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

θ

L
(θ

|x
)

1/θ
n

observations x
i
 in this

interval

Figure 15.3: Likelihood function for uniform random variables on the interval [0, ✓]. The likelihood is 0 up to max1in

x
i

and 1/✓n afterwards.

In order to compute the expected value in (15.5), note that X
(n) = max

1in Xi  x if and only if each of the
Xi  x. Thus, for 0  x  ✓, the distribution function for X

(n) is

FX(n)
(x) = P{ max

1in
Xi  x} = P{X

1

 x,X
2

 x, . . . ,Xn  x}

= P{X
1

 x}P{X
2

 x} · · ·P{Xn < x}

each of these random variables have the same distribution function

FX
i

(x) = P{Xi  x} =

8

<

:

0 for x  0,
x
✓ for 0 < x  ✓,
1 for ✓ < x.

Thus, the distribution function for X
(n) is the product FX1(x)FX2(x) · · ·FX

n

(x), i.e.,

FX(n)
(x) =

8

<

:

0 for x  0,
�

x
✓

�n for 0 < x  ✓,
1 for ✓ < x.

Take the derivative to find the density,

fX(n)
(x) =

8

<

:

0 for x  0,
nxn�1

✓n

for 0 < x  ✓,
0 for ✓ < x.
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The mean

E✓X
(n) =

Z ✓

0

xfX(n)
(x) dx =

Z ✓

0

x
nxn�1

✓n
dx

=

n

✓n

Z ✓

0

xn dx =

n

(n+ 1)✓n
xn+1

�

�

�

✓

0

=

n

n+ 1

✓.

This confirms the bias of the estimator X
(n) and gives us a strategy to find an unbiased estimator. Note that the choice

d(X) =

n+ 1

n
X

(n)

yields an unbiased estimator of ✓.

15.3 Summary of Estimators
Look to the text above for the definition of variables.

parameter estimate
Bernoulli trials

p p̂ =

1

n

Pn
i=1

xi = x̄ unbiased
mark recapture

N ˆN =

⇥

kt
r

⇤

biased upward
normal observations

µ µ̂ =

1

n

Pn
i=1

xi = x̄ unbiased
�2 �̂2

mle =
1

n

Pn
i=1

(xi � x̄)2 biased downward
�̂2

u =

1

n�1

Pn
i=1

(xi � x̄)2 unbiased

� �̂mle =

q

1

n

Pn
i=1

(xi � x̄)2 biased downward

linear regression
� ˆ� =

cov(x,y)

var(x)

unbiased
↵ ↵̂ = ȳ � ˆ�x̄ unbiased
�2 �̂2

mle =
1

n

Pn
i=1

(yi � (↵̂ +

ˆ�x))2 biased downward
�̂2

u =

1

n�2

Pn
i=1

(yi � (↵̂ +

ˆ�x))2 unbiased

� �̂mle =

q

1

n

Pn
i=1

(yi � (↵̂ +

ˆ�x))2 biased downward

�̂u =

q

1

n�2

Pn
i=1

(yi � (↵̂ +

ˆ�x))2 biased downward

uniform [0, ✓]

✓ ˆ✓ = maxi xi biased downward
ˆ✓ =

n+1

n
maxi xi unbiased

15.4 Asymptotic Properties
Much of the attraction of maximum likelihood estimators is based on their properties for large sample sizes. We
summarizes some the important properties below, saving a more technical discussion of these properties for later.
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1. Consistency. If ✓
0

is the state of nature and ˆ✓n(X) is the maximum likelihood estimator based on n observations
from a simple random sample, then

ˆ✓n(X) ! ✓
0

as n ! 1.

In words, as the number of observations increase, the distribution of the maximum likelihood estimator becomes
more and more concentrated about the true state of nature.

2. Asymptotic normality and efficiency. Under some assumptions that allows, among several analytical proper-
ties, the use of a central limit theorem holds. Here we have

p
n(ˆ✓n(X)� ✓

0

)

converges in distribution as n ! 1 to a normal random variable with mean 0 and variance 1/I(✓
0

), the Fisher
information for one observation. Thus,

Var✓0(ˆ✓n(X)) ⇡ 1

nI(✓
0

)

,

the lowest variance possible under the Crámer-Rao lower bound. This property is called asymptotic efficiency.
We can write this in terms of the z-score. Let

Zn =

ˆ✓(X)� ✓
0

1/
p

nI(✓
0

)

.

