Structure and Approximation for Markov Chains in (Bio)chemical Kinetics

Bioinformatics
Informal Seminar
Hillary Term, 2006
Lecture 1 - Markov Processes
Topics

- Transition functions
- Infinitesimal generator
- Stoichiometry
- Gillespie’s algorithm
- Random time change
- Law of Mass Action
Markov Process

A random process \(\{X_t; t \geq 0\} \) having state space \(S \) is called a **time homogeneous Markov process** provided that there exists a function \(p \) so that

\[
P_x\{X_{t+s} \in A | X_u; u \leq t\} = P_x\{X_{t+s} \in A | X_t\} = p(s, X_t, A),
\]

\(p(s, x, A) \) is the probability that the process \(X \) lands in the set \(A \) at time \(s \) given that the process began at position \(x \) at time 0. We will stick to state spaces that are complete, separable metric spaces. Let \(\mathcal{B}(S) \) denote the Borel sets.

In practice, the function \(p \) is rarely known explicitly.
Transition functions

The function $p : [0, \infty) \times S \times B(S) \to [0, 1]$ called a \textit{time homogeneous transition function} satisfies,

1. for every $(t, x) \in [0, \infty) \times S$, $p(t, x, \cdot)$ is a probability measure,

2. for every $x \in S$, $p(0, x, \cdot) = \delta_x$,

3. for every $B \in B(S)$, $p(\cdot, \cdot, B)$ is measurable, and

4. (Chapman-Kolmogorov equation) for every $s, t \geq 0$, $x \in S$, and $B \in B(S)$,

$$p(t + s, x, B) = \int_S p(s, y, B)p(t, x, dy).$$
First order differential equations as trivial Markov processes.

Let $\{\vec{x}_t; t \geq 0\}$ satisfy

$$\frac{d}{dt} \vec{x} = F(\vec{x})$$

Choose $p(s, \vec{x}_0, A) = 1$ if the solution \vec{x}_s to the ODE starting at \vec{x}_0 at time 0 is an element of A and 0 if it is not to see that the solution is a Markov process.
Infinitesimal Transitions and the Generator

The stochastic nature of chemical kinetics is captured by the transitions rates

\[P_x\{X_{\Delta t} = y\} = g(x, y)\Delta t + o(\Delta t), \ x \neq y. \]

The generator \(G \) is the rate of change of averages for a function \(f : S \to \mathbb{R} \) of the process.

\[Gf(x) = \lim_{\Delta t \to 0} \frac{E_x f(X_{\Delta t}) - f(x)}{\Delta t} \]

where \(E_x \) and \(P_x \) denote the expectation and probability conditioned that the process begins at \(x \) at time 0.
To relate these two concepts, write

\[
Ex f(X_{\Delta t}) = \sum_{y \neq x} f(y)g(x, y)\Delta t + f(x)(1 - \sum_{y \neq x} g(x, y)\Delta t) + o(\Delta t)
\]

\[
Ex f(X_{\Delta t}) - f(x) = \sum_{y \neq x} g(x, y)(f(y) - f(x))\Delta t + o(\Delta t)
\]

\[
G f(x) = \sum_{y \in S} g(x, y)(f(y) - f(x))
\]

Thus, \(G \) can be written as an \textit{infinitesimal transition matrix}. The \(xy \)-entry \(x \neq y \) is \(g(x, y) \). The diagonal entry

\[
g(x, x) = -\sum_{y \neq x} g(x, y).
\]
Poisson Process

A *Poisson process* $\{N_t; \geq 0\}$ with parameter λ is a jump Markov Process with state space $n \in \mathbb{N}$ and generator

$$Gf(n) = \lambda(f(n + 1) - f(n)).$$

Exercise. Show that for $m > 0$,

$$p(t, n, \{n + m\}) = \frac{(\lambda t)^m}{m!}e^{-\lambda t}$$

is the transition function for the Poisson process, parameter λ.
Stoichiometry, the Accounting behind Chemistry

Consider the chemical process. $2A + B \rightarrow C$.

Thus 2 molecules of A and one of B, the reagents, form one molecule of C the product.

The state space for this process is $\vec{x} \in \mathbb{N}^3$ and the generator

$$Gf(x^A, x^B, x^C) = k(x^A, x^B, x^C)(f(x^A - 2, x^B - 1, x^C + 1) - f(x^A, x^B, x^C))$$

or

$$Gf(\vec{x}) = k(\vec{x})(f(\vec{x} + \vec{v}) - f(\vec{x}))$$

with stoichiometry $\vec{v} = (-2, -1, 1)$.
If the mixture is *well stirred* (spatially homogeneous), then

$$k(x^A, x^B, x^C) \propto \left(\frac{x^A}{2}\right) x^B,$$

the number of choices under *sampling with replacement*.

If we have a collection of chemical processes, then we can record them in a table

<table>
<thead>
<tr>
<th>stoichiometry</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vec{v}_1</td>
<td>$k_1(\vec{x})$</td>
</tr>
<tr>
<td>\vec{v}_2</td>
<td>$k_2(\vec{x})$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>\vec{v}_m</td>
<td>$k_m(\vec{x})$</td>
</tr>
</tbody>
</table>

or write it as the generator of a jump Markov process

$$Gf(\vec{x}) = \sum_i k_i(\vec{x})(f(\vec{x} + \vec{v}_i) - f(\vec{x}))$$
For Markov processes that move from one state to another by jumping the *exponential distribution* plays an important role.

Let $\tau = \inf \{ t \geq 0; X_t \neq X_0 \}$, then

$$e_x(t + s) = P_x \{ \tau > t + s \} = P_x \{ \tau > t + s, \tau > t \}$$

$$= P_x \{ \tau > t + s | \tau > t \} P_x \{ \tau > t \}$$

and

$$P_x \{ \tau > t + s | \tau > t \} = P_x \{ \tau > t + s | X_t = x, \tau > t \}$$

$$= P_x \{ \tau > t + s | X_t = x \} = P_x \{ \tau > s \} = e_x(s)$$

Thus,

$$e_x(t + s) = e_x(s)e_x(t)$$

or for some $\lambda \in [0, \infty]$, $e_x(t) = \exp(-\lambda(x)t)$.

11
Gillespie’s Algorithm

Let \(t + \tau_1 \) be the first jump after time \(t \). Then

\[
P_x\{X_\tau = y, \tau > t\} = P_x\{X_\tau = y, \tau > t, X_t = x\}
\]

\[
= P_x\{X_{t+\tau_1} = y | \tau > t, X_t = x\}P_x\{\tau > t, X_t = x\}
\]

For the first term

\[
P_x\{X_{t+\tau_1} = y | \tau > t, X_t = x\} = P_x\{X_{t+\tau_1} = y | X_t = x\}
\]

\[
= P_x\{X_\tau = y\} = t(x, y)
\]

For the second term \(P_x\{\tau > t, X_t = x\} = P_x\{\tau > t\} \).

Thus, the time of the first jump and the place of the first jump are independent.
Write \(p(x, y) = P_x\{X_\tau = y\} \), then \(E_x f(X_{\Delta t}) \)

\[
= E_x [f(X_{\Delta t})|\tau < \Delta t] P_x\{\tau < \Delta t\} + E_x [f(X_{\Delta t})|\tau \geq \Delta t] P_x\{\tau \geq \Delta t\}
= \sum_{y \neq x} f(y)p(x, y)(1 - e^{-\lambda(x)\Delta t}) + f(x)e^{-\lambda(x)\Delta t} + o(\Delta t)
\]

Thus,

\[
E_x f(X_{\Delta t}) - f(x) = (1 - e^{-\lambda(x)\Delta t}) \left(\sum_{y \neq x} f(y)p(x, y) - f(x) \right) + o(\Delta t)
\]

\[
G f(x) = \lambda(x) \sum_{y \in S} t(x, y)(f(y) - f(x))
\]
Equating the two expressions for the generator, we find that

\[g(x, x) = -\lambda(x) \]

and for \(y \neq x \)

\[g(x, y) = \lambda(x)t(x, y) \quad \text{or} \quad \frac{g(x, y)}{\lambda(x)} \]

