
Separable Equations

Linear Equations

June 10, 2016

Again we return to the initial value problem.

y = f(x, y), y(x0) = y0 (1)

1 Separable Equations

We will now look at a variety of forms of the function f that will allow us to find an analytic solution to (1).
The first is a case of separable equations. In this case, we will be able to reduce the problem to that of
two integrals - one for x and one for y - followed by some algebraic manipulations to invert a function and
isolate y

If f factorizes, that is, f(x, y) = p(x)q(y), then (1). becomes

dy

dx
= f(x, y) = p(x)q(y)

1

q(y)

dy

dx
= p(x)∫

1

q(y)

dy

dx
dx =

∫
p(x)dx∫

1

q(y)
dy =

∫
p(x)dx

Q(y) = P (x) + c

Here P is an antiderivative for p. Q is an antiderivative for 1/q. This gives an implicit solution. To find
an explicit solution, we solve for y.

y = Q−1(P (x) + c).

Finally c is chosen so that the initial condition is satisfied. Thus,

y0 = Q−1(P (x0) + c).

These abstract series of equations will become more understandable after we complete several examples.

1



Example 1. To find the solutions to

y′ =
y2 − 1

x
, y(1) = 2

we follow the steps above.

dy

dx
=

y2 − 1

x
1

y2 − 1

dy

dx
=

1

x∫
1

y2 − 1

dy

dx
dx =

∫
1

x
dx∫

1

y2 − 1
dy =

∫
1

x
dx

1

2
ln
∣∣∣y − 1

y + 1

∣∣∣ = ln |x|+ c Check the integral√∣∣∣y − 1

y + 1

∣∣∣ = ec|x|

Before we solve for y, we will use the initial conditions to help us with the absolute values.√∣∣∣2− 1

2 + 1

∣∣∣ = ec|1|,
√

1

3
= ec

In both of these case the number inside the absolute value is positive and so we can drop | · | and

√
y − 1

y + 1
=

√
1

3
x

y − 1

y + 1
=

1

3
x2

y =
3 + x2

3− x2
Check the algebra.

Example 2. For

y′ =
x

2 + cos y
, y(2) = 0

Again we have the separation of variables.

(2 + cos y)
dy

dx
= x∫

(2 + cos y)
dy

dx
dx =

∫
xdx∫

(2 + cos y)dy =

∫
xdx

2y − sin y =
1

2
x2 + c
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For the initial consition,

2 · 0− sin 0 =
1

2
22 + c, 0 = 2 + c, c = −2

This gives the implicit solution

2y − sin y =
1

2
x2 − 2.

An explicit solution would require solving this equation for y.

Exercise 3. Use the method above for separable equations to solve

• dy
dx = (1−x2)y3

x2 , y(1) = 1.

• dy
dx = x(exp(x2)+1)

6y2 , y(0) = 1.

2 Motion of a Falling Body

Example 4. Newton’s law, force is the mass times the acceleration, can be written

F = m
dv

dt

by noting that the acceleration is the derivative of the velocity.
We will consider two forces - gravity, which for an object is a force downward proportional to the mass

and the acceleration of gravity, and air resistance with is proportional to the velocity. The constant of
proportionality is negative to indicate that the force acts in the opposite direction to that of the force of
gravity. Thus,

m
dv

dt
= mg − bv

dv

dt
= g − b

m
v

We can apply the separation of variables technique to this case

1

g − bv/m
dv

dt
= 1∫

1

g − bv/m
dv

dt
dt =

∫
1dt∫

1

g − bv/m
dv =

∫
1dt

−m
b

ln
∣∣∣g − b

m
v
∣∣∣ = t+ c Check the integral

ln
∣∣∣g − b

m
v
∣∣∣ = −m

b
(t+ c)∣∣∣g − b

m
v
∣∣∣ = exp(−m

b
(t+ c))∣∣∣g − b

m
v
∣∣∣ = A exp(−m

b
t), A = exp(−m

b
c), a constant

3



This general solution awaits an initial condition to determine the value of A. We can absorb the sign
of the absolute into the value for A and find the initial condition.

g − b

m
v0 = A

g − b

m
v = (g − b

m
v0) exp(−m

b
t)

g − (g − b

m
v0) exp(−m

b
t) =

b

m
v

mg

b
− m

b
(g − b

m
v0) exp(−m

b
t) = v

mg

b
+
(
v0 −

m

b
g
)

exp(−m
b
t) = v

Notice that
lim
t→∞

v(t) =
mg

b
,

known as the terminal velocity. If

• If v0 < mg/b, then the object’s velocity increases to the terminal velocity.

• If v0 > mg/b, then the object’s velocity decreases to the terminal velocity.

• The terminal velocity increases with mass and in inversely proportional to distance.