Then, as with the central limit theorem, Zn converges in distribution to a standard normal random variable.

3. Properties of the log likelihood surface. For large sample sizes, the variance of a maximum likelihood estima-
tor of a single parameter is approximately the reciprocal of the the Fisher information

I(✓) = �E



@2

@✓2
lnL(✓|X)

�

.

The Fisher information can be approximated by the observed information based on the data x,

J(ˆ✓) = � @2

@✓2
lnL(ˆ✓(x)|x),

giving the negative of the curvature of the log-likelihood surface at the maximum likelihood estimate ˆ✓(x). If
the curvature is small near the maximum likelihood estimator, then the likelihood surface is nearty flat and the
variance is large. If the curvature is large, the likelihood decreases quickly at the maximum and thus the variance
is small.

We now look at these properties in some detail by revisiting the example of the distribution of fitness effects.
For this example, we have two parameters - ↵ and � for the gamma distribution and so, we will want to extend the
properties above to circumstances in which we are looking to estimate more than one parameter.

15.5 Multidimensional Estimation
For a multidimensional parameter space ✓ = (✓

1

, ✓
2

, . . . , ✓n), the Fisher information I(✓) is now a matrix . As with
one-dimensional case, the ij-th entry has two alternative expressions, namely,

I(✓)ij = E✓



@

@✓i
lnL(✓|X)

@

@✓j
lnL(✓|X)

�

= �E✓



@2

@✓i@✓j
lnL(✓|X)

�

.
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Rather than taking reciprocals to obtain an estimate of the variance, we find the matrix inverse I(✓)�1. This inverse will
provide estimates of both variances and covariances. To be precise, for n observations, let ˆ✓i,n(X) be the maximum
likelihood estimator of the i-th parameter. Then

Var✓(ˆ✓i,n(X)) ⇡ 1

n
I(✓)�1

ii Cov✓(
ˆ✓i,n(X), ˆ✓j,n(X)) ⇡ 1

n
I(✓)�1

ij .

When the i-th parameter is ✓i, the asymptotic normality and efficiency can be expressed by noting that the z-score

Zi,n =

ˆ✓i(X)� ✓i
I(✓)�1

ii /
p
n
.

is approximately a standard normal. As we saw in one dimension, we can replace the information matrix with the
observed information matrix,

J(ˆ✓)ij = � @2

@✓i@✓j
lnL(ˆ✓(x)|x).

Example 15.13. To obtain the maximum likelihood estimate for the gamma family of random variables, write the
likelihood

L(↵,�|x) =
✓

�↵

�(↵)
x↵�1

1

e��x1

◆

· · ·
✓

�↵

�(↵)
x↵�1

n e��x
n

◆

=

✓

�↵

�(↵)

◆n

(x
1

x
2

· · ·xn)
↵�1e��(x1+x2+···+x

n

) .

and its logarithm

lnL(↵,�|x) = n(↵ ln� � ln�(↵)) + (↵� 1)

n
X

i=1

lnxi � �
n
X

i=1

xi.

To determine the parameters that maximize the likelihood, we solve the equations

@

@↵
lnL(↵̂, ˆ�|x) = n(ln ˆ� � d

d↵
ln�(↵̂)) +

n
X

i=1

lnxi = 0

and
@

@�
lnL(↵̂, ˆ�|x) = n

↵̂
ˆ�
�

n
X

i=1

xi = 0, or x̄ =

↵̂
ˆ�
.