For example,

\[
G = \begin{pmatrix}
-5 & 2 & 3 & 0 \\
4 & -10 & 3 & 3 \\
2 & 2 & -5 & 1 \\
5 & 0 & 0 & -5
\end{pmatrix}, \quad
T = \begin{pmatrix}
0 & .4 & .6 & 0 \\
.4 & 0 & .3 & .3 \\
.4 & .4 & 0 & .2 \\
1 & 0 & 0 & 0
\end{pmatrix}, \quad
\lambda = \begin{pmatrix}
5 \\
10 \\
5 \\
5
\end{pmatrix}
\]
Random Time Change

Let Y be a Markov process with generator G_Y and let c be a positive function bounded and bounded away from zero. Our goal is to describe solutions to

$$X_t = X_0 + Y\left(\int_0^t c(X_s) \, ds\right).$$

Think of c at the rate of a *clock* for the process X. Then

$$G_X f(x) = \lim_{\Delta t \to 0} \frac{E_x f(X_{\Delta t}) - f(x)}{\Delta t}$$

$$= c(x) \lim_{\Delta t \to 0} \frac{E_x f(x + Y\int_0^{\Delta t} c(X_s) \, ds) - f(x)}{c(x) \Delta t}$$

$$= c(x) \lim_{\Delta t \to 0} \frac{E_x f(x + Yc(x)\Delta t) - f(x)}{c(x) \Delta t}$$

$$= c(x) G_Y f(x)$$
Multiple Random Time Change

More generally, for independent processes \(\{Y^i; 1 \leq i \leq m\} \) with generators \(\{G_i; 1 \leq i \leq m\} \)

\[
X_t = X_0 + \sum_i Y^i \left(\int_0^t c_i(X_s) \, ds \right)
\]

is a Markov process with generator

\[
G_X f(x) = \sum_i c_i(x) G_i f(x).
\]
Representing Equation for Chemical Kinetics

Let \(\{Y^i; 1 \leq i \leq m\} \) be independent Poisson processes with parameter 1. If \(X \) has generator

\[
Gf(\bar{x}) = \sum_i k_i(\bar{x})(f(\bar{x} + \bar{v}_i) - f(\bar{x})),
\]

then it has representation

\[
X_t = X_0 + \sum_i \bar{v}_i Y^i \left(\int_0^t k_i(X_s) \, ds \right).
\]
The Kolmogorov Forward Equation

For $f : S \to \mathbb{R}$, \[\frac{d}{dt} \mathbb{E}[f(X_t)] = \mathbb{E}[(Gf)(X_t)]. \]

By induction, we see that the generator determines the finite dimensional distributions and hence the distribution of the process.

Example. Consider the simple chemical process

\[C \to D \]

with generator

\[Gf(c) = \kappa c(f(c - 1) - f(c)) \]

and choose $f(c) = c$, then $Gf(c) = -\kappa c$. Write $m(t) = \mathbb{E}C_t$. Here the forward equation becomes

\[\frac{d}{dt} m(t) = -\kappa m(t), \quad m(t) = c_0 e^{-\kappa t}. \]
Now choose $f(c) = c(c-1)$ then

$$Gf(c) = \kappa c((c-1)(c-2) - c(c-1)) = -2\kappa c(c-1).$$

Write $m_2(t) = EC_t(C_t - 1)$. The forward equation is now

$$\frac{d}{dt}m_2(t) = -2\kappa m_2(t), \quad m_2(t) = c_0(c_0 - 1)e^{-2\kappa t}$$

Therefore,

$$\text{Var}(C_t) = EC_t^2 - (EC_t)^2$$

$$= EC_t(C_t - 1) + EC_t - (EC_t)^2$$

$$= c_0(c_0 - 1)e^{-2\kappa t} + c_0e^{-\kappa t} - c_0^2e^{-2\kappa t}$$

$$= c_0e^{-\kappa t} - c_0e^{-2\kappa t} = c_0e^{-\kappa t}(1 - e^{-\kappa t})$$

$$= m(t)(c_0 - m(t))/c_0$$
Now take $f(c) = z^c$, then

$$Gf(c) = \kappa c(z^c - z^{c-1}) = \kappa cz^{c-1}(1 - z).$$

Setting $G_{c_0}(z, t) = E_{c_0}z^{C_t}$, the forward equation gives

$$\frac{\partial}{\partial t}G_{c_0}(z, t) = \kappa(1 - z)\frac{\partial}{\partial z}G_{c_0}(z, t).$$

Check that the solution is $G_{c_0}(z, t) = (e^{-\kappa t}(z - 1) + 1)^{c_0}$ and thus C_t is a $Bin(c_0, e^{-\kappa t})$ random variable.
Law of Mass Action

Now, let n be a measure of volume and let

$$\bar{C}_t^n = \frac{C_t^n}{n}$$

be the concentration. Then, for initial concentration \bar{c}_0,

$$E\bar{C}_t^n = \bar{c}_0 e^{-kt} = m_1(t) \quad \text{and} \quad \text{Var}(\bar{C}_t^n) = \frac{1}{\bar{c}_0 n} m(t)(\bar{c}_0 - m(t))$$

and

$$\lim_{n \to \infty} \bar{C}_t^n = m(t).$$

For large values of n, the concentration decreases exponentially nearly deterministically.
Strong Law of Large Numbers

let \(Y \) be a Poisson process, parameter 1. Then

\[
\lim_{n \to \infty} \frac{1}{n} Y_{nt} = t
\]

almost surely uniformly on bounded intervals. Write the representation above for the concentration \(\bar{X}^n_t \) to obtain

\[
\bar{X}^n_t = \bar{X}^n_0 + \sum_i v_i \frac{1}{n} Y^i \left(\int_0^t k_i(n \bar{X}^n_s) \, ds \right)
\]

\[
\approx \bar{X}^n_0 + \sum_i \bar{v}_i \int_0^t \tilde{k}_i(\bar{X}^n_s) \, ds
\]
Where \bar{k}_i gives the rates under *sampling without replacement*

Thus, \bar{X}^n nearly solves

$$\frac{d\bar{x}}{dt} = F(\bar{x})$$

with

$$F(\bar{x}) = \sum_i \bar{v}^i \bar{k}_i(\bar{x})$$

Formally, we have the theorem:

$$\sup_{0 \leq s \leq t} ||\bar{X}_t^n - \bar{x}(t)|| \to 0 \text{ with probability } 1$$
Structure and Approximation for Markov Chains in (Bio)chemical Kinetics

Bioinformatics
Informal Seminar
Hillary Term, 2006
Lecture 2 - Martingales and Brownian Motion
Topics

• Filtration and stopping times

• Connection to Markov processes

• Optional sampling theorem

• Strong Markov property

• Brownian motion

• Quadratic variation
Filtration and Stopping Times

A collection of σ-algebras $\{\mathcal{F}_t; t \geq 0\}$ is a filtration if $s < t$ implies $\mathcal{F}_s \subset \mathcal{F}_t$. \mathcal{F}_t is meant to capture the information available to an observer at time t.

The natural filtration for a process X is $\mathcal{F}_t^X = \sigma\{X_s, s \leq t\}$

X is called adapted to $\{\mathcal{F}_t; t \geq 0\}$ if X_t is \mathcal{F}_t-measurable.

A nonnegative random variable τ is called a stopping time if $\{\tau \leq t\} \in \mathcal{F}_t$.

26
Conditional Expectation

Let Y be any integrable random variable and \mathcal{G} any sub-σ-algebra of \mathcal{F}. Then $Z = E[Y|\mathcal{G}]$ is characterized by

$$Z \text{ is } \mathcal{G}\text{-measurable and } E[Z; A] = E[Y; A] \text{ for all } A \in \mathcal{G}.$$

Properties

- If $Y \in L^2(\mathcal{F})$, then Z is projection onto $L^2(\mathcal{G})$.

- If Y_1 is \mathcal{G}-measurable, then $E[Y_1 Y_2|\mathcal{G}] = Y_1 E[Y_2|\mathcal{G}]$.

- If Y_1 is independent of \mathcal{G} then $E[Y_1|\mathcal{G}] = EY_1$.

Martingale

A martingale is meant to capture the sense of a fair game.

