
Topic 22

Analysis of Variance

22.1 Overview
Two-sample t procedures are designed to compare the means of two populations. Our next step is to compare the
means of several populations. We shall explain the methodology through an example. Consider the data set gathered
from the forests in Borneo.

Example 22.1 (Rain forest logging). The data on 30 forest plots in Borneo are the number of trees per plot.

never logged logged 1 year ago logged 8 years ago
ni 12 12 9
ȳi 23.750 14.083 15.778
si 5.065 4.981 5.761

We compute these statistics from the data y
11

, . . . y
1n1 , y

21

, . . . y
2n2 and y

31

, . . . y
2n2

ȳi =
1

ni

n
i

X

j=1

yij and s2i =

1

ni � 1

n
i

X

j=1

(yij � ȳi)
2

One way analysis of variance (ANOVA) is a statistical procedure that allows us to test for the differences in
means for two or more independent groups. In the situation above, we have set our design so that the data in each of
the three groups is a random sample from within the groups. The basic question is: Are these means the same (the null
hypothesis) or not (the alternative hypothesis)?
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Figure 22.1: Side-by-side boxplots of the number of trees per plot.
The groups will be considered different if the differences between the
groups (indicated by the variation in the center lines of the boxes) is
large compared to the width of the boxes in the boxplot.

As the case with the t procedures, the appropriateness
of one way analysis of variance is based on the applica-
bility of the central limit theorem. As with t procedures,
ANOVA has an alternative, the Kruskal-Wallis test, based
on the ranks of the data for circumstances in which the cen-
tral limit theorem does not apply.

The basic idea of the test is to examine the ratio of
s2
between

, the variance between the groups 1, 2, and 3. and
s2
residual

, a statistic that measures the variances within the
groups. If the resulting ratio test statistic is sufficiently
large, then we say, based on the data, that the means of
these groups are distinct and we are able to reject the null
hypothesis. Even though the boxplots use different mea-
sures of center (median vs. mean) and spread (quartiles vs.
standard deviation), this idea can be expressed by examin-
ing the fluctuation in the centers of boxes in Figure 22.1 compared to the width of the boxes.
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As we have seen before, this decision to reject H
0

will be the consequence a sufficiently high value of a test statistic
- in this case the F statistic. The distribution of this test statistic will depend on the number of groups (3 in the example
above) and the number of total observations (33 in the example above). Consequently, variances between groups that
are not that are not statistically significant for small sample sizes can become significant as the sample sizes and, with
it, the power increase.

22.2 One Way Analysis of Variance
For one way analysis of variance, we expand to more than the two groups seen for t procedures and ask whether or
not the means of all the groups are the same. The hypothesis in this case is

H
0

: µj = µk for all j, k and H
1

: µj 6= µk for some j, k.

The data {yij , 1  i  nj , 1  j  q} represents that we have ni observation for the i-th group and that we have
q groups. The total number of observations is denoted by n = n

1

+ · · ·+ nq . The model is

yij = µi + ✏ij .

where ✏ij are independent N(0,�) random variables with �2 unknown. This allows us to define the likelihood and
to use that to determine the analysis of variance F test as a likelihood ratio test. Notice that the model for analysis
requires a common value � for all of the observations.

In order to develop the F statistic at the test statistic, we will need to introduce two types of sample means:

• The within group means is simply the sample mean of the observations inside each of the groups,

yj =
1

nj

n
j

X

i=1

yij , j = 1. . . . , q.

These are given in the table in Example 22.1 for the Borneo rains forest.

• The mean of the data taken as a whole, known as the grand mean,

y =

1

n

q
X

j=1

n
j

X

i=1

yij =
1

n

q
X

j=1

nj ȳj .

This is the weighted average of the ȳi with weights ni, the sample size in each group. The Borneo rain forest
example has an overall mean

y =

1

n

3

X

j=1

nj ȳj =
1

12 + 12 + 9

(12 · 23.750 + 12 · 14.083 + 9 · 15.778) = 18.06055.

