## Basic Principles of Statistics

February 5-7, 2008

## 1 Decisions, Loss, and Risk

The basic idea in inferential statistics is to take an action based on a decision strategy that uses information obtained from data, X. In parametric statistics, the distribution of X depends on the choice of probabilities from a family  $P_{\theta}$  where  $\theta$ , the so-called **state of nature**, is chosen from a parameter set  $\Theta$ . We will write  $E_{\theta}$  to indicate expectation with respect to the probability  $\theta$ .

In the example of determining preference between two choices based on a poll. The design is the choice of individuals selected for the poll resulting in data,

$$X = (X_1, \dots, X_n),$$

Here, the  $X_i$ 's are independent and identically distributed, or as more commonly stated in statistics, form a simple random sample.

One decision is to estimate the fraction of the population that take the first position, then the action is to choose a number  $\theta$  from the parameter set [0,1].

A simple decision problem is to hypothesize a preferred choice and then either to reject or to fail to reject the hypothesis.

Given data  $x = (x_1, ..., x_n) \in S^n$ , we must make a decision, a choice from the **action space**, A. Thus, we introduce the **decision function** or **rule**.

$$d: S^n \to A$$
.

Decisions have consequences, a measure of how seriously we view incorrect decisions. This leads to the introduction of the **loss function**,

$$\mathcal{L}:\Theta\times A\to\mathbb{R}.$$

Thus, if the state of nature is  $\theta$ , then  $\mathcal{L}(\theta, a)$  is the loss incurred upon taking the action a.

**Example 1** (Loss Functions). 1.  $\mathcal{L}_1(\theta, a) = |a - \theta|$ ,

2. 
$$\mathcal{L}_2(\theta, a) = (a - \theta)^2$$
,

3. 
$$\mathcal{L}_{\infty}(\theta, a) = 0$$
 if  $\theta = a$  and  $\mathcal{L}(\theta, a) = 1$  if  $\theta \neq a$ 

The goal is to make the choice of decision function from the set of decision functions  $\mathcal{D}$  that minimizes the loss on average.

## Definition 2. The risk function

$$\mathcal{R}:\Theta imes\mathcal{D} o\mathbb{R}$$

is defined by

$$\mathcal{R}(\theta, d) = E_{\theta} \mathcal{L}(\theta, d(X_1, \dots, X_n)).$$

**Example 3.** Our datum is the result of a single discrete random variable with mass function  $p(\cdot|\theta)$  and decision function d(x) = x. The question is how does the parameter  $\theta$  reflect a property of the mass function.

1.

$$\mathcal{R}_1(\theta, d) = E_{\theta} \mathcal{L}_1(\theta, d(X)) = E|X - \theta| = \sum_{x} |x - \theta| p_X(x|\theta)$$

$$= \sum_{x < \theta} (\theta - x) p_X(x|\theta) + \sum_{x \ge \theta} (x - a) p_X(x|\theta)$$

$$= \theta P_{\theta} \{X < \theta\} - \theta P_{\theta} \{X \ge \theta\} - \sum_{x < \theta} x p_X(x|\theta) + \sum_{x \ge \theta} x p_X(x|\theta).$$

 $\mathcal{R}_1$  is a continuous piecewise linear function of  $\theta$  with slope

$$P\{X < \theta\} - P\{X > \theta\} = 1 - 2P\{X > \theta\}$$
).

Thus,  $\mathcal{R}_1$  is decreasing if  $P\{X \geq \theta\} > 1/2$  and increasing if  $P\{X \geq \theta\} < 1/2$ . Consequently,  $\mathcal{R}_1$  is minimized by taking a equal to the median.

2.

$$\mathcal{R}_2(\theta, d) = E_{\theta} \mathcal{L}_2(\theta, d(X)) = E(X - a)^2 = \sum_{\alpha} (x - \theta)^2 p_X(x|\theta)$$

Thus,

$$\frac{\partial}{\partial a} \mathcal{R}_2(\theta, d) = -\sum_x (x - \theta) p_X(x|\theta) = -EX + \theta.$$

Thus, the minimum is achieved by taking  $\theta$  equal to the mean

3.

$$\mathcal{R}_{\infty}(\theta, d) = E_{\theta} \mathcal{L}_{\infty}(\theta, d(X)) = 0 \cdot P\{X = \theta\} + 1 \cdot P\{X \neq \theta\} = 1 - P\{X = \theta\}.$$

This is minimized by taking a equal to the mode.

## 2 Minimax Rules and Bayes Rules

Given a loss function, the goal is to find a "good" decision function, one that minimizes risk. This choice has to be made without the knowledge of the state of nature. In other words, the parameter value  $\theta$  is unknown.

The dilemma can be seen whenever we have to decision rules  $d_1$  and  $d_2$  and two parameter values  $\theta_1$  and  $\theta_2$  so that

$$\mathcal{R}(\theta_1, d_1) < \mathcal{R}(\theta_1, d_2)$$
 but  $\mathcal{R}(\theta_2, d_1) > \mathcal{R}(\theta_2, d_2)$ .

The two classical approach to this problem are minimax rules and Bayes rules

For a minimax case, we consider, for a given decision rule, the state of nature that has the most risk:

$$\sup_{\theta \in \Theta} \mathcal{R}(\theta, d).$$

Then, choose the decision rule  $d^*$  that minimizes this maximum risk:

$$\inf_{d \in \mathcal{D}} \sup_{\theta \in \Theta} \mathcal{R}(\theta, d).$$

If this rule  $d^*$  exists then it is called a **minimax** rule.

This rule leads to decisions functions that guard against those situations with the worst risk. If such cases are very rare, then we can introduce a probability distribution  $\Pi$  on the parameter space  $\Theta$ . With with **prior distribution**, the risk is a random variable.

**Definition 4.** If the prior distribution  $\Pi$  has density  $\pi$ , the the mean risk,

$$r(\Pi, d) = \int_{\Theta} \mathcal{R}(\theta, d) \pi(\theta) \ d\theta.$$

If the prior distribution  $\Pi$  has mass function  $\pi$ , the the **mean risk**,

$$r(\Pi, d) = \sum_{\theta \in \Theta} \mathcal{R}(\theta, d) \pi(\theta).$$