Definition. A real valued process M with $E|M_t| < \infty$ for all $t \geq 0$ and adapted to a filtration $\{\mathcal{F}_t : t \geq 0\}$ is an \mathcal{F}_t-martingale if

$$E[M_t|\mathcal{F}_s] = M_s \quad \text{for all } t > s,$$

i.e., for and event $A \in \mathcal{F}_s$,

$$E[M_t; A] = E[M_s; A]$$

M_t and M_s have the same averages over sets in \mathcal{F}_s.

In particular, $EM_t = EM_0$.
Connection to Markov Process X with generator G.

$$M_t = f(X_t) - \int_0^t Gf(X_s) \, ds$$

is a martingale.

For the Poisson process, N, take

$f(n) = n$ to see that $N_t - \lambda t$ is a martingale.

$f(n) = e^{i\theta n}$ to see that

$$E e^{i\theta N_0} = E e^{i\theta N_t} - \int_0^t E[\lambda(e^{i\theta(N_s+1)} - e^{i\theta N_s})] \, ds$$

$$= E e^{i\theta N_t} - \int_0^t \lambda(e^{i\theta} - 1)E[e^{i\theta N_s}] \, ds$$

or $E e^{i\theta N_t} = E e^{i\theta N_0} \exp \lambda t(e^{i\theta} - 1)$.
Optional Sampling Theorem

Let τ be a stopping time. Define the σ-algebra

$$\mathcal{F}_\tau = \{A; A \cap \{\tau \leq t\} \in \mathcal{F}_t \text{ for all } t \geq 0\}.$$

The optional sampling theorem states that for bounded stopping times $\sigma \leq \tau$, and martingale M,

$$E[M_\tau | \mathcal{F}_\sigma] = M_\sigma.$$

In particular, $EM_\tau = EM_\sigma$. This yields Dynkin’s formula, for a Markov process X, generator G:

$$Ef(X_\tau) = Ef(X_0) + E[\int_0^\tau Gf(X_s) \, ds].$$

Define $M_{t}^{\tau} = M_{\min\{\tau,t\}}$, then M^{τ} is a martingale.
Example. Let N be a Poisson process, parameter λ. Define the stopping time $\tau_n = \inf\{t \geq 0 : N_t = n\}$. Assume $N_0 = 0$.

1. $\tau_n < \infty$ almost surely, so by the optional sampling theorem,

$$0 = E N_{\tau_n} - \lambda E \tau_n$$

and, therefore $E \tau_n = \frac{n}{\lambda}$.

2. By considering the Markov process (t, X_t), we find the martingales

$$f(t, X_t) - \int_0^t \left(\frac{\partial}{\partial s} + G \right) f(s, X_s) \, ds.$$

Thus $\exp(i\theta N_t - \lambda t(e^{i\theta} - 1))$, is a martingale. Then

$$1 = E[\exp(i\theta N_{\tau_n} - \lambda \tau_n(e^{i\theta} - 1)]$$
and thus

\[e^{-i\theta n} = E[\exp(-\lambda \tau_n (e^{i\theta} - 1))]. \]

Set

\[\alpha = \lambda (e^{i\theta} - 1) \text{ or } \theta = -i \ln\left(\frac{\alpha + \lambda}{\lambda}\right) \]

yielding

\[E e^{-\alpha \tau} = \left(\frac{\lambda}{\lambda + \alpha}\right)^n \]

This is the \(n \)-th power of the Laplace transform of an exponential random variable and, hence, the Laplace transform of a \(\Gamma(n, \lambda) \) random variable.
Strong Markov Property

As with the structure theorem for jump Markov processes, we would like to use the Markov property based from a random time. The **strong Markov property** states that for a finite stopping time τ

$$P_x\{X_{\tau+s} \in A | \mathcal{F}_\tau^X\} = P_x\{X_{\tau+s} \in A | X_\tau\} = p(A, X_\tau, s),$$

This property holds for any Markov having a version that has realizations that are right continuous having limits from the left.
Brownian Motion \(\{B_t; t \geq 0\} \) is defined by

1. The realizations are continuous.

2. The displacement over disjoint intervals of time are independent

3. For \(s, t > 0 \), \(B_{t+s} - B_t \) is a \(N(\mu s, \sigma^2 s) \) random variable.

The case \(\mu = 0, \sigma = 1 \) is called *standard Brownian motion*.
The Generator for Standard Brownian Motion

\[E_x f(B_t) = \frac{1}{\sqrt{2\pi t}} \int f(y) \exp\left(-\frac{(x-y)^2}{2t}\right) \, dy \]

\[= \frac{1}{\sqrt{2\pi}} \int f(x + y\sqrt{t}) \exp\left(-\frac{y^2}{2}\right) \, dy. \]

Then, \(\frac{1}{t}(E_x f(B_t) - f(x)) \)

\[= \frac{1}{\sqrt{2\pi}} \int \frac{1}{t}((f(x + y\sqrt{t}) - f(x)) \exp\left(-\frac{y^2}{2}\right) \, dy \]

\[= \frac{1}{\sqrt{2\pi}} \int \frac{1}{t}(y\sqrt{t} f'(x) + \frac{1}{2} y^2 tf''(x + \gamma y\sqrt{t}) \exp\left(-\frac{y^2}{2}\right) \, dy \]

\[= \frac{1}{\sqrt{2\pi}} \int \frac{1}{2} y^2 f''(x + \gamma y\sqrt{t}) \exp\left(-\frac{y^2}{2}\right) \, dy \]

for some \(\gamma \in (0, 1) \). Thus, the generator \(Gf(x) = \frac{1}{2} f''(x) \).
Standard Brownian Motion Martingales

Note that if \((\frac{\partial}{\partial t} + G)f = 0\), then \(f(t, B_t)\) is a martingale.

1. \(B_t\), Brownian motion itself.

2. \(B_t^2 - t\)

3. \(\exp(i\theta B_t + \frac{1}{2}\theta^2 t)\)
Examples.

• Assume $B_0 = 0$. Choose $a, b > 0$ and define the stopping time $\tau = \inf\{t : B_t \notin (-a, b)\}$. By the optional sampling theorem applied to the martingale B,

$$0 = bP\{B_\tau = b\} - aP\{B_\tau = a\}, \quad P\{B_\tau = b\} = \frac{a}{b + a}.$$

• Use the martingale $B_t^2 - t$ to obtain

$$0 = EB_{\min\{\tau, n\}}^2 - E \min\{\tau, n\}.$$

For the first term use the bounded convergence theorem. For the second term use the monotone convergence theorem.

$$E\tau = EB_{\tau}^2 = b^2 \frac{a}{b + a} + a^2 \frac{b}{b + a} = ab.$$
Set $X_t = B_t - \mu t$. For $x > 0$, define $\tau_x = \inf\{t \geq 0 : X_t = x\}$

Now

$$\exp(\theta X_t - \alpha t) = \exp(\theta B_t - (\alpha + \theta \mu) t)$$

is a martingale provided that

$$\alpha + \theta \mu = \frac{1}{2} \theta^2,$$

that is,

$$\theta_{\pm} = \mu \pm \sqrt{\mu^2 + 2 \alpha}.$$

Note that if $\alpha > 0$, $\theta_- < 0 < \theta_+$. Thus the martingale

$$\exp(\theta_+ X_t - \alpha t)$$

is bounded on $[0, \tau_x]$. The optional sampling theorem applies and

$$1 = E[\exp(\theta_+ X_{\tau_x} - \alpha \tau_x)] = e^{\theta x} E[e^{-\alpha \tau_x}].$$
Consequently,

\[E[e^{-\alpha \tau_x}] = \exp(-x(\sqrt{\mu^2 + 2\alpha + \mu})). \]

Take \(\alpha \to 0 \), then \(\exp(-\alpha \tau_x) \to I_{\{\tau_x<\infty\}} \). Therefore,

\[P\{\tau_x < \infty\} = \begin{cases}
1 & \mu \leq 0, \\
\frac{1}{\sqrt{2\pi t^3}}e^{-2\mu x} & \mu > 0.
\end{cases} \]

In addition, the Laplace transform can be inverted to see that \(\tau_x \) has density

\[f_{\tau_x}(t) = \frac{x}{\sqrt{2\pi t^3}} \exp(-\frac{(x + \mu t)^2}{2t}). \]
Continuous Martingales

Exercise. Let M be a martingale with $EM_t^2 < \infty$ for all $t > 0$. Then, for $s, t > 0$,

$$\text{Var}(M_{s+t}|\mathcal{F}_t) = E[M_{s+t}^2|\mathcal{F}_t] - M_t^2 = E[(M_{s+t} - M_t)^2|\mathcal{F}_t].$$

Thus,

$$E[M_{s+t}^2 - M_t^2] = E[(M_{s+t} - M_t)^2].$$

Important facts: Uniformly integrable martingales have a limit as $t \to \infty$. $\lim_{n \to \infty} \sup_t E[|X_t|; \{|X_t| > n\}] = 0$

A continuous martingale having finite variation on compact intervals is constant.
By considering the martingale $\tilde{M}_t = M_t - M_0$, we can assume that $M_0 = 0$.

