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In many circumstances, we will not be able to use the techniques of calculus to determine the solution
for the initial value problem

y′ = f(x, y), y(x0) = y0.

We consequently rely on numerical techniques to approximate a solution. The first is Euler’s method.
This method relies on the tangent line or the first order Tyler’s approximation an differential function.

Begin by choosing a (small) positive number h, Then

y(x + h) ≈ y(x) + hy′(x) = y(x) + hf(x, y).

This tangent line approximation is used iteratively beginning with the point (x0, y0)

x1 = x0 + h y1 = y0 + hf(x0, y0)
x2 = x1 + h = x0 + 2h y2 = y1 + hf(x1, y1)

...

xn+1 = xn + h = x0 + nh yn+1 = yn + hf(xn, yn)

Continue the iteration until some final value for xf is obtained. In this case,

n =
xf − x0

h
.

Let’s implement the Eurer method for the differential equation for the differential equation,

y′ =
x

y
, y(0) = 2 (1)

We know that the solution is y(x) =
√
x2 + 4.

Take h = 0.1 and xf = 1. So, y(1) =
√

5. Here is the implementation in R

> f<-function(x,y) x/y

> x0<-0;xf<-1;y0<-2;h<-0.1

> n<-ceiling((xf-x0)/h);x<-numeric(n);y<-numeric(n)

> x[1]<=<-h;y[1]<-y0+h*f(x0,y0)

> for (i in 2:n){x[i]<-x0+i*h;y[i]<-y[i-1]+h*f(x[i-1],y[i-1])}

We print the output in a data.frame
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> data.frame(x,y,sqrt(x^2+4))

x y sqrt.x.2...4.

1 0.1 2.000000 2.002498

2 0.2 2.005000 2.009975

3 0.3 2.014975 2.022375

4 0.4 2.029864 2.039608

5 0.5 2.049569 2.061553

6 0.6 2.073965 2.088061

7 0.7 2.102895 2.118962

8 0.8 2.136182 2.154066

9 0.9 2.173632 2.193171

10 1.0 2.215038 2.236068

The relative error is

∣∣∣exact− approximation

exact

∣∣∣.
For this case, we have the table for the relative error.

h y(1) relative error
0.1 2.2105 1.14× 10−2

0.01 2.2339 9.49× 10−4

0.001 2.2359 9.29× 10−5

Exercise 1. Check that y(x) = 2ex − x− 1 is an explicit solution to

y′ = x + y, y(0) = 2

. Compare this to Euler’s method with h = 0.1 and x = 0.1, 0.2, . . . , 1.0.
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