3 Linear Equations

We now look at first order linear differential equation. These equations take the form

a1(x)
dy

dx
+ a0(x)y = b(x). (2)

Let’s begin with an example that we can later generalize.
Consider

x2
dy

dx
+ 2xy = sinx

Notice that the left side is the derivative of a product.

d

dx
(x2y) = sinx

Now integrate both sides ∫
d

dx
(x2y)dx =

∫
sinxdx

x2y = − cosx+ c

y =
− cosx+ c

x2
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This is a general solution. We can then use initial conditions to determine c, the constant of integration.
The key feature for this procedure is for a0 to be the derivative of a1. So

a1(x)
dy

dx
+ a0(x)y = b(x)

a1(x)
dy

dx
+ a′1(x)y = b(x)

d

dx
(a1(x)y) = b(x)∫

d

dx
(a1(x)y)dx =

∫
b(x)dx

a1(x)y = B(x) + c where B(x) is an antiderivative for b(x)

y =
B(x) + c

a1(x)

We shall learn that this procedure can alway be achieved with one extra step. To show this, we first give
the (3) by dividing by a1(x) so that the coefficient in front of the derivative term is 1.

dy

dx
+ P (x)y = Q(x). (3)

So P (x) = a0(x)/a1(x) and Q(x) = b(x)/a1(x).
For the simplest case

dy

dx
+ y = sinx,

our goal is to find a function µ(x) (called the integrating factor) so that

µ(x)
dy

dx
+ µ(x)y = µ(x) sinx,

and a0(x) = µ(x) is the derivative of a1(x) = µ(x)
In other words,

µ′(x) = µ(x).

A solution to this is µ(x) = exp(x). Returning to our equation

exp(x)
dy

dx
+ exp(x)y = exp(x) sin(x)

d

dx
(exp(x)y) = exp(x) sin(x)∫

d

dx
(exp(x)y)dx =

∫
exp(x) sin(x)dx

exp(x)y =
1

2
exp(x)(sinx− cosx) + c (Check this.)

y =
1

2
(sinx− cosx) + c exp(−x)

Exercise 5. Verify that the solution above is an explicit solution to dy
dx + y = sinx.
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Now, let’s se if we can do this in general for (3).

dy

dx
+ P (x)y = Q(x)

µ(x)
dy

dx
+ µ(x)P (x)y = µ(x)Q(x)

Now the condition that a′0(x) = a1(x) yields

µ′(x) = µ(x)P (x)

µ′(x)

µ(x)
= P (x)∫

µ′(x)

µ(x)
dx =

∫
P (x)dx

lnµ(x) =

∫
P (x)dx

µ(x) = exp

(∫
P (x)dx

)
Then,

µ(x)
dy

dx
+ µ(x)P (x)y = µ(x)Q(x)

exp

(∫
P (x)dx

)
dy

dx
+ exp

(∫
P (x)dx

)
P (x)y = exp

(∫
P (x)dx

)
Q(x)

d

dx

(
exp

(∫
P (x)dx

)
y

)
= exp

(∫
P (x)dx

)
Q(x)∫

d

dx

(
exp

(∫
P (x)dx

)
y

)
dx =

∫
exp

(∫
P (x)dx

)
Q(x)dx+ c

exp

(∫
P (x)dx

)
y =

∫
exp

(∫
P (x)dx

)
Q(x)dx+ c

y = exp

(
−
∫
P (x)dx

)(∫
exp

(∫
P (x)dx

)
Q(x)dx+ c

)

In the examples, rather than use the abstract equation directly, we will work with the method, Find µ
and then place it in the the differential equation to solve.

Example 6. Returntng to the equation for the falling body,

m
dv

dt
= mg − bv,

we place it in the form found in (3).
dv

dt
+

b

m
v = g.
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The integrating factor

µ(t) = exp

(∫
b

m
dt

)
= exp

(
b

m
t

)
This give the equation

exp

(
b

m
t

)
dv

dt
+ exp

(
b

m
t

)
b

m
v = exp

(
b

m
t

)
g.

d

dt

(
exp

(
b

m
t

)
v

)
= exp

(
b

m
t

)
g

exp

(
b

m
t

)
v =

∫
exp

(
b

m
t

)
g = exp

(
b

m
t

)
gm

b
+ c

v = exp

(
− b

m
t

)(
exp

(
b

m
t

)
gm

b
+ c

)
v = exp

(
− b

m
t

)(
exp

(
b

m
t

)
gm

b
+ c

)
v =

(
gm

b
+ c exp

(
− b

m
t

))
Example 7. For the differential equation

cos(x)
dy

dx
+ sin(x)y = cos2(x),

we write it in the form (3).
dy

dx
+ tan(x)y = cos(x)

The integrating factor

µ(x) = exp

(∫
tan(x)dx

)
= exp(ln | sec(x)|) = | sec(x)|.

For sec(x) > 0, we have

sec(x)
dy

dx
+ sec(x) tan(x)y = 1

d

dx
(sec(x)y) = 1

sec(x)y = x+ c

y = (x+ c) cos(x)
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