Let σ_n be the time that the variation of M reaches n. Then by considering the martingale M^{σ_n}, we can assume that M has variation bounded above by n.

Now, let $0 = t_0 < t_1 < \cdots < t_{k-1} < t_k = t$, then $EM_t^2 = \sum_{j=1}^{k} E[M_{t_{j+1}}^2 - M_j^2] = E[\sum_{j=1}^{k} (M_{t_{j+1}} - M_t)^2] \leq nE[\max_{1 \leq j \leq k} |M_{t_{j+1}} - M_{t_j}|]$. The random variable above is bounded above by n and converges to 0 almost surely as the mesh of the partition tends to 0. Thus, $EM_t^2 = 0$ and $M_t = 0$ a.s.
Quadratic Variation

Write the partition Π for $0 = t_0 < t_1 < \cdots < t_k \cdots$, $\lim_{k \to \infty} t_k = \infty$. The \textit{quadratic variation process} of X along Π is

$$Q^\Pi_t(X) = \sum_{j=1}^{\infty} (X_{\min\{t,t_{j+1}\}} - X_{\min\{t,t_j\}})^2.$$

We say that X has \textit{finite quadratic variation} if there exists a process $\langle X, X \rangle$ such that

$$Q^\Pi_t(X) \rightarrow^P \langle X, X \rangle_t \text{ as mesh}(\Pi) \rightarrow 0.$$

Every continuous bounded martingale M has finite quadratic variation that is the unique continuous increasing adapted process vanishing at zero such that

$$M_t^2 - \langle M, M \rangle_t \text{ is a martingale.}$$
For standard Brownian motion, B, $\langle B, B \rangle_t = t$. To see this from the definition, write
\[
Q^\Pi_t(B) - t = \sum_{j=1}^{\infty} ((B_{\min\{t,t_{j+1}\}} - B_{\min\{t,t_j\}})^2 - (\min\{t, t_{j+1}\} - \min\{t, t_j\})).
\]
and $E[(Q^\Pi_t(B) - t)^2]$
\[
= \sum_{j=1}^{\infty} E[((B_{\min\{t,t_{j+1}\}} - B_{\min\{t,t_j\}})^2 - (\min\{t, t_{j+1}\} - \min\{t, t_j\})))^2] \\
= \sum_{j=1}^{\infty} E[(B_{\min\{t,t_{j+1}\}} - B_{\min\{t,t_j\}})^2]
\]
\[
= \sum_{j=1}^{\infty} E[(B_{\min\{t,t_{j+1}\}} - B_{\min\{t,t_j\}})^2] \cdot (\min\{t, t_{j+1}\} - \min\{t, t_j\})^2 \\
= E[(Z^2 - 1)^2] \sum_{j=1}^{\infty} (\min\{t, t_{j+1}\} - \min\{t, t_j\})^2 \to 0
\]
as $\text{mesh}(\Pi) \to 0$. (Note that convergence in L^2 implies convergence in probability.) Here Z is $N(0, 1)$.
Quadratic Covariation

From a quadratic form, use polarization to create a bilinear form.

Let M and N be two continuous local martingales, then there is a unique continuous adapted process $\langle M, N \rangle$, called the *brackets process*, of bounded variation vanishing at zero so that

$$M_t N_t - \langle M, N \rangle_t$$

is a local martingale

The brackets process is positive definite, symmetric and bilinear.

If M and N are independent processes, then $\langle M, N \rangle$ is zero.

With obvious changes in notation,

$$C_t^\Pi(M, N) \to^P \langle M, N \rangle_t \text{ as mesh}(\Pi) \to 0.$$
Structure and Approximation for Markov Chains in (Bio)chemical Kinetics

Bioinformatics
Informal Seminar
Hillary Term, 2006
Lecture 3 - Stochastic Integrals
Topics

• Semimartingales as stochastic integrators

• The basic isometry

• The definition of the stochastic integral

• The Itô formula

• Stochastic differential equations

• Itô diffusions
Semimartingales

The elements of the class of processes that will become the stochastic integraters are called continuous \mathcal{F}_t semimartingales. These are processes which can be written

$$X = M + V$$

where M is a continuous local martingale and V is a continuous adapted process having finite variation on a sequence of stopping times $\{\tau_n; n \geq 1\}, \lim_{n \to \infty} \tau_n = \infty$ bounded time intervals.

1. V has zero quadratic variation.

2. $\langle M, V \rangle = \lim_{\text{mesh}(\Pi_n) \to 0} C_{\Pi_n}(M, V) = 0$.
Relevant Hilbert Spaces

\mathcal{H}^2 to be the space of L^2-bounded martingales. These are martingales M, such that

$$\sup_{t \geq 0} EM_t^2 < \infty.$$

Use \mathcal{H}_0^2 for those elements $M \in \mathcal{H}^2$ with $M_0 = 0$.

M is a uniformly integrable martingale. Its limit exists as $t \to \infty$ and is in $L^2(P)$. Thus we can place the following norm

$$||M||_{\mathcal{H}^2}^2 = EM_{\infty}^2.$$

A continuous local martingale M is in \mathcal{H}_0^2 if and only if $E\langle M, M \rangle_{\infty} < \infty$. In this case, $M^2 - \langle M, M \rangle$ is a uniformly integrable martingale.
For the variety of integrals we shall develop, we write alternatively

\[X \cdot Y = \int X \, dY. \]

For the process \(V \) described above, this is the usual Riemann-Stieljes integral.

For \(M \in \mathcal{H}^2 \) define \(\mathcal{L}^2(M) \) to be the space of adapted processes \(K \) such that

\[
\|K\|_M^2 = E[(K^2 \cdot \langle M, M \rangle)_\infty] = E[\int_0^\infty K_s^2 \, d\langle M, M \rangle_s] < \infty.
\]
Simple Processes

A *simple process* has the form,

\[K = K_0 I_{\{0\}} + \sum_{j=1}^{n} K_j I_{(t_{j-1}, t_j]} . \]

To be adapted, we must have that \(K_j \) is \(F_{t_{j-1}} \)-measurable. The Itô stochastic integral

\[(K \cdot M)_\infty = \int_0^{\infty} K_s^- \ dM_s = \sum_{j=1}^{n} K_j (M_{t_{j-1}} - M_{t_j}) \]

takes the sample point to the left.
The Basic Isometry

\[E(K \cdot M)^2_\infty = E\left[\sum_{j=1}^{n} \sum_{k=1}^{n} K_j(M_{tj} - M_{tj-1})K_k(M_{tk} - M_{tk-1}) \right]. \]

For the off diagonal terms, \(j < k \),

\[E[K_j(M_{tj} - M_{tj-1})K_k(M_{tk} - M_{tk-1})], \]

\[= E[K_j(M_{tj} - M_{tj-1})K_kE[M_{tk} - M_{tk-1}|\mathcal{F}_{tk-1}]] = 0. \]
Thus, \(E(K \cdot M)^2 \infty \)

\[
= E\left[\sum_{j=1}^{n} K_j^2 (M_{t_j} - M_{t_{j-1}})^2 \right] = E\left[\sum_{j=1}^{n} K_j^2 E\left[(M_{t_j} - M_{t_{j-1}})^2 | \mathcal{F}_{t_{j-1}} \right] \right] \\
= E\left[\sum_{j=1}^{n} K_j^2 E\left[\langle M, M \rangle_{t_j} - \langle M, M \rangle_{t_{j-1}} | \mathcal{F}_{t_{j-1}} \right] \right] \\
= E\left[\sum_{j=1}^{n} K_j^2 (\langle M, M \rangle_{t_j} - \langle M, M \rangle_{t_{j-1}}) \right] \\
= E\left[\int_{0}^{\infty} K_s^2 d\langle M, M \rangle_s \right] = \|K\|_{M}^2
\]

Thus, the mapping

\[K \rightarrow K \cdot M \]

is a Hilbert space isometry from \(L^2 \) to \(\mathcal{L}^2(M) \).
The Definition of the Stochastic Integral is made by completing the isometry $K \rightarrow K \cdot M$ for adapted processes $K \in \mathcal{L}^2(M)$.