Analysis of variance uses the total sums of squares

SS
total

=

q
X

j=1

n
j

X

i=1

(yij � y)2, (22.1)

the total square variation of individual observations from their grand mean. However, the test statistic is determined
by decomposing SS

total

. We start with a bit of algebra to rewrite the interior sum in (22.1) as
n
j

X

i=1

(yij � y)2 =

n
j

X

i=1

(yij � yj)
2

+ nj(yj � y)2 = (nj � 1)s2j + nj(yj � y)2. (22.2)

Here, s2j is the unbiased estimator of the variance based on the observations in the j-th group.
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source of degrees of sums of mean
variation freedom squares square
between groups q � 1 SS

between

s2
between

= SS
between

/(q � 1)

residuals n� q SS
residual

s2
residual

= SS
residual

/(n� q)

total n� 1 SS
total

Table I: Table for one way analysis of variance

Exercise 22.2. Show the first equality in (22.2). (Hint: Begin with the difference in the two sums.)

Together (22.1) and (22.2) yields the decomposition of the variation

SS
total

= SS
residual

+ SS
between

with

SS
residual

=

q
X

j=1

n
j

X

i=1

(yij � yj)
2

=

q
X

j=1

(nj � 1)s2j and SS2

between

=

q
X

j=1

nj(yj � y)2.

For the rain forest example, we find that

SS
between

=

3

X

j=1

nj(yj � y)2 = 12 · (23.750� y)2 + 12 · (14.083� y)2 + 9 · (15.778� y)2) = 625.1793

and

SS
residual

=

3

X

j=1

(nj � 1)s2j = (12� 1) · 5.0652 + (12� 1) · 4.9812 + (9� 1) · 5.7612 = 820.6234

From this, we obtain the general form for one-way analysis of variance as shown in Table I.

• The q � 1 degrees of freedom between groups is derived from the q groups minus one degree of freedom used
to compute y.

• The n� q degrees of freedom within the groups is derived from the nj � 1 degree of freedom used to compute
the variances s2j . Add these q values for the degrees of freedom to obtain n� q.

The test statistic

F =

s2
between

s2
residual

=

SS
between

/(q � 1)

SS
residual

/(n� q)
.

source of degrees of sums of mean
variation freedom squares square
between groups 2 625.2 312.6
residuals 30 820.6 27.4
total 32 1445.8

Table II: Analysis of variance information for the Borneo rain forest data
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is, under the null hypothesis, a constant multiple of the ratio of two independent �2 random variables with parameter
q�1 for the numerator and n�q for the denominator. This ratio is called an F random variable with q�1 numerator
degrees of freedom and n� q denominator degrees of freedom.

Using Table II, we find the value of the test statistic for the rain forest data is

F =

s2
between

s2
residual

=

312.6

27.4
= 11.43.

and the p-value (calculated below) is 0.0002. The critical value for an ↵ = 0.01 level test is 5.390. So, we do reject
the null hypothesis that mean number of trees does not depend on the history of logging.

> 1-pf(11.43,2,30)
[1] 0.0002041322
> qf(0.99,2,30)
[1] 5.390346
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Figure 22.2: Upper tail critical values. The density for an F random variable
with numerator degrees of freedom, 2, and denominator degrees of freedom, 30.
The indicated values 3.316, 4.470, and 5.390 are critical values for significance
levels ↵ = 0.05, 0.02, and 0.01, respectively.

Confidence intervals are determined using the
data from all of the groups as an unbiased estimate
for the variance, �2. Using all of the data allows
us to increase the number of degrees of freedom in
the t distribution and thus reduce the upper critical
value for the t statistics and with it the margin of
error.

The variance s2
residuals

is given by the expres-
sion SS

residuals

/(n � q), shown in the table in
the “mean square” column and the “residuals” row.
The standard deviation s

residual

is the square root
of this number. For example, the �-level confi-
dence interval for µj is

ȳj ± t
(1��)/2,n�q

s
residualp

nj
.

