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1 Decisions, Loss, and Risk

The basic idea in inferential statistics is to take an action based on a decision strategy that uses information
obtained from data, X. In parametric statistics, the distribution of X depends on the choice of probabilities
from a family Py where 6, the so-called state of nature, is chosen from a parameter set ©. We will write
Ey to indicate expectation with respect to the probability 6.

In the example of determining preference between two choices based on a poll. The design is the choice
of individuals selected for the poll resulting in data,

X =(X1,...,Xn),
Here, the X;’s are independent and identicallly distributed, or as more commonly stated in statistics, form
a simple random sample.

One decision is to estimate the fraction of the population that take the first position, then the action is
to choose a number 6 from the parameter set [0, 1].

A simple decision problem is to hypothesize a preferred choice and then either to reject or to fail to reject
the hypothesis.

Given data z = (x1,...,x,) € S™, we must make a decision, a choice from the action space, A. Thus,
we introduce the decision function or rule.

d:S" — A.

Decisions have consequences, a measure of how seriously we view incorrect decisions. This leads to the
introduction of the loss function,

L:OxA—-R.

Thus, if the state of nature is 6, then £(6,a) is the loss incurred upon taking the action a.
Example 1 (Loss Functions). 1. £y(0,a) = |a — 6],

2. La(0,a) = (a —0)?,

3. Loo(,0) =0if0=a and L(O,a) =11if0F#a

The goal is to make the choice of decision function from the set of decision functions D that minimizes
the loss on average.



Definition 2. The risk function

R:©0xD—1R

is defined by

R(0,d) = EoL(0,d(X1,...,X,)).

Example 3. Our datum is the result of a single discrete random wvariable with mass function p(-|0) and
decision function d(x) = x. The question is how does the parameter 0 reflect a property of the mass function.
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Ri(0,d) = Eply(0,d(X))=E|X —0]=>_|x—0|px(x|0)
= > (0—2)px(a0) + > _(x — a)px(x]0)
<0 >0
= OPy{X <0} — 0P{X >0} — Y apx(xlf) + Y _ apx ().

<6 >0

R1 is a continuous piecewise linear function of 0 with slope
P{X <0} —P{X >0} =1-2P{X >0}).

Thus, Ry is decreasing if P{X > 0} > 1/2 and increasing if P{X > 0} < 1/2. Consequently, Ry is
minimized by taking a equal to the median.

Ro(0,d) = EgL2(0,d(X)) = E(X —a)* = Z(x —0)*px (z]0)

x

Thus,

%RQ(Q,d) == (z—0)px(z]0) = —EX +9.

x

Thus, the minimum is achieved by taking 0 equal to the mean

Reoo(0,d) = EgLoo(0,d(X)) =0- P{X =0} +1- P{X #0} =1 — P{X = 6}.

This is minimized by taking a equal to the mode.

Minimax Rules and Bayes Rules

Given a loss function, the goal is to find a “good” decision function, one that minimizes risk. This choice has
to be made without the knowledge of the state of nature. In other words, the parameter value 6 is unknown.

The dilemma can be seen whenever we have to decision rules d; and ds and two parameter values #; and

05 so that

7'\’,(91, dl) < R(al,dg) but R(@Q, dl) > R(ez,dg).



The two classical approach to this problem are minimax rules and Bayes rules

For a minimax case, we consider, for a given decision rule, the state of nature that has the most risk:

sup R(0, d).
0co

Then, choose the decision rule d* that minimizes this maximum risk:

inf R(0,d).
e

If this rule d* exists then it is called a minimax rule.

This rule leads to decisions functions that guard against those situations with the worst risk. If such
cases are very rare, then we can introduce a probability distribution IT on the parameter space ©. With with
prior distribution, the risk is a random variable.

Definition 4. If the prior distribution I1 has density w, the the mean risk,

r(IT, d) = / R(0,d)r(6) do.
e
If the prior distribution 11 has mass function w, the the mean risk,

r(ILd) = R(0,d)n(0).
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