Define the process $(K \cdot M)_t = \int_0^t K_s \, dM_s = (KI_{[0,t]} \cdot M)_\infty$

Note that this process is a martingale whenever M is a martingale.

Some Useful Identities. Provided the integrals exist:

- $(a_1K_1 + a_2K_2) \cdot M = a_1K_1 \cdot M + a_2K_2 \cdot M$.

- $(HK) \cdot M = H \cdot (K \cdot M)$.

- $\langle H \cdot M, K \cdot N \rangle = (HK) \cdot \langle M, N \rangle$.
Integration by Parts

Let X be a continuous semimartingale, and let $\{\Pi^n; n \geq 1\}$ be a sequence of partitions of $[0, \infty)$, $\Pi^n = \{0 = t^n_0 < t^n_1 < \cdots\}$, $\text{mesh}(\Pi^n) \to 0$. Expand to obtain,

$$\sum_{j=1}^{\infty} (X_{\min\{t,t_j\}} - X_{\min\{t,t_{j-1}\}})^2
= X_t^2 - X_0^2 - 2 \sum_{j=1}^{\infty} X_{\min\{t,t_{j-1}\}} (X_{\min\{t,t_j\}} - X_{\min\{t,t_{j-1}\}}).$$

Then, $\sum_{j=1}^{\infty} (X_{\min\{t,t_j\}} - X_{\min\{t,t_{j-1}\}})^2 \to^P \langle X, X \rangle_t$.

and $\sum_{j=1}^{\infty} X_{\min\{t,t_{j-1}\}} (X_{\min\{t,t_j\}} - X_{\min\{t,t_{j-1}\}}) \to^P \int_0^t X_s \, dX_s$

uniformly on compact intervals. Thus

$$X_t^2 = X_0^2 + 2 \int_0^t X_s \, dX_s + \langle X, X \rangle_t.$$
Now, use polarization to obtain. for continuous semimartingales X and Y, that

\[X_t Y_t = X_0 Y_0 + \int_0^t X_s \, dY_s + \int_0^t Y_s \, dX_s + \langle X, Y \rangle_t. \]

Example. Let B be standard Brownian motion, then

\[\langle B, B \rangle_t = t, \quad \text{thus} \quad B_t^2 - t = 2 \int_0^t B_s \, dB_s \]

and

\[\langle t, B \rangle_t = 0, \quad \text{thus} \quad tB_t = \int_0^t s \, dB_s + \int_0^t B_s \, ds. \]
The Itô Formula

Let $f \in C^2(\mathbb{R}^d, \mathbb{R})$ and $X = (X^1, \ldots, X^d)$ be a vector continuous
semimartingale, then $f \circ X$ is a continuous semimartingale and

$$
\begin{align*}
\text{df}(X_t) &= \sum_{i=1}^{d} \frac{\partial f}{\partial x_i}(X_s) \ dX_i^s \\
&\quad + \frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial^2 f}{\partial x_i \partial x_j}(X_s) \ d\langle X^i, X^j \rangle_s.
\end{align*}
$$

Use a stopping time to localize to a compact set, use induction
on the degree of the polynomial, and use the Stone-Weierstrass
theorem to take a limit.
Moments of the Normal

By Itô’s formula

\[B_t^{2n} = 2n \int_0^t B_s^{2n-1} \, dB_s + \frac{2n(2n-1)}{2} \int_0^t B_s^{2n-2} \, ds. \]

Thus,

\[EB_t^{2n} = \frac{2n(2n-1)}{2} \int_0^t EB_s^{2n-2} \, ds. \]

For example,

\[EB_t^4 = 6 \int_0^t s \, ds = 3t^2. \]
Examples.

- Let \(f : \mathbb{R}^+ \times \mathbb{R} \to \mathbb{C} \) satisfy

\[
\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} = 0
\]

If \(M \) is a local martingale, then so is \(\{f(\langle M, M \rangle_t, M_t); t \geq 0\} \). In particular,

\[
\mathcal{E}(\theta M)_t = \exp(\theta M_t - \frac{\theta^2}{2} \langle M, M \rangle_t), \quad \lambda \in \mathbb{C}
\]

is a local martingale.

This local martingale satisfies the stochastic differential equation

\[
dY_t = \theta Y_t \, dM_t.
\]
• Note that for standard Brownian motion,

\[\exp(\theta B_t - \frac{\theta^2}{2} t) \] is a martingale.

• For \(B = (B^1, \ldots, B^d) \), a \(d \)-dimensional Brownian motion then

\[\langle B^i, B^j \rangle = \delta_{ij} t. \]

• If \(f \in C^2(\mathbb{R}^+ \times \mathbb{R}^d) \), and if \(B \) is a \(d \)-dimensional Brownian motion then

\[
f(t, B_t) - \int_0^t \left(\frac{\partial f}{\partial s} + \frac{1}{2} \Delta f \right)(s, B_s) \, ds
\]

is a martingale. Thus, if \(f \) is harmonic in \(\mathbb{R}^d \), then \(f \circ B \) is a local martingale. In addition, \(\frac{1}{2} \Delta \) is the restriction of the generator of \(B \) to \(C^2(\mathbb{R}^d) \).
Recurrence of Brownian Motion

Let f be a function of the radius, then the Laplacian can be replaced by its radial component A, the Bessel operator. If $R_t = |B_t|$, we have the martingale

$$f(t, R_t) - \int_0^t (Af + \frac{\partial f}{\partial t})(s, R_s) \, ds$$

Check that $s(r) = \ln r$ solves $As = 0$ in \mathbb{R}^2 and that $s(r) = -r^{2-d}$ solves $As = 0$ in $\mathbb{R}^d, d \geq 3$. So if $r_i < r < r_o$, then

$$P_r\{\tau_{r_o} > \tau_{r_i}\} = \frac{s(r_o) - s(r)}{s(r_o) - s(r_i)}.$$

Now let $r_o \to \infty$, then for $d = 2$, $P_r\{\tau_{r_i} < \infty\} = 1$.

For $d \geq 3$, $P_r\{\tau_{r_i} < \infty\} = \left(\frac{r_i}{r}\right)^{d-2}$.

60
Lévy’s characterization theorem

Assume that X is a \mathbb{R}^d, $X_0 = 0$. The following are equivalent.

1. X is d-dimensional standard Brownian motion.

2. X is a continuous local martingale and $\langle X^i, X^j \rangle = \delta_{ij}t$.

$(2 \rightarrow 1)$ Take $\theta = i$ and $M = \xi \cdot X$ in the exponential martingale, then $\langle M, M \rangle_t = |\xi|^2 t$ and we have the martingale

$$\exp(i\xi \cdot X_t + \frac{1}{2}|\xi|^2 t).$$

Thus, for $s < t$, $E[\exp(i\xi \cdot X_t + \frac{1}{2}|\xi|^2 t)|\mathcal{F}_s] = \exp(i\xi \cdot X_s + \frac{1}{2}|\xi|^2 s)$ or

$$E[\exp(i\xi \cdot (X_t - X_s)|\mathcal{F}_s] = \exp(-\frac{1}{2}|\xi|^2(t - s)).$$
Stochastic Differential Equations

Let f and g be adapted functions taking values in $\mathbb{R}^{d \times r}$ and \mathbb{R}^d respectively and let B be a standard r-dimensional Brownian motion. Consider the stochastic differential equation

$$dX_t = f(s, X) \, dB_s + g_i(s, X) \, ds.$$

A solution is a pair (X, B) of \mathcal{F}_t-adapted processes that satisfy this equation.
Notions of Uniqueness

1. For \((X, B), (\tilde{X}, \tilde{B})\) solutions on the probability same space with the same filtration and the same initial conditions. Then the stochastic differential equation is said to satisfy \textit{pathwise uniqueness} if \(P\{X_t = \tilde{X}_t \text{ for all } t\} = 1\)

2. For \((X, B), (\tilde{X}, \tilde{B})\) be solutions so that the distributions of \(X_0\) and \(\tilde{X}_0\) are equal. Then the stochastic differential equation above is said to satisfy \textit{uniqueness in law} if \(X\) and \(\tilde{X}\) have the same distribution.
Itô Diffusions

A continuous stochastic process X is called a time homogeneous Itô diffusion if there exists measurable mappings

$$\sigma : \mathbb{R}^d \to \mathbb{R}^{d \times r}, \text{ (the diffusion matrix)}$$

and

$$b : \mathbb{R}^d \to \mathbb{R}^d, \text{ (the drift)}$$

and an r-dimensional Brownian motion B so that

$$dX_t^j = \sum_{k=1}^{r} \sigma_{jk}(X_t) \ dB_t^k + b_j(X_t) \ dt$$

has a solution that is unique in law.