The confidence for the difference in µj�µk is sim-
ilar to that for a pooled two-sample t confidence
interval and is given by

ȳj � ȳk ± t
(1��)/2,n�qsresidual

s

1

nj
+

1

nk
.

In this case, the 95% confidence interval for the mean number of trees on a lot“logged 1 year ago” has n � q =

33� 3, t
0.025,30 = 2.042, s

residual

=

p
27.4 = 5.234 and the confidence interval is

14.083± 2.042

p
27.4p
12

= 14.083± 4.714 = (9.369, 18.979).

Exercise 22.3. Give the 95% confidence intervals for the difference in trees between plots never logged and plots
logged 8 years ago.

Example 22.4. The development time for a European queen in a honey bee hive is suspected to depend on the tem-
perature of the hive. To examine this, queens are reared in a low temperature hive (31.1� C), a medium temperature
hive (32.8� C) and a high temperature hive (34.4� C). The hypothesis is that higher temperatures increase metabolism
rate and thus reduce the time needed from the time the egg is laid until an adult queen honey bee emerges from the
cell. The hypothesis is

H
0

: µ
low

= µ
med

= µ
high

versus H
1

: µ
low

, µ
med

, µ
high

differ
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Figure 22.3: Side-by-side boxplot of queen development times. The time is measured in days. the plots show cool (1) medium (2) and warm (3)
hive temperatures.

where µ
low

, µ
med

, and µ
high

are, respectively, the mean development time in days for queen eggs reared in a low, a
medium, and a high temperature hive.

Here are the data and a boxplot:

> ehblow<-c(16.2,14.6,15.8,15.8,15.8,15.8,16.2,16.7,15.8,16.7,15.3,14.6,
15.3,15.8)

> ehbmed<-c(14.5,14.7,15.9,15.5,14.7,14.7,14.7,15.5,14.7,15.2,15.2,15.9,
14.7,14.7)

> ehbhigh<-c(13.9,15.1,14.8,15.1,14.5,14.5,14.5,14.5,13.9,14.5,14.8,14.8,
13.9,14.8,14.5,14.5,14.8,14.5,14.8)

> boxplot(ehblow,ehbmed,ehbhigh)

The commands in R to perform analysis and the output are shown below. The first line put all of the data in a
single vector, ehb. We then put labels for the groups in the variable or factor temp. Expressed in this way, this
variable is considered by R as a numerical vector. To tell R that it should be thought of as a factor and list the factors
in the vector ftemp. Without this, the command anova(lm(ehb⇠temp)) would attempt to do linear regression
with temp as the explanatory variable.

> ehb<-c(ehblow,ehbmed,ehbhigh)
> temp<-c(rep(1,length(ehblow)),rep(2,length(ehbmed)),rep(3,length(ehbhigh)))
> ftemp<-factor(temp,c(1:3))
> anova(lm(ehb˜ftemp))
Analysis of Variance Table

Response: ehb
Df Sum Sq Mean Sq F value Pr(>F)

ftemp 2 11.222 5.6111 23.307 1.252e-07 ***
Residuals 44 10.593 0.2407
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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The anova output shows strong evidence against the null hypothesis. The p-value is 1.252 ⇥ 10

�7. The values in
the table can be computed directly from the formulas above.

For the sums of square between groups, SS
between

,

> length(ehblow)*(mean(ehblow)-mean(ehb))ˆ2
+ length(ehbmed)*(mean(ehbmed)-mean(ehb))ˆ2
+ length(ehbhigh)*(mean(ehbhigh)-mean(ehb))ˆ2

[1] 11.22211

and within groups, SS
residual

,

> sum((ehblow-mean(ehblow))ˆ2)+sum((ehbmed-mean(ehbmed))ˆ2)
+ sum((ehbhigh-mean(ehbhigh))ˆ2)

[1] 10.59278

For confidence intervals we use s2resid = 0.2407, sresid = 0.4906 and the t-distribution with 44 degrees of
freedom.

