
Appendix A: A Sample R Session

The purpose of this appendix is to become accustomed to the R and the way if responds to line commands. R can be
downloaded from

http://cran.r-project.org/

Be sure to download the version of R corresponding to your operating system - linux, MacOS, or windows.
As you progress, you will learn the statistical ideas behind the commands that ask for graphs or computation. Note

that R only prints output when it is requested. On a couple of occasions, you will see a plus (+) sign at the beginning
of the line. This is supplied by R and you will not type this on your R console.

• Learn how to access help. Type

> help.start()

to access on-line manuals, references, and other material.

• Find fundamental constants

> pi
> exp(1)
> round(exp(1),4)

• The <- is used to indicate an assignment. Type

> x<-rnorm(50)
> length(x)
> hist(x)
> mean(x)
> sd(x)
> summary(x)

• To see what the sort command does type

> ?sort

Next, sort the values in x, first in increasing and then decreasing order.

> sort(x)
> sort(x,decreasing=TRUE)

The first command gives 50 independent standard normal random variables and stores them as a vector x. It
then gives the number of entries in x, creates a histogram, computes the mean and standard deviation, and gives
a summary of the data. The last two commands give the values of x sorted from bottom to top and then from
top to bottom

413

Introduction to the Science of Statistics A Sample R Session

• To prepare for a scatterplot, enter

> (y<-rnorm(x))

This gives 50 additional independent standard normal random variables and stores them as a vector y. When
the command is placed in parentheses, R prints out the value of the variable.

• To make a scatterplot of these data, type

> plot(x,y)

A graphics window will appear automatically.

• To find the correlation between x and y.

> cor(x,y)

• To preform a t-test, type

> t.test(x,y)
> t.test(x,y,alternative="greater")

Notice the difference in p-value.

• To check to see what is in your workspace, type

> ls()

• To remove a variable x

> rm(x)

Now type ls() again to see that x has been removed.

• To make a variety of graphs of sin(✓)

> theta<-seq(0,2*pi,length=100)
> plot(theta,sin(theta))
> par(new=TRUE)
> plot(theta,sin(theta),type="h")
> plot(theta,sin(theta),type="l")
> plot(theta,sin(theta),type="s")
> theta<-seq(0,2*pi,length=10)
> plot(theta,sin(theta),type="l")
> plot(theta,sin(theta),type="b")

To see what these commands mean, type

> help(plot)

• To make some simple arithmetic and repeating sequences, type

414

Introduction to the Science of Statistics A Sample R Session

> 1:25
> seq(1,25)
> seq(25,1,-1)
> seq(1,25,2)
> seq(1,25,length=6)
> seq(0,2,0.1)
> rep(0,25)
> rep(1,25)

• Make a vector of integers from 1 to 25

> n<-1:25

• Randomly shuffle these 25 numbers

> sample(n)

• Choose 10 without replacement.

> sample(n,10)

• Choose 30 with replacement.

> samp<-sample(n,30,replace=TRUE)
> samp

• Turn this into a 3 ⇥ 10 matrix and view it.

>(A<-matrix(samp,ncol=10))
>(B<-matrix(samp,nrow=3))

Notice that these give the same matrix. The entries are filled by moving down the columns from left to right.

• Check the dimension.

> dim(A)

• View it as a spreadsheet.

> fix(A)

You will need to close the window before entering the next command into R.

• Find the transpose.

> t(A)

• View the first row.

> A[1,]

the second, third and fourth column,

415

Introduction to the Science of Statistics A Sample R Session

> A[,2:4]

all but the second, third and fourth column,

> A[,-(2:4)]

and the 1,4 entry

> A[1,4]

• Turn this into a 3 ⇥ 10 matrix.

> matrix(samp,ncol=3)

• Make a segmented bar plot of these numbers.

> data<-matrix(samp,nrow=3)
> barplot(data)

• Perform a chi-squared test..

> chisq.test(data)

• Make a column of weight vectors equal to the square root of n.

> w<-sqrt(n)

• Simulate some response variables, and display them in a table.

> r<- n + rnorm(n)*w
> data.frame(n,r)

• Create a regression line, display the results, create a scatterplot, and draw the regression line on the plot in red.

> regress.rn<-lm(r˜n)
> summary(regress.rn)
> plot(n,r)
> abline(regress.rn,col="red")

Note that the order of r and n for the regression line is reversed from the order in the plot.

• Plot the residuals and put labels on the axes.

> plot(fitted(regress.rn), resid(regress.rn),xlab="Fitted values",
+ ylab="Residuals",main="Residuals vs Fitted")

• Simulate 100 tosses of a fair coin and view the results

> x<-rbinom(100,1,0.5)
> x

Next, keep a running total of the number of heads, plot the result with steps (type = "s")

416

Introduction to the Science of Statistics A Sample R Session

> c<-cumsum(x)
> plot(c,type="s")

• Roll a fair dice 1000 times, look at a summary, and make a table.

> fair<-sample(c(1:6),1000,replace=TRUE)
> summary(fair)
> table(fair)

• Roll a biased dice 1000 times, look at a summary, and make a table.

> biased<-sample(c(1:6),1000,replace=TRUE,prob=c(1/12,1/12,1/12,1/4,1/4,1/4))
> summary(biased)
> table(biased)

• The next data set arise from the famous Michaelson-Morley experiment. To see the data set, type

> morley

There are five experiments (column Expt) and each has 20 runs (column Run) and Speed is the recorded
speed of light minus 290,000 km/sec.

• The data in the first two columns are labels, type

> morley$Expt <- factor(morley$Expt)

so that the experiment number will be a factor

• Now make a labeled boxplot of the speed in column 3

> boxplot(morley[,3]˜morley$Expt,main="Speed of Light Data", xlab="Experiment",
+ ylab="Speed")

• Perform an analysis of variance to see if the speed are measured speeds are significantly different between
experiments. .

> anova.mm<-aov(Speed˜Expt,data=morley)
> summary(anova.mm)

• Draw a cubic.

> x<-seq(-2,2,0.01)
> plot(x,xˆ3-3*x,type="l")

• Draw a bell curve.

> curve(dnorm(x),-3,3)

• Look at the probability mass function for a binomial distribution.

> x<-c(0:100)
> prob<-dbinom(x,100,0.5)
> plot(x,prob,type="h")

417

Introduction to the Science of Statistics A Sample R Session

• To plot a parameterized curve, start with a sequence and give the x and y values.

> angle<-seq(-pi,pi,0.01)
> x<-sin(3*angle)
> y<-cos(4*angle)
> plot(x,y,type="l")

The type ="l" (the letter ell, not the number one) command connects the values in the sequence with lines.

• Now we will plot contour lines and a surface. First, we give a sequence of values. This time we specify the
number of terms.

> x<-seq(-pi, pi, len=150)
> y<-x

Then, we define a function for these x and y values and draw a contour map. Then, choose the number of levels.

> f<-outer(x,y,function(x,y) cos(y)/(1+xˆ2))
> contour(x,y,f)
> contour(x,y,f,nlevels=20)

• For a color coded “heat map”,

> image(x,y,f)

• To draw a surface plot,

> persp(x,y,f,col="orange")

and change the viewing angle

> persp(x,y,f,col="orange",theta=-30, phi=45)

418