If σ and b satisfy an appropriate Lipschitz hypothesis, then we have pathwise uniqueness. If σ and b are locally bounded and Borel measurable, then pathwise uniqueness to the Itô stochastic differential equation above implies uniqueness in law.
If \(X \) is an Itô diffusion and if \(f \in C^2(\mathbb{R}^d, \mathbb{R}) \), then

\[
\begin{align*}
df(X_t) &= \sum_{j=1}^{d} \frac{\partial f}{\partial x^j}(X_s) \, dX_s^j + \frac{1}{2} \sum_{j=1}^{d} \sum_{k=1}^{d} \frac{\partial^2 f}{\partial x^j \partial x^k}(X_s) \, d\langle X^j, X^k \rangle_s \\
&= \sum_{j=1}^{d} \left(b_i(X_s) \frac{\partial f}{\partial x^j}(X_s) + \frac{1}{2} (\sigma \sigma^T)_{jk}(X_s) \frac{\partial^2 f}{\partial x^j \partial x^k}(X_s) \right) \, ds \\
&+ \sum_{k=1}^{d} \sum_{k=1}^{r} \sigma_{jk}(X_s) \frac{\partial f}{\partial x^j}(X_s) \, dB_s^k.
\end{align*}
\]
Consequently, we have the martingales

\[M_t^f = f(X_0) + \int_0^t Gf(X_s) \, ds \]

with \(Gf(x) = \sum_{j=1}^d b_j(x) \frac{\partial f}{\partial x^j}(x) + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d a_{jk}(x) \frac{\partial^2 f}{\partial x^j \partial x^k}(x) \) and \(a = \sigma \sigma^T \).

Therefore, an Itô diffusion is a Markov process with continuous realizations. \(G \) is the restriction of its generator to \(f \in C^2(\mathbb{R}^d, \mathbb{R}) \).
Structure and Approximation for Markov Chains in (Bio)chemical Kinetics

Bioinformatics
Informal Seminar
Hillary Term, 2006
Lecture 4 - Multiscale Approximations
Topics

- Van Kampen diffusion approximation
- Multiscale approximation
- Michaelis-Menten kinetics
- Simple crystalization
- Enzyme kinetics
- Reversible isomerization
Central limit theorem for the Poisson Process

Let Y be a Poisson process with parameter 1 and define the sequences of processes

$$\tilde{B}^n_t = \sqrt{n} \left(\frac{Y_{nt}}{n} - t \right).$$

Note that \tilde{B}^n has stationary and independent increments. \tilde{B}^n_t has mean zero, and variance t.

Then, \tilde{B}^n converges in distribution to \tilde{B}, a standard Brownian motion. Thus, we can write

$$\frac{1}{n} Y_{nt} - t \approx \frac{1}{\sqrt{n}} \tilde{B}_t.$$
Recall the law of mass action for the concentration

\[\bar{X}_t^n = \bar{X}_0^n + \sum_i \vec{v}_i \frac{1}{n} Y^i \left(\int_0^t k_i(n \bar{X}_s^n) \, ds \right) \]

\[\approx \bar{X}_0^n + \sum_i \vec{v}_i \frac{1}{n} Y^i \left(n \int_0^t k_i(\bar{X}_s^n) \, ds \right) \]

\[\approx \bar{X}_0^n + \sum_i \vec{v}_i \left(\int_0^t k_i(\bar{X}_s^n) \, ds \right) \]

\[\approx \bar{X}_0^n + \int_0^t F(\bar{X}_s^n) \, ds, \quad F(\bar{x}) = \sum_i \vec{v}_i k_i(\bar{x}) \]
Let Y^i be independent Poisson processes with parameter 1.

\[
\tilde{X}_t^n \approx \tilde{X}_0^n + \sum_i \tilde{v}_i \left(\frac{1}{n} Y^i (n \int_0^t k_i(\tilde{X}_s^n) \, ds) - \int_0^t k_i(\tilde{X}_s^n) \right) + \int_0^t F(\tilde{X}_s^n)
\]

\[
\approx \tilde{X}_0^n + \frac{1}{\sqrt{n}} \sum_i \tilde{v}_i \tilde{B}^i (\int_0^t k_i(\tilde{X}_s^n) \, ds) + \int_0^t F(\tilde{X}_s^n)
\]

where \tilde{B}^i are independent standard Brownian motions.

The process that satisfies equality in this equation is a Markov process with generator

\[
G^n = \frac{1}{2n} \sum_i k(x)(\tilde{v}_i \cdot \nabla)^2 + F \cdot \nabla.
\]
Van Kampen Diffusion Approximation

Note that

\[G^n = \frac{1}{2n} \sum_j \sum_k (\sum_i k_i(\vec{x}) v_i^j v_i^k) \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_k} \]

is the generator of an Itô diffusion, namely,

\[dX^j_t = \frac{1}{\sqrt{n}} \sum_{k=1}^r \sigma_{jk}(X_t) \ dB^k_t + F_j(X_t) \ dt. \]

where \(\sigma_{ji}(\vec{x}) = \sqrt{k_i(\vec{x})} \ v_i^j \) and \(B^1, \ldots, B^r \) are independent standard Brownian motions.
Multiscale Approximation

Let n, a scaling parameter, denote the order of magnitude of the most abundant chemical.

For each chemical, define $\alpha_j \in [0, 1]$ that gives the relative abundance of chemical i.

For each reaction, define β_i to give relative rates for reactions.

Writing $z^{n,j} = n^{-\alpha_j} x^j$, $k(x) = n^{\beta_i} \bar{k}_i(z)$, the model takes the form

\[
Z_t^{n,j} = Z_0^{n,j} + n^{-\alpha_j} \sum_i v_i^j Y_i \left(\int_0^t n^{\beta_i} \bar{k}_i(Z_s) \, ds \right).
\]

So, choose β_i so that $\bar{k}_i(z)$ is $O(1)$ for relevant values of z.

73
Michaelis-Menten Kinetics \(A + E \leftrightarrow AE \quad AE \rightarrow B + E \).

<table>
<thead>
<tr>
<th>stoichiometry</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-1, -1, 1, 0))</td>
<td>(\kappa_1 x^A x^E)</td>
</tr>
<tr>
<td>((-1, -1, 1, 0))</td>
<td>(\kappa_{-1} x^{AE})</td>
</tr>
<tr>
<td>((0, 1, -1, 1))</td>
<td>(\kappa_2 x^{AE})</td>
</tr>
</tbody>
</table>

\[
X_t^A = X_0^A + Y^{-1}(\int_0^t \kappa_{-1} X_s^{AE} \, ds) - Y^1(\int_0^t \kappa_1 X_s^A X_s^E \, ds)
\]

\[
X_t^{AE} = X_0^{AE} - Y^{-1}(\int_0^t \kappa_{-1} X_s^{AE} \, ds) + Y^1(\int_0^t \kappa_1 X_s^A X_s^E \, ds)
- Y^2(\int_0^t \kappa_2 X_s^{AE} \, ds)
\]

\[
X_t^E = X_0^E + Y^{-1}(\int_0^t \kappa_{-1} X_s^{AE} \, ds) - Y^1(\int_0^t \kappa_1 X_s^A X_s^E \, ds)
+ Y^2(\int_0^t \kappa_2 X_s^{AE} \, ds)
\]
Set \(X_t^E + X_t^{AE} = X_0^E + X_0^{AE} = n^\alpha, \) \(\alpha < 1, \)