For the medium temperature hive, the 95% confidence interval for µmed can be computed

> mean(ehblow)
[1] 15.74286
> qt(0.975,44)
[1] 2.015368
> length(ehblow)
[1] 14

Thus, the intverval is

ȳmed ± t
0.025,44

sresidp
nmed

= 15.742± 2.0154
0.4906p

14

= (15.478, 16.006)

22.3 Contrasts
After completing a one way analysis of variance, resulting in rejecting the null hypotheses, a typical follow-up proce-
dure is the use of contrasts. Contrasts use as a null hypothesis that some linear combination of the means equals to
zero.

Example 22.5. If we want to see if the rain forest has seen recovery in logged areas over the past 8 years. This can
be written as

H
0

: µ
2

= µ
3

versus H
1

: µ
2

6= µ
3

.

or
H

0

: µ
2

� µ
3

= 0 versus H
1

: µ
2

� µ
3

6= 0

Under the null hypothesis, the test statistic

t =
ȳ
2

� ȳ
3

sresidual
q

1

n2
+

1

n3

,

has a t-distribution with n� q degrees of freedom. Here

t =
14.083� 15.778

5.234
q

1

12

+

1

9

= �0.7344,

with n� q = 33� 3 degrees of freedom, the p-value for this 2-sided test is
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> 2*pt(-0.7344094,30)
[1] 0.4684011

is considerably too high to reject the null hypothesis.

Example 22.6. To see if the mean queen development medium hive temperature is midway between the time for the
high and low temperature hives, we have the contrast,

H
0

:

1

2

(µlow + µhigh) = µmed versus H
1

:

1

2

(µlow + µhigh) 6= µmed

or
H

0

:

1

2

µlow � µmed +
1

2

µhigh = 0 versus H
1

:

1

2

µlow � µmed +
1

2

µhigh 6= 0

Notice that, under the null hypothesis

E



1

2

¯Ylow � ¯Ymed +
1

2

¯Yhigh

�

=

1

2

µlow � µmed +
1

2

µhigh = 0

and

Var
✓

1

2

¯Ylow � ¯Ymed +
1

2

¯Yhigh

◆

=

1

4

�2

nlow
+

�2

nmed
+

1

4

�2

nhigh
.

This leads to the test statistic

t =
1

2

ȳlow � ȳmed +
1

2

ȳhigh

sresidual
q

1

4n
low

+

1

n
med

+

1

4n
high

=

1

2

15.743� 15.043 + 1

2

14.563

0.4906
q

1

4·14 +

1

14

+

1

4·19

= 0.7005.

The p-value,

> 2*(1-pt(0.7005,44))
[1] 0.487303

again, is considerably too high to reject the null hypothesis.

Exercise 22.7. Under the null hypothesis appropriate for one way analysis of variance, with ni observations in group
i = 1, . . . , q and ¯Yi =

Pn
i

j=1

Yij/ni,

E[c
1

¯Y
1

+ · · ·+ Yqµq] = c
1

µ
1

+ · · ·+ cqµq, Var(c
1

¯Y
1

+ · · ·+ cqYq) =
c2
1

�2

n
1

+ · · ·+
c2q�

2

nq
.

In general, a contrast begins with a linear combination of the means

 = c
1

µ
1

+ · · ·+ cqµq.

The hypothesis is
H

0

:  = 0 versus H
1

:  6= 0

For sample means, ȳ
1

, . . . , ȳq , the test statistic is

t =
c
1

ȳ
1

+ · · ·+ cq ȳq

sresidual

q

c21
n1

+ · · ·+ c2
q

n
q

.

Under the null hypothesis the t statistic has a t distribution with n� q degrees of freedom.
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22.4 Two Sample Procedures
We now show that the t-sample procedure results from a likelihood ratio test. We keep to two groups in the devel-
opment of the F test. The essential features can be found in this example without the extra notation necessary for an
arbitrary number of groups.