Recall that the mean µ of a gamma distribution is ↵/�. Thus. by the invariance property of maximum likelihood
estimators

µ̂ =

↵̂
ˆ�
= x̄,

and the sample mean is the maximum likelihood estimate for the distributional mean.
Substituting ˆ� = ↵̂/x̄ into the first equation results the following relationship for ↵̂

n(ln ↵̂� ln x̄� d

d↵
ln�(↵̂)) +

n
X

i=1

lnxi = 0

which can be solved numerically. The derivative of the logarithm of the gamma function

 (↵) =
d

d↵
ln�(↵)

is know as the digamma function and is called in R with digamma.
For the example for the distribution of fitness effects ↵ = 0.23 and � = 5.35 with n = 100, a simulated data set

yields ↵̂ = 0.2376 and ˆ� = 5.690 for maximum likelihood estimator. (See Figure 15.4.)
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Figure 15.4: The graph of n(ln ↵̂ � ln x̄ � d

d↵

ln �(↵̂)) +

P
n

i=1 ln x
i

crosses the horizontal axis at ↵̂ = 0.2376. The fact that the graph of the
derivative is decreasing states that the score function moves from increasing to decreasing with ↵ and confirming that ↵̂ is a maximum.

To determine the variance of these estimators, we first compute the Fisher information matrix. Taking the appro-
priate derivatives, we find that each of the second order derivatives are constant and thus the expected values used to
determine the entries for Fisher information matrix are the negative of these constants.

I(↵,�)
11

= � @2

@↵2

lnL(↵,�|x) = n
d2

d↵2

ln�(↵), I(↵,�)
22

= � @2

@�2

lnL(↵,�|x) = n
↵

�2

,

I(↵,�)
12

= � @2

@↵@�
lnL(↵,�|x) = �n

1

�
.

This give a Fisher information matrix

I(↵,�) = n

 

d2

d↵2 ln�(↵) � 1

�

� 1

�
↵
�2

!

.

The second derivative of the logarithm of the gamma function

 
1

(↵) =
d2

d↵2

ln�(↵)

is known as the trigamma function and is called in R with trigamma.
The inverse

I(↵,�)�1

=

1

n↵( d2

d↵2 ln�(↵)� 1)

✓

↵ �

� �2

d2

d↵2 ln�(↵)

◆

.

For the example for the distribution of fitness effects ↵ = 0.23 and � = 5.35 and n = 100, and

I(0.23, 5.35)�1

=

1

100(0.23)(19.12804)

✓

0.23 5.35
5.35 5.352(20.12804)

◆

=

✓

0.0001202 0.01216
0.01216 1.3095

◆

.

Var
(0.23,5.35)(↵̂) ⇡ 0.0001202, Var

(0.23,5.35)(
ˆ�) ⇡ 1.3095.

�
(0.23,5.35)(↵̂) ⇡ 0.0110, �

(0.23,5.35)(
ˆ�) ⇡ 1.1443.

Compare this to the empirical values of 0.0662 and 2.046 for the method of moments. This gives the following
table of standard deviations for n = 100 observation
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method ↵̂ ˆ�
maximum likelihood 0.0110 1.1443
method of moments 0.0662 2.046

ratio 0.166 0.559

Thus, the standard deviation for the maximum likelihood estimator is respectively 17% and 56% that of method of
moments estimator. We will look at the impact as we move on to our next topic - interval estimation and the confidence
intervals.

Exercise 15.14. If the data are a simple random sample of 100 observations of a �(0.23, 5.35) random variable. Use
the approximate normality of maximum likelihood estimators to estimate

P{↵̂ � 0.2376} P{ˆ� � 5.690}.

15.6 Choice of Estimators
With all of the desirable properties of the maximum likelihood estimator, the question arises as to why would one
choose a method of moments estimator?

One answer is that the use maximum likelihood techniques relies on knowing the density function explicitly.
Moreover, the form of the density must be amenable to the analysis necessary to maximize the likelihood and find the
Fisher information.

However, much less about the experiment is need in order to compute moments. Thus far, we have computed
moments using the density

E✓X
m

=

Z 1

�1
xmfX(x|✓) dx.

However, consider the case of determining parameters in the distribution in the number of proteins in a tissue. If
the tissue has several cell types, then we would need

• the distribution of cell types, and

• a density function for the number of proteins in each cell type.

These two pieces of information can be used to calculate the mean and variance for the number of cells with some
ease. However, giving an explicit expression for the density and hence the likelihood function is more difficult to
obtain. This leads to quite intricate computations to carry out the desired analysis of the likelihood function.