\(\alpha_A = 1, \) \(\alpha_E = \alpha_{AE} = \alpha, \) \(\beta_1 = -\alpha, \) \(\beta_{-1} = \beta_2 = 1 - \alpha. \)

Thus,

\[
Z_t^{n,A} = Z_0^{n,A} + \frac{1}{n} Y^{-1} \left(\int_0^t n\tilde{\kappa}_{-1}(1 - Z_s^{n,E}) \, ds \right) \\
- \frac{1}{n} Y^1 \left(\int_0^t n\tilde{\kappa}_1 Z_s^{n,A} Z_s^{n,E} \, ds \right)
\]

\[
Z_t^{n,E} = Z_0^{n,E} - \frac{1}{n^\alpha} Y^{-1} \left(\int_0^t n\tilde{\kappa}_{-1}(1 - Z_s^{n,E}) \, ds \right) \\
+ \frac{1}{n^\alpha} Y^1 \left(\int_0^t n\tilde{\kappa}_1 Z_s^{n,A} Z_s^{n,E} \, ds \right) + \frac{1}{n^\alpha} Y^2 \left(\int_0^t n\tilde{\kappa}_2(1 - Z_s^{n,E}) \, ds \right)
\]
Divide by $n^{1-\alpha}$ to see that as $n \to \infty$ to see that

$$
\int_0^t (\tilde{\kappa}_1 + \tilde{\kappa}_2)(1 - Z_{s,E}^n) \, ds + \int_0^t \tilde{\kappa}_1 Z_{s,A}^n Z_{s,E}^n \, ds \to 0.
$$

Also,

$$
Z_{t}^{n,A} - Z_{0}^{n,A} - \int_0^t \tilde{\kappa}_1 (1 - Z_{s,E}^n) \, ds + \int_0^t \tilde{\kappa}_1 Z_{s,A}^n Z_{s,E}^n \, ds \to 0.
$$

If $Z_{n,A}^n \to z^A$ and $Z_{n,E}^n \to z^E$, then

$$
(\tilde{\kappa}_1 + \tilde{\kappa}_2)(1 - z_t^E) + \tilde{\kappa}_1 z_t^A z_t^E = 0,
$$

$$
\frac{d}{dt} z_t^A = \tilde{\kappa}_1 (1 - z_t^E) + \tilde{\kappa}_1 z_t^A z_t^E = \frac{\tilde{\kappa}_1 \tilde{\kappa}_2 z_t^A}{\tilde{\kappa}_1 + \tilde{\kappa}_2 - \kappa z_t^A}.
$$
Simple Crystalization

\[2A \rightarrow B \quad A + C \rightarrow D. \]

<table>
<thead>
<tr>
<th>Stoichiometry</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-2, 1, 0, 0))</td>
<td>(\kappa_1 \left(\frac{x^A}{2} \right))</td>
</tr>
<tr>
<td>((-1, 0, -1, 1))</td>
<td>(\kappa_2 x^A x^C)</td>
</tr>
</tbody>
</table>

\[
X^A_t = X^A_0 - 2Y^1 \left(\int_0^t \frac{1}{2} \kappa_1 X^A_s (X^A_s - 1) \, ds \right) - Y^2 \left(\int_0^t \kappa_2 X^A_s X^C_s \, ds \right)
\]

\[
X^B_t = X^B_0 + Y^1 \left(\int_0^t \frac{1}{2} \kappa_1 X^A_s (X^A_s - 1) \, ds \right)
\]

\[
X^C_t = X^C_0 - Y^2 \left(\int_0^t \kappa_2 X^A_s X^C_s \, ds \right)
\]
Set

\[X_0^A = 10^6 = n, \quad X_0^B = 0, \quad X_0^C = 10, \quad \kappa_1 = \kappa_2 = 10^{-7} = \frac{1}{10} n^{-1}. \]

Thus, \(\alpha_A = \alpha_B = 1, \quad \alpha_C = 0, \quad \beta_1 = \beta_2 = -1 \)

and

\[
Z^n_t^A = 1 - \frac{2}{n} Y^1(n \int_0^t \frac{1}{20} Z^n_s^A (Z^n_s^A - \frac{1}{n}) \, ds) - \frac{1}{n} Y^2(\int_0^t \frac{1}{10} Z^n_s^A Z^n_s^C \, ds)
\]

\[
Z^n_t^B = \frac{1}{n} Y^1(n \int_0^t \frac{1}{20} Z^n_s^A (Z^n_s^A - \frac{1}{n}) \, ds)
\]

\[
Z^n_t^C = 10 - Y^2(\int_0^t \frac{1}{10} Z^n_s^A Z^n_s^C \, ds)
\]
let \(n \to \infty \) to obtain the simplified equations

\[
Z_t^A = 1 - \int_0^t \frac{1}{10} (Z_s^A)^2 \, ds
\]

\[
Z_t^B = \int_0^t \frac{1}{20} (Z_s^A)^2 \, ds
\]

\[
Z_t^C = 10 - Y^2 \left(\int_0^t \frac{1}{10} Z_s^A Z_s^C \, ds \right)
\]

Thus, \(Z_t^A = \frac{1}{1+t/10} \), \(Z_t^B = \frac{1}{200} \left(1 - \frac{1}{1+t/10} \right) \)

and \(Z_t^C = 10 - Y^2 \left(\int_0^t \frac{1}{10+s} Z_s^C \, ds \right) \)
Consequently, Z^C_t is a *time inhomogeneous* Markov process with generator

$$G_t f(z) = \frac{z}{10 + t}(f(z - 1) - f(z)).$$

We can find the generating function for this process and with it conclude that

$$Z^C_t \text{ is } Bin(10, \exp(-\int_0^t \frac{1}{10+s}) = Bin(10, \frac{10}{10+s}).$$
Enzyme Kinetics \(E + S \leftrightarrow ES \quad ES \rightarrow P + E \).

<table>
<thead>
<tr>
<th>stoichiometry</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-1, -1, 1, 0))</td>
<td>(\kappa_1 x^E x^S)</td>
</tr>
<tr>
<td>((-1, -1, 1, 0))</td>
<td>(\kappa_{-1} x^ES)</td>
</tr>
<tr>
<td>((0, 1, -1, 1))</td>
<td>(\kappa_2 x^ES).</td>
</tr>
</tbody>
</table>

\[
X_t^S = X_0^S + Y^{-1}(\int_0^t \kappa_{-1} X_s^{ES} \, ds) - Y^1(\int_0^t \kappa_1 X_s^E X_s^S \, ds)
\]

\[
X_t^{ES} = X_0^{ES} - Y^{-1}(\int_0^t \kappa_{-1} X_s^{ES} \, ds) + Y^1(\int_0^t \kappa_1 X_s^E X_s^S \, ds) - Y^2(\int_0^t \kappa_2 X_s^{ES} \, ds)
\]

\[
X_t^E = X_0^E + Y^{-1}(\int_0^t \kappa_{-1} X_s^{ES} \, ds) - Y^1(\int_0^t \kappa_1 X_s^E X_s^S \, ds) + Y^2(\int_0^t \kappa_2 X_s^{ES} \, ds)
\]
Take $X^E_0 = 1000 = n$, $X^S_0 = 100 = n^{2/3}$,
$\kappa_1 = \kappa_{-1} = 1$, $\kappa_2 = 0.1 = n^{-1/3}$.