Our hypothesis test is based on two independent samples of normal random variables. The data are

yij = µj + ✏ij .

where ✏ij are independent N(0,�) random variables with � unknown. Thus, we have nj independent N(µj ,�)
random variables Y

1j . . . , Yn
j

j with unknown common variance �2, j = 1 and 2. The assumption of a common
variance is critical to the ability to compute the test statistics.

Consider the two-sided hypothesis

H
0

: µ
1

= µ
2

versus H
1

: µ
1

6= µ
2

.

Thus, the parameter space is
⇥ = {(µ

1

, µ
2

,�2

);µ
1

, µ
2

2 R,�2 > 0}.

For the null hypothesis, the possible parameter values are

⇥

0

= {(µ
1

, µ
2

,�2

);µ
1

= µ
2

,�2 > 0}

Step 1. Determine the log-likelihood. To find the test statistic derived from a likelihood ratio test, we first write
the likelihood and its logarithm based on observations y = (y

11

, . . . , yn11, y12, . . . , yn22).

L(µ
1

.µ
2

,�2|y) =
✓

1p
2⇡�2

◆n1+n2

exp� 1

2�2

 

n1
X

i=1

(yi1 � µ
1

)

2

+

n2
X

i=1

(yi2 � µ
2

)

2

!

(22.3)

lnL(µ
1

.µ
2

,�2|y) = � (n
1

+ n
2

)

2

(ln 2⇡ + ln�2

)� 1

2�2

 

n1
X

i=1

(yi1 � µ
1

)

2

+

n2
X

i=1

(yi2 � µ
2

)

2

!

(22.4)

Step 2. Find the maximum likelihood estimates and the maximum value of the likelihood. By taking partial
derivatives with respect to µ

1

and µ
2

we see that with two independent samples, the maximum likelihood estimate for
the mean µj for each of the samples is the sample mean ȳj .

µ̂
1

= ȳ
1

=

1

n
1

n1
X

i=1

yi1, µ̂
2

= ȳ
2

=

1

n
2

n2
X

i=1

yi2.

Now differentiate (22.4) with respect to �2

@

@�2

lnL(µ
1

, µ
2

,�2|x) = �n
1

+ n
2

2�2

+

1

2(�2

)

2

 

n1
X

i=1

(yi1 � µ
1

)

2

+

n2
X

i=1

(yi2 � µ
2

)

2

!

.

Thus, the maximum likelihood estimate of the variance is the weighted average, weighted according to the sample
size, of the maximum likelihood estimator of the variance for each of the respective samples.

�̂2

=

1

n
1

+ n
2

 

n1
X

i=1

(yi1 � ȳ
1

)

2

+

n2
X

i=1

(yi2 � ȳ
2

)

2

!

.
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Now, substitute these values into the likelihood (22.3) to see that the maximum value for the likelihood is

L(µ̂
1

, µ̂
2

, �̂2|x) = 1

(2⇡�̂2

)

(n1+n2)/2
exp� 1

2�̂2

 

n1
X

i=1

(yi1 � ȳ
1

)

2

+

n2
X

i=1

(yi2 � ȳ
2

)

2

!

=

1

(2⇡�̂2

)

(n1+n2)/2
exp�n

1

+ n
2

2

Step 3. Find the parameters that maximize the likelihood under the null hypothesis and then find the
maximum value of the likelihood on ⇥

0

. Next, for the likelihood ratio test, we find the maximum likelihood under
the null hypothesis. In this case the two means have a common value which we shall denote by µ.

L(µ,�2|y) =
✓

1p
2⇡�2

◆n1+n2

exp� 1

2�2

 

n1
X

i=1

(yi1 � µ)2 +
n2
X

i=1

(yi2 � µ)2
!