15.7 Technical Aspects
We can use concepts previously introduced to obtain the properties for the maximum likelihood estimator. For exam-
ple, ✓

0

is more likely that a another parameter value ✓

L(✓
0

|X) > L(✓|X) if and only if
1

n

n
X

i=1

ln

f(Xi|✓0)
f(Xi|✓)

> 0.

By the strong law of large numbers, this sum converges to

E✓0



ln

f(X
1

|✓
0

)

f(X
1

|✓)

�

.

which is greater than 0. thus, for a large number of observations and a given value of ✓, then with a probability nearly
one, L(✓

0

|X) > L(✓|X) and so the maximum likelihood estimator has a high probability of being very near ✓
0

. This
is a statement of the consistency of the estimator.
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For the asymptotic normality and efficiency, we write the linear approximation of the score function

d

d✓
lnL(✓|X) ⇡ d

d✓
lnL(✓

0

|X) + (✓ � ✓
0

)

d2

d✓2
lnL(✓

0

|X).

Now substitute ✓ = ˆ✓ and note that d
d✓ lnL(

ˆ✓|X) = 0. Then

p
n(ˆ✓n(X)� ✓

0

) ⇡ �
p
n

d
d✓ lnL(✓0|X)

d2

d✓2 lnL(✓0|X)

=

1p
n

d
d✓ lnL(✓0|X)

� 1

n
d2

d✓2 lnL(✓0|X)

Now assume that ✓
0

is the true state of nature. Then, the random variables d ln f(Xi|✓0)/d✓ are independent with
mean 0 and variance I(✓

0

). Thus, the distribution of numerator

1p
n

d

d✓
lnL(✓

0

|X) =

1p
n

n
X

i=1

d

d✓
ln f(Xi|✓0)

converges, by the central limit theorem, to a normal random variable with mean 0 and variance I(✓
0

). For the denom-
inator, �d2 ln f(Xi|✓0)/d✓2 are independent with mean I(✓

0

). Thus,

� 1

n

d2

d✓2
lnL(✓

0

|X) = � 1

n

n
X

i=1

d2

d✓2
ln f(Xi|✓0)

converges, by the law of large numbers, to I(✓
0

). Thus, the distribution of the ratio,
p
n(ˆ✓n(X)� ✓

0

), converges to a
normal random variable with variance I(✓

0

)/I(✓
0

)

2

= 1/I(✓
0

).

15.8 Answers to Selected Exercises
15.3. We have found that the score function

@

@p
lnL(p|x) = n

x̄� p

p(1� p)

Thus
@

@p
lnL(p|x) > 0 if p < x̄, and

@

@p
lnL(p|x) < 0 if p > x̄

In words, lnL(p|x) is increasing for p < x̄ and decreasing for p > x̄. Thus, p̂(x) = x̄ is a maximum.

15.7. The log-likelihood function

lnL(↵,�,�2|y,x) = �n

2

(ln(2⇡) + ln�2

)� 1

2�2

n
X

i=1

(yi � (↵+ �xi))
2

leads to the ordinary least squares equations for the maximum likelihood estimates ↵̂ and ˆ�. Take the partial derivative
with respect to �2,

@

@�2

L(↵,�,�2|y,x) = � n

2�2

+

1

2(�2

)

2

n
X

i=1

(yi � (↵+ �xi))
2.

This partial derivative is 0 at the maximum likelihood estimates �̂2, ↵̂ and ˆ�.

0 = � n

2�̂2

+

1

2(�̂2

)

2

n
X

i=1

(yi � (↵̂+

ˆ�xi))
2
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or

�̂2

=

1

n

n
X

i=1

(yi � (↵̂+

ˆ�xi))
2.

We would like to maximize the likelihood given the number of recaptured individuals r. Because the domain for
N is the nonnegative integers, we cannot use calculus. However, we can look at the ratio of the likelihood values for
successive value of the total population.

L(N |r)
L(N � 1|r)

N is more likely that N � 1 precisely when this ratio is larger than one. The computation below will show that
this ratio is greater than 1 for small values of N and less than one for large values. Thus, there is a place in the middle
which has the maximum. We expand the binomial coefficients in the expression for L(N |r) and simplify.

