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1 Decisions, Loss, and Risk

The basic idea in inferential statistics is to take an action based on a decision strategy that uses information
obtained from data, X. In parametric statistics, the distribution of X depends on the choice of probabilities
from a family Pθ where θ, the so-called state of nature, is chosen from a parameter set Θ. We will write
Eθ to indicate expectation with respect to the probability θ.

In the example of determining preference between two choices based on a poll. The design is the choice
of individuals selected for the poll resulting in data,

X = (X1, . . . , Xn),

Here, the Xi’s are independent and identicallly distributed, or as more commonly stated in statistics, form
a simple random sample.

One decision is to estimate the fraction of the population that take the first position, then the action is
to choose a number θ from the parameter set [0, 1].

A simple decision problem is to hypothesize a preferred choice and then either to reject or to fail to reject
the hypothesis.

Given data x = (x1, . . . , xn) ∈ Sn, we must make a decision, a choice from the action space, A. Thus,
we introduce the decision function or rule.

d : Sn → A.

Decisions have consequences, a measure of how seriously we view incorrect decisions. This leads to the
introduction of the loss function,

L : Θ×A → R.

Thus, if the state of nature is θ, then L(θ, a) is the loss incurred upon taking the action a.

Example 1 (Loss Functions). 1. L1(θ, a) = |a− θ|,

2. L2(θ, a) = (a− θ)2,

3. L∞(θ, a) = 0 if θ = a and L(θ, a) = 1 if θ 6= a

The goal is to make the choice of decision function from the set of decision functions D that minimizes
the loss on average.
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Definition 2. The risk function
R : Θ×D → R

is defined by
R(θ, d) = EθL(θ, d(X1, . . . , Xn)).

Example 3. Our datum is the result of a single discrete random variable with mass function p(·|θ) and
decision function d(x) = x. The question is how does the parameter θ reflect a property of the mass function.

1.

R1(θ, d) = EθL1(θ, d(X)) = E|X − θ| =
∑

x

|x− θ|pX(x|θ)

=
∑
x<θ

(θ − x)pX(x|θ) +
∑
x≥θ

(x− a)pX(x|θ)

= θPθ{X < θ} − θPθ{X ≥ θ} −
∑
x<θ

xpX(x|θ) +
∑
x≥θ

xpX(x|θ).

R1 is a continuous piecewise linear function of θ with slope

P{X < θ} − P{X ≥ θ} = 1− 2P{X ≥ θ}).

Thus, R1 is decreasing if P{X ≥ θ} > 1/2 and increasing if P{X ≥ θ} < 1/2. Consequently, R1 is
minimized by taking a equal to the median.

2.
R2(θ, d) = EθL2(θ, d(X)) = E(X − a)2 =

∑
x

(x− θ)2pX(x|θ)

Thus,
∂

∂a
R2(θ, d) = −

∑
x

(x− θ)pX(x|θ) = −EX + θ.

Thus, the minimum is achieved by taking θ equal to the mean

3.
R∞(θ, d) = EθL∞(θ, d(X)) = 0 · P{X = θ}+ 1 · P{X 6= θ} = 1− P{X = θ}.

This is minimized by taking a equal to the mode.

2 Minimax Rules and Bayes Rules

Given a loss function, the goal is to find a “good” decision function, one that minimizes risk. This choice has
to be made without the knowledge of the state of nature. In other words, the parameter value θ is unknown.

The dilemma can be seen whenever we have to decision rules d1 and d2 and two parameter values θ1 and
θ2 so that

R(θ1, d1) < R(θ1, d2) but R(θ2, d1) > R(θ2, d2).
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The two classical approach to this problem are minimax rules and Bayes rules

For a minimax case, we consider, for a given decision rule, the state of nature that has the most risk:

sup
θ∈Θ

R(θ, d).

Then, choose the decision rule d∗ that minimizes this maximum risk:

inf
d∈D

sup
θ∈Θ

R(θ, d).

If this rule d∗ exists then it is called a minimax rule.

This rule leads to decisions functions that guard against those situations with the worst risk. If such
cases are very rare, then we can introduce a probability distribution Π on the parameter space Θ. With with
prior distribution, the risk is a random variable.

Definition 4. If the prior distribution Π has density π, the the mean risk,

r(Π, d) =
∫

Θ

R(θ, d)π(θ) dθ.

If the prior distribution Π has mass function π, the the mean risk,

r(Π, d) =
∑
θ∈Θ

R(θ, d)π(θ).
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