(22.5)

lnL(µ,�2|x) = � (n
1

+ n
2

)

2

(ln 2⇡ + ln�2

)� 1

2�2

 

n1
X

i=1

(yi1 � µ)2 +
n2
X

i=1

(yi2 � µ)2
!

(22.6)

The µ derivative of (22.6) is

@

@µ
lnL(µ,�2|x) = 1

�2

 

n1
X

i=1

(yi1 � µ) +
n2
X

i=1

(yi2 � µ)

!

.

Set this to 0 and solve to realize that the maximum likelihood estimator under the null hypothesis is the grand sample
mean y obtained by considering all of the data being derived from one large sample

µ̂
0

= y =

1

n
1

+ n
2

 

n1
X

i=1

yi1 +
n2
X

i=1

yi2

!

=

n
1

ȳ
1

+ n
2

ȳ
2

n
1

+ n
2

.

Intuitively, if the null hypothesis is true, then all of our observations are independent and have the same distribution
and thus, we should use all of the data to estimate the common mean of this distribution.

The value for �2 that maximizes (22.5) on ⇥

0

, is also the maximum likelihood estimator for the variance obtained
by considering all of the data being derived from one large sample:

�̂2

0

=

1

n
1

+ n
2

 

n1
X

i=1

(yi1 � y)2 +
n2
X

i=1

(yi2 � y)2
!

.

We can find that the maximum value on ⇥

0

for the likelihood is

L(µ̂
0

, �̂2

0

|x) = 1

(2⇡�̂2

0

)

(n1+n2)/2
exp� 1

2�̂2

0

 

n1
X

i=1

(yi1 � y)2 +
n2
X

i=1

(yi2 � y)2
!

=

1

(2⇡�̂2

0

)

(n1+n2)/2
exp�n

1

+ n
2

2

Step 4. Find the likelihood statistic ⇤(y). From steps 2 and 3, we find a likelihood ratio of

⇤(y) =
L(µ̂

0

, �̂2

0

|x)
L(µ̂, �̂2|x) =

✓

�̂2

0

�̂2

◆�(n1+n2)/2

=

✓

Pn1

i=1

(yi1 � y)2 +
Pn2

i=1

(yi2 � y)2
Pn1

i=1

(yi1 � ȳ
1

)

2

+

Pn2

i=1

(yi2 � ȳ
2

)

2

◆�(n1+n2)/2

. (22.7)

This is the ratio, SStotal, of the variation of individuals observations from the grand mean and SSresiduals. the
variation of these observations from the mean of its own groups.
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Step 5. Simplify the likelihood statistic to determine the test statistic F . Traditionally, the likelihood ratio is
simplified by looking at the differences of these two types of variation, the numerator in (22.7)

SS
total

=

n1
X

i=1

(yi1 � y)2 +
n2
X

i=1

(yi2 � y)2

and the denominator in (22.7)

SS
residuals

=

n1
X

i=1

(yi1 � ȳ
1

)

2

+

n2
X

i=1

(yi2 � ȳ
2

)

2

Exercise 22.8. Show that SS
total

� SS
residuals

= n
1

(ȳ
1

� y)2 + n
2

(ȳ
2

� y)2.

In words, SS
total

the sums of squares of the differences of an individual observation from the overall mean y, is
the sum of two sources. The first is the sums of squares of the difference of the average of each group mean and the
overall mean,

SS
between

= n
1

(y � ȳ
1

)

2

+ n
2

(y � ȳ
2

)

2.

The second is the sums of squares of the difference of the individual observations with its own group mean, SS
residuals

.
Thus, we can write

SS
total

= SS
residual

+ SS
between

Now, the likelihood ratio (22.7) reads

⇤(y) =

✓

SS
residual

+ SS
between

SS
residuals

◆

=

✓

1 +

SS
between

SS
residuals

◆�(n1+n2)/2

Due to the negative power in the exponent, the critical region ⇤(y)  �
0

is equivalent to

SS
between

SS
residuals

=

n
1

(y � ȳ
1

)

2

+ n
2

(y � ȳ
2

)

2

(n
1

� 1)s2
1

+ (n
2

� 1)s2
2

� c (22.8)

for an appropriate value c. The ratio in (22.8) is, under the null hypothesis, a multiple of an F -distribution. The last
step to divide both the numerator and denominator by the degrees of freedom. Thus, we see, as promised, we reject if
the F -statistics is too large, i.e., the variation between the groups is sufficiently large compared to the variation within
the groups.