Thus, $\alpha_E = 1$, $\alpha_S = \alpha_{ES} = 2/3$, $\beta_1 = \beta_{-1} = 0$, $\beta_2 = -1/3$.

\[
Z_{t}^{n,S} = 1 + \frac{1}{n^{2/3}} Y^{-1}(\int_{0}^{t} n^{2/3} Z_{s}^{n,ES} ds) - \frac{1}{n^{2/3}} Y^{1}(\int_{0}^{t} n^{5/3} Z_{s}^{n,E} Z_{s}^{n,S} ds)
\]
\[
Z_{t}^{n,ES} = \frac{-1}{n^{2/3}} Y^{-1}(\int_{0}^{t} n^{2/3} Z_{s}^{n,ES} ds) + \frac{1}{n^{2/3}} Y^{1}(\int_{0}^{t} n^{5/3} Z_{s}^{n,E} Z_{s}^{n,S} ds)
- \frac{1}{n^{2/3}} Y^{2}(\int_{0}^{t} n^{1/3} Z_{s}^{n,ES} ds)
\]
\[
Z_{t}^{n,E} = 1 + \frac{1}{n} Y^{-1}(\int_{0}^{t} n^{2/3} Z_{s}^{n,ES} ds) - \frac{1}{n} Y^{1}(\int_{0}^{t} n^{5/3} Z_{s}^{n,E} Z_{s}^{n,S} ds)
+ \frac{1}{n} Y^{2}(\int_{0}^{t} n^{1/3} Z_{s}^{n,ES} ds)
\]
Rescale time $t \to n^{1/3}t$ to obtain

\[
\tilde{Z}^{n,S}_t = 1 + \frac{1}{n^{2/3}} Y^{-1}(\int_0^t n\tilde{Z}^{n,ES}_s ds) - \frac{1}{n^{2/3}} Y^1(\int_0^t n^2 \tilde{Z}^{n,E}\tilde{Z}^{n,S}_s ds)
\]

\[
\tilde{Z}^{n,ES}_t = -\frac{1}{n^{2/3}} Y^{-1}(\int_0^t n\tilde{Z}^{n,ES}_s ds) + \frac{1}{n^{2/3}} Y^1(\int_0^t n^2 \tilde{Z}^{n,E}\tilde{Z}^{n,S}_s ds)
\]

\[-\frac{1}{n^{2/3}} Y^2(\int_0^t n^{2/3} \tilde{Z}^{n,ES}_s ds)\]

\[
\tilde{Z}^{n,E}_t = 1 + \frac{1}{n} Y^{-1}(\int_0^t n\tilde{Z}^{n,ES}_s ds) - \frac{1}{n} Y^1(\int_0^t n^2 \tilde{Z}^{n,E}\tilde{Z}^{n,S}_s ds)
\]

\[-\frac{1}{n} Y^2(\int_0^t n^{2/3} \tilde{Z}^{n,ES}_s ds)\]

\[
\tilde{Z}^{n,E}(0) = 0
\]
Check that for any $s \in (\delta, t)$, $\tilde{Z}_{s}^{n,S} \to 0$ uniformly as $n \to \infty$ and that

$$\tilde{Z}_{t}^{n,S} + \tilde{Z}_{s}^{n,ES} = 1 - \frac{1}{n^{2/3}} Y^{2}(\int_{0}^{t} n^{2/3} \tilde{Z}_{s}^{n,ES} ds)$$

Thus, $\tilde{Z}_{n,S}^{n} + \tilde{Z}_{n,ES}^{n}$ converges to

$$\tilde{Z}_{t}^{ES} = 1 - \int_{0}^{t} \tilde{Z}_{s}^{ES} ds, \quad Z_{t}^{ES} = \exp(-t).$$

$$\tilde{Z}_{t}^{E} = \int_{0}^{t} \tilde{Z}_{s}^{ES} ds = 1 - \exp(-t).$$
Reversible Isomerization \(S_1 \leftrightarrow S_2 \quad S_2 \rightarrow S_3 \).

<table>
<thead>
<tr>
<th>stoichiometry</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-1, 1, 0))</td>
<td>(\kappa_1 x^1)</td>
</tr>
<tr>
<td>((1, -1, 0))</td>
<td>(\kappa_2 x^2)</td>
</tr>
<tr>
<td>((0, -1, 1))</td>
<td>(\kappa_3 x^3).</td>
</tr>
</tbody>
</table>

\[
X_t^1 = X_0^1 - Y^1(\int_0^t \kappa_1 X_s^1 \, ds) + Y^2(\int_0^t \kappa_2 X_s^2 \, ds)
\]

\[
X_t^2 = X_0^2 + Y^1(\int_0^t \kappa_1 X_s^1 \, ds) - Y^2(\int_0^t \kappa_2 X_s^2 \, ds) - Y^3(\int_0^t \kappa_3 X_s^2 \, ds)
\]

\[
X_t^3 = X_0^3 + Y^3(\int_0^t \kappa_3 X_s^2 \, ds)
\]
\[X_0^1 = 1200 = 1.2n, \quad X_0^2 = 600 = 0.6n, \quad X_0^3 = 0, \]
\[\kappa_1 = 1, \quad \kappa_2 = 2, \quad \kappa_3 = 5 \times 10^{-5} = 5n^{-5/3}. \]

Then, \(\alpha_1 = \alpha_2 = 1, \alpha_3 = 0, \quad \beta_1 = \beta_2 = 0, \beta_3 = -5/3. \) and

\[
Z_t^{n,1} = Z_0^{n,1} - \frac{1}{n}Y^1\left(\int_0^t nZ_s^{n,1} \, ds \right) + \frac{1}{n}Y^2\left(\int_0^t 2nZ_s^{n,2} \, ds \right)
\]
\[
Z_t^{n,2} = Z_0^{n,2} + \frac{1}{n}Y^1\left(\int_0^t nZ_s^{n,1} \, ds \right) - \frac{1}{n}Y^2\left(\int_0^t 2nZ_s^{n,2} \, ds \right)
\]
\[
\quad - \frac{1}{n}Y^3\left(\int_0^t 5n^{-2/3}Z_s^{n,2} \, ds \right)
\]
\[
Z_t^{n,3} = \frac{1}{n}Y^3\left(\int_0^t 5n^{-2/3}Z_s^{n,2} \, ds \right)
\]
Let $n \to \infty$, the limiting system is

$$
\begin{align*}
Z^1_t &= Z_0^1 - \int_0^t Z^1_s \, ds + \int_0^t 2Z^2_s \, ds \\
Z^2_t &= Z_0^2 + \int_0^t Z^1_s \, ds - \int_0^t 2Z^2_s \, ds \\
Z^3_t &= 0.
\end{align*}
$$

Consequently, $Z^1_t + Z^2_t = Z_0^1 + Z_0^2$, and

$$
D_t = Z^1_t - 2Z^2_t = D_0 - 3 \int_0^t D_s \, ds, \text{ or } D_t = D_0 \exp(-3t).
$$

To achieve some dynamics on $Z^{n,3}$, we move to a faster time scale.
Set \(\tilde{Z}_{t}^{n,j} = Z_{n^{2/3}t}^{n,j} \), \(j = 1, 2, 3 \), to obtain the system:

\[
\begin{align*}
\tilde{Z}_{t}^{n,1} &= \tilde{Z}_{0}^{n,1} - \frac{1}{n} Y^{1}(\int_{0}^{t} n^{5/3} \tilde{Z}_{s}^{n,1} \, ds) + \frac{1}{n} Y^{2}(\int_{0}^{t} 2n^{5/3} \tilde{Z}_{s}^{n,2} \, ds) \\
\tilde{Z}_{t}^{n,2} &= \tilde{Z}_{0}^{n,2} + \frac{1}{n} Y^{1}(\int_{0}^{t} n^{5/3} \tilde{Z}_{s}^{n,1} \, ds) - \frac{1}{n} Y^{2}(\int_{0}^{t} 2n^{5/3} \tilde{Z}_{s}^{n,2} \, ds) - \frac{1}{n} Y^{3}(\int_{0}^{t} 5\tilde{Z}_{s}^{n,2} \, ds) \\
\tilde{Z}_{t}^{n,3} &= \frac{1}{n} Y^{3}(\int_{0}^{t} 5\tilde{Z}_{s}^{n,2} \, ds)
\end{align*}
\]
Divide the first equation by $n^{2/3}$ to see that as $n \to \infty$,

$$\int_0^t \bar{Z}_{s,1}^n \, ds + \int_0^t 2\bar{Z}_{s,2}^n \, ds \to 0.$$

Assume that $\bar{Z}_{0,1}^n + \bar{Z}_{0,2}^n = C$, we have that

$$\int_0^t 2\bar{Z}_{s,2}^n \, ds \to \frac{1}{3}Ct$$

and $\bar{Z}^{n,3}$ converges to

$$Z_t^3 = Y^3(\frac{5}{3}Ct),$$

a Poisson process with parameter $5C/3$.