Mathematics 363 - Final Exam

Brief Answers

May 14, 2009

- 1. (a) mean deceleration 4.3, variance of deceleration 10.87333, the covariance of time and deceleration 42.33333
 - (b) deceleration = 0.490 + 0.254 time
 - (c) -0.33
 - (d) 0.254
- 2. (a) $P(S^c) = 0.999$
 - (b) P(T|S) = 0.99
 - (c) $P(T) = 0.99 \times 0.001 + 0.05 \times 0.999 = 0.05094$
 - (d) $P(S|T) = P(T|S)P(S)/P(T) = 0.99 \times 0.001/0.05094 = 0.01943$
 - (e) Reducing false positives by 