L(N |r)
L(N � 1|r) =

�t
r

��N�t
k�r

�

/
�N
k

�

�t
r

��N�t�1

k�r

�

/
�N�1

k

� =

�N�t
k�r

��N�1

k

�

�N�t�1

k�r

��N
k

� =

(N�t)!
(k�r)!(N�t�k+r)!

(N�1)!

k!(N�k�1)!

(N�t�1)!

(k�r)!(N�t�k+r�1)!

N !

k!(N�k)!

=

(N � t)!(N � 1)!(N � t� k + r � 1)!(N � k)!

(N � t� 1)!N !(N � t� k + r)!(N � k � 1)!

=

(N � t)(N � k)

N(N � t� k + r)
.

Thus, the ratio
L(N |r)

L(N � 1|r) =

(N � t)(N � k)

N(N � t� k + r)

exceeds 1if and only if

(N � t)(N � k) > N(N � t� k + r)

N2 � tN � kN + tk > N2 � tN � kN + rN

tk > rN
tk

r
> N

Writing [x] for the integer part of x, we see that L(N |r) > L(N �1|r) for N < [tk/r] and L(N |r)  L(N �1|r)
for N � [tk/r]. This give the maximum likelihood estimator

ˆN =



tk

r

�

.

15.8 .Take the derivative with respect to �2 in (15.3)

@

@�2

lnL(↵,�,�2|y,x) = � n

2�2

+

1

2(�2

)

2

n
X

i=1

(yi � (↵+ �xi))
2.

Now set this equal to zero, substitute ↵̂ for ↵, ˆ� for � and solve for �2 to obtain (15.4).

15.9. The maximum likelihood principle leads to a minimization problem for

SSw(↵,�) =
n
X

i=1

✏2i =

n
X

i=1

w(xi)(yi � (↵+ �xi))
2.

Following the steps to derive the equations for ordinary least squares, take partial derivatives to find that

@

@�
SSw(↵,�) = �2

n
X

i=1

w(xi)xi(yi � ↵� �xi)
@

@↵
SSw(↵,�) = �2

n
X

i=1

w(xi)(yi � ↵� �xi).
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Set these two equations equal to 0 and call the solutions ↵̂w and ˆ�w.

0 =

n
X

i=1

w(xi)xi(yi � ↵̂w � ˆ�wxi) =

n
X

i=1

w(xi)xiyi � ↵̂w

n
X

i=1

w(xi)xi � ˆ�w

n
X

i=1

w(xi)x
2

i (15.6)

0 =

n
X

i=1

w(xi)(yi � ↵̂w � ˆ�wxi) =

n
X

i=1

w(xi)yi � ↵̂w

n
X

i=1

w(xi)� ˆ�w

n
X

i=1

w(xi)xi (15.7)

Multiply these equations by the appropriate factors to obtain

0 =

 

n
X

i=1

w(xi)

! 

n
X

i=1

w(xi)xiyi

!

� ↵̂w

 

n
X

i=1

w(xi)

! 

n
X

i=1

w(xi)xi

!

(15.8)

�ˆ�w

 

n
X

i=1

w(xi)

! 

n
X

i=1

w(xi)x
2

i

!

0 =

 

n
X

i=1

w(xi)xi

! 

n
X

i=1

w(xi)yi

!

� ↵̂w

 

n
X

i=1

w(xi)

! 

n
X

i=1

w(xi)xi

!

� ˆ�w

 

n
X

i=1

w(xi)xi

!

2

(15.9)

Now subtract the equation (15.9) from equation (15.8) and solve for ˆ�.

ˆ� =

(

Pn
i=1

w(xi)) (
Pn

i=1

w(xi)xiyi)� (

Pn
i=1

w(xi)xi) (
Pn

i=1

w(xi)yi)

n
Pn

i=1

w(xi)x2

i � (

Pn
i=1

w(xi)xi)
2

=

Pn
i=1

w(xi)(xi � x̄w)(yi � ȳw)
Pn

i=1

w(xi)(xi � x̄w)
2

=

covw(x, y)

varw(x)
.