Exercise 22.9 (pooled two-sample t-test). For an ↵ level test, show that the test above is equivalent to

|T (y)| > t↵/2,n1+n+2

.

where
T (y) =

ȳ
1

� ȳ
2

sp
q

1

n1
+

1

n2

.

and sp is the standard deviation of the data pooled into one sample.

s2p =

1

n
1

+ n
2

� 2

�

(n
1

� 1)s2
1

+ (n
2

� 1)s2
2

�

Exercise 22.10. Generalize the formulae for y, SS
between

and SS
residuals

from the case q = 2 to an arbitrary number
of groups.
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Thus, we can use the two-sample procedure to compare any two of the three groups. For example, to compared
the never logged forest plots to those logged 8 years ago., we find the pooled variance

s2p =

1

n
1

+ n
2

� 2

((n
1

� 1)s2
1

+ (n
2

� 1)s2
2

) =

1

19

(11 · 5.0652 + 8 · 5.7612) = 28.827

and sp = 5.37. Thus, the t-statistic

t =
23.750� 15.778

5.37
q

1

12

+

1

9

= 7.644.

> 1-pt(7.644,19)
[1] 1.636569e-07

Thus, the p-value at 1.64⇥ 10

7 is strong evidence against the null hypothesis.

22.5 Kruskal-Wallis Rank-Sum Test
The Kruskal-Wallis test is an alternative to one-way analysis of variance in much the same way that the Wilcoxon
rank-sum test is a alternative to two-sample t procedures. Like the Wilcoxon test, we replace the actual data with their
ranks. This non-parametric alternative obviates the need to use the normal distribution arising from an application of
the central limit theorem. The H test statistic has several analogies with the F statistic. To compute this statistic:

• Replace the data {yij , 1  i  nj , 1  j  q} for ni observations for the i-th group from each of the q groups
with {rij , 1  i  nj , 1  j  q}, the ranks of the data taking all of the groups together. For ties, average the
ranks.

• The total number of observations n = n
1

+ · · ·+ nq .

• The average rank within the groups

r̄i =
1

ni

n
i

X

j=1

rij , i = 1, . . . , q.

• The grand average of the ranks

r =

1

n
(1 + · · ·+ n) =

1

n
n(n+ 1) =

n+ 1

2

.

(See Exercise 20.6.)

• The Kruskal-Wallis test statistic looks at the sums of squares of ranks between groups and the total sum of
squares of ranks

H =

SSR
between

SSR
total

/(n� 1)

=

Pg
i=1

ni(r̄i � r)2
Pq

i=1

Pn
i

j=1

(rij � r)2/(n� 1)

,

• For larger data sets (each ni � 5), the p-value is approximately the probability that a �2

q�1

random variable
exceeds the value of the H statistic.

• For smaller data sets, more sophisticated procedures are necessary.

• The test can be followed by using a procedure analogous to contrasts based on the Wilcoxon rank-sum test.

Exercise 22.11. For the case of no ties, show that

SSR
total

=

(n� 1)n(n+ 1)

12
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In this case,

H =

12

n(n+ 1)

q
X

i=1

ni

✓

r̄i �
n+ 1

2

◆

2

=

12

n(n+ 1)

q
X

i=1

nir̄
2

i � 3(n+ 1).

The Kruskal-Wallis test also gives a very small p-value to the queen development times for Africanized honey
bees. Begin with the R commands in Example 22.4 to enter the data and create the temperature factors ftemp.

