Topic 17
Simple Hypotheses
Terminology and the Neyman-Pearson Lemma
Outline

Overview

Terminology

The Neyman-Pearson Lemma
Overview

Statistical hypothesis testing is designed to address the question:

Do the data provide sufficient evidence to conclude that we must depart from our original assumption concerning the state of nature?

The logic of hypothesis testing is similar to the one a juror faces in a criminal trial:

Is the evidence provided by the prosecutor sufficient for the jury to depart from its original assumption that the defendant is not guilty of the charges brought before the court?

Two of the jury’s possible actions are

- Find the defendant guilty.
- Find the defendant not guilty.

Given the level of evidence needed, a prosecutor’s task is to present the evidence in the most powerful and convincing manner possible.
The simplest set-up for understanding the issues of statistical hypothesis, is the case of two values θ_0 and θ_1 in the parameter space. We write the test, known as a simple hypothesis as

$$H_0 : \theta = \theta_0 \quad \text{versus} \quad H_1 : \theta = \theta_1.$$

H_0 is called the null hypothesis. H_1 is called the alternative hypothesis.

The possible actions are

- Reject the hypothesis.
- Fail to reject the hypothesis.
Terminology

Criminal Trials

<table>
<thead>
<tr>
<th></th>
<th>Innocent</th>
<th>Guilty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convict</td>
<td></td>
<td>OK</td>
</tr>
<tr>
<td>Do not convict</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Hypothesis Tests

<table>
<thead>
<tr>
<th></th>
<th>H_0 is True</th>
<th>H_1 is True</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject H_0</td>
<td>Type I Error</td>
<td>OK</td>
</tr>
<tr>
<td>Fail to reject H_0</td>
<td>OK</td>
<td>Type II Error</td>
</tr>
</tbody>
</table>
Terminology

- Rejecting the hypothesis when it is true is called a type I error or a false positive. Its probability α is called the size of the test or the significance level. In symbols, we write

$$\alpha = P_{\theta_0}\{\text{reject } H_0\}.$$

- Failing to reject the hypothesis when it is false is called a type II error or a false negative, has probability β. The power of the test, $1 - \beta$, the probability of rejecting the test when it is indeed false, is also called the true positive fraction. In symbols, we write

$$\beta = P_{\theta_1}\{\text{fail to reject } H_0\}.$$
Terminology

The action is often based on first determining a critical region \(C \). Data \(x \) in this region is determined to be too unlikely to have occurred when the null hypothesis is true. Thus,

\[
\text{reject } H_0 \quad \text{if and only if} \quad x \in C.
\]

Given a choice \(\alpha \) for the size of the test, the choice of a critical region \(C \) is called best or most powerful if for any other critical region \(C^* \) for a size \(\alpha \) test, i.e., both critical region lead to the same type I error probability,

\[
\alpha = P_{\theta_0} \{ X \in C \} = P_{\theta_0} \{ X \in C^* \},
\]

but perhaps different type II error probabilities

\[
\beta = P_{\theta_1} \{ X \notin C \}, \quad \beta^* = P_{\theta_1} \{ X \notin C^* \},
\]

the lowest probability of a type II error, \((\beta \leq \beta^*) \) is associated to the critical region \(C \).
The Neyman-Pearson Lemma

Consider two likelihoods for x running from -11 to 11,

<table>
<thead>
<tr>
<th>x</th>
<th>-11</th>
<th>-10</th>
<th>-9</th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_0(x)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>$L_1(x)$</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_0(x)$</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$L_1(x)$</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

The goal of this game is to pick values x to accumulate points as quickly as possible from your likelihood L_0 keeping your opponent’s points from L_1 as low as possible.

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>3</th>
<th>-6</th>
<th>-9</th>
<th>0</th>
<th>1</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_0 total</td>
<td>8</td>
<td>15</td>
<td>19</td>
<td>20</td>
<td>30</td>
<td>39</td>
<td>46</td>
</tr>
<tr>
<td>L_1 total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
The Neyman-Pearson Lemma

Keeping track of the size α and the power $1 - \beta$ of the test with the choice of critical region being the values of x not yet chosen, we have the following table.

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>3</th>
<th>-6</th>
<th>-9</th>
<th>0</th>
<th>1</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_0(x)/L_1(x)$</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>10</td>
<td>9</td>
<td>7/4</td>
</tr>
<tr>
<td>L_0 total</td>
<td>8</td>
<td>15</td>
<td>19</td>
<td>20</td>
<td>30</td>
<td>39</td>
<td>46</td>
</tr>
<tr>
<td>L_1 total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>α</td>
<td>0.92</td>
<td>0.85</td>
<td>0.81</td>
<td>0.80</td>
<td>0.70</td>
<td>0.61</td>
<td>0.54</td>
</tr>
<tr>
<td>$1 - \beta$</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td>0.94</td>
</tr>
</tbody>
</table>

We see how the likelihood ratio test is the most powerful test. For example, for these likelihoods, the last column states that for a $\alpha = 0.54$ level test, the best region consists of those values of x so that

$$\frac{L_1(x)}{L_0(x)} \geq \frac{7}{4}.$$

The power is $1 - \beta = 0.94$ and thus the type II error probability is $\beta = 0.06$.

The Neyman-Pearson Lemma

Exercise. Repeat exercise above. The R code follows.

```r
> x<-c(-11:11)
> L0<-c(0,0:10,9:0,0)
> L1<-sample(L0,length(L0))
> data.frame(x,L0,L1)
> o<-order(L1/L0)
> sumL0<-cumsum(L0[o])
> sumL1<-cumsum(L1[o])
> alpha<-1-sumL0/100
> beta<-sumL1/100
> data.frame(x[o],L1[o]/L1[o],L0[o],L1[o],alpha,beta)
> plot(alpha,1-beta,type="s")
```

The graph α versus $1 - \beta$ is called the receiver operator characteristic (ROC) curve.
The Neyman-Pearson Lemma

Theorem. (Neyman-Pearson Lemma) Let $L(\theta|x)$ denote the likelihood function for the random variable X corresponding to the probability P_θ. If there exists a critical region C of size α and a nonnegative constant k_α such that

$$\frac{L(\theta_1|x)}{L(\theta_0|x)} \geq k_\alpha \quad \text{for} \ x \in C$$

and

$$\frac{L(\theta_1|x)}{L(\theta_0|x)} < k_\alpha \quad \text{for} \ x \notin C,$$

then C is the most powerful critical region of size α.