Next, divide equation (15.9) by
Pn

i=1

w(xi) to obtain

ȳw = ↵̂w +

ˆ�wx̄w. (15.10)

15.10. Because the ✏i have mean zero,

E
(↵,�)yi = E

(↵,�)[↵+ �xi + �(xi)✏i] = ↵+ �xi + �(xi)E
(↵,�)[✏i] = ↵+ �xi.

Next, use the linearity property of expectation to find the mean of ȳw.

E
(↵,�)ȳw =

Pn
i=1

w(xi)E
(↵,�)yi

Pn
i=1

w(xi)
=

Pn
i=1

w(xi)(↵+ �xi)
Pn

i=1

w(xi)
= ↵+ �x̄w. (15.11)

Taken together, we have that E
(↵,�)[yi� ȳw] = (↵+�xi.)� (↵+�xi) = �(xi� x̄w). To show that ˆ�w is an unbiased

estimator, we see that

E
(↵,�)

ˆ�w = E
(↵,�)



covw(x, y)
varw(x)

�

=

E
(↵,�)[covw(x, y)]

varw(x)
=

1

varw(x)
E

(↵,�)



Pn
i=1

w(xi)(xi � x̄w)(yi � ȳw)
Pn

i=1

w(xi)

�

=

1

varw(x)

Pn
i=1

w(xi)(xi � x̄w)E
(↵,�)[yi � ȳw]

Pn
i=1

w(xi)
=

�

varw(x)

Pn
i=1

w(xi)(xi � x̄w)(xi � x̄w)
Pn

i=1

w(xi)
= �.

To show that ↵̂w is an unbiased estimator, recall that ȳw = ↵̂w +

ˆ�wx̄w. Thus

E
(↵,�)↵̂w = E

(↵,�)[ȳw � ˆ�wx̄w] = E
(↵,�)ȳw � E

(↵,�)[
ˆ�w]x̄w = ↵+ �x̄w � �x̄w = ↵,
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using (15.11) and the fact that ˆ�w is an unbiased estimator of �

15.14. For ↵̂, we have the z-score

z↵̂ =

↵̂� 0.23p
0.0001202

� 0.2376� 0.23p
0.0001202

= 0.6841.

Thus, using the normal approximation,

P{↵̂ � 0.2367} = P{z↵̂ � 0.6841} = 0.2470.

For ˆ�, we have the z-score

z
ˆ� =

ˆ� � 5.35p
1.3095

� 5.690� 5.35p
1.3095

= 0.2971.

Here, the normal approximation gives

P{ˆ� � 5.690} = P{z
ˆ� � 0.2971} = 0.3832.
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Figure 15.5: (top) The log-likelihood near the maximum likelihood estimators. The domain is 0.1  ↵  0.4 and 4  �  8. (bottom) Graphs
of vertical slices through the log-likelihood function surface. (left) ↵̂ = 0.2376 and 0.1  ↵  0.4 varies. (right) ˆ� = 5.690 and 4  �  8. The
variance of the estimator is approximately the negative reciprocal of the second derivative of the log-likelihood function at the maximum likelihood
estimators (known as the observed information). Note that the log-likelihood function is nearly flat as � varies. This leads to the interpretation that
a range of values for � are nearly equally likely and that the variance for the estimator for ˆ� will be high. On the other hand, the log-likelihood
function has a much greater curvature for the ↵ parameter and the estimator ↵̂ will have a much smaller variance than ˆ�
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Figure 15.5: (top) The log-likelihood near the maximum likelihood estimators. The domain is 0.1  ↵  0.4 and 4  �  8. (bottom) Graphs
of vertical slices through the log-likelihood function surface. (left) ↵̂ = 0.2376 and 4  �  8 varies. (right) ˆ� = 5.690 and 0.1  ↵  0.4. The
variance of the estimator is approximately the negative reciprocal of the second derivative of the log-likelihood function at the maximum likelihood
estimators (known as the observed information). Note that the log-likelihood function is nearly flat as � varies. This leads to the interpretation that
a range of values for � are nearly equally likely and that the variance for the estimator for ˆ� will be high. On the other hand, the log-likelihood
function has a much greater curvature for the ↵ parameter and the estimator ↵̂ will have a much smaller variance than ˆ�
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