> kruskal.test(ehb˜ftemp)

Kruskal-Wallis rank sum test

data: ehb by ftemp
Kruskal-Wallis chi-squared = 20.4946, df = 2, p-value = 3.545e-05

22.6 Answer to Selected Exercises
22.2. Let’s look at this difference for each of the groups.

n
i

X

j=1

(yij � y)2 �
n
i

X

j=1

(yij � ȳi)
2

=

n
i

X

j=1

�

(yij � y)2 � (yij � ȳi)
2

�

=

n
i

X

j=1

(2yij � y � ȳi)(�y + ȳi) = ni(2ȳi � y � ȳi)(�y + ȳi) = ni(ȳi � y)2

Now the numerator in (22.7) can be written to show the decomposition of the variation into two sources - the within
group variation and the between group variation.

n1
X

i=1

(yi1 � y)2 +
n2
X

i=1

(yi2 � y)2 =

n1
X

i=1

(y
1j � ȳ

1

)

2

+

n2
X

i=1

(y
2j � ȳ

2

)

2

+ n
1

(y � ȳ
1

)

2

+ n
2

(y � ȳ
2

)

2.

= (n
1

� 1)s2
1

+ (n
2

� 1)s2
2

+ n
1

(y � ȳ
1

)

2

+ n
2

(y � ȳ
2

)

2.

22.3. Here, we are looking for a confidence interval for µ
1

� µ
3

. From the summaries, we need

n
1

= 12, ȳ
1

= 23.750, n
3

= 9, ȳ
3

= 17.778.

From the computation for the test, we have s
residual

=

p
27.4 = 5.234 and using the qt(0.975,30) command we

find t
0.025,30 = 2.042. Thus,

(ȳ
1

� ȳ
3

) ±t
(0.975,30)sresidual

r

1

n
1

+

1

n
3

= (23.750� 17.778) ±2.042 · 5.234
r

1

12

+

1

9

= 5.972 ±2.079 = (3.893, 8.051)

22.7. This follows from the fact that expectation is a linear functional and the generalized Pythagorean identity for the
variance of a linear combination of independent random variables.
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22.8. Look at the solution to Exercise 22.2.

22.9. We will multiply the numerator in (22.8) by (n
1

+ n
2

)

2 and note that (n
1

+ n
2

)y = n
1

ȳ
1

+ n
2

ȳ
2

. Then,
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Consequently
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)
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n
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n
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The denominator
n1
X
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)

2

+

n2
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2
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n
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Thus, the test is a constant multiple of the square of the t-statistic. Take the square root of both sides to create a test
using a threshold value for |T (y)| for the critical region.

22.10. For observations, yi1, . . . yin
i

in group i = 1, . . . , q, let n = n
1

+ · · ·+nq be the total number of observations,
then the grand mean

y =

1

n
(n

1

ȳ
1

+ · · ·+ nq ȳq)

where ȳi is the sample mean of the observations in group i. The sums of squares are

SS
between

=

q
X

i=1

ni(ȳi � y)2 and SS
residuals

=

q
X

i=1

(ni � 1)s2i

where s2i is the sample variance of the observations in group i.

22.11. In anticipation of its need, let’s begin by showing that
n
X

j=1

j2 =

n(n+ 1)(2n+ 1)

6

.

Notice that the formula holds for the case n = 1 with

1

2

=

1(1 + 1)(2 · 1 + 1)

6

=

6

6

= 1.

Now assume that the identity holds for n = k. We then check that it also holds for n = k + 1

1

2

+ 2

2

+ · · ·+ k2 + (k + 1)

2

=

k(k + 1)(2k + 1)

6

+ (k + 1)

2

=
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6

(k(2k + 1) + 6(k + 1)) =

k + 1

6

(2k2 + 7k + 6)

=

(k + 1)(k + 2)(2k + 3)

6
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This is the formula for n = k + 1 and so by the mathematical induction, we have the identity for all non-negative
integers.

With no ties, each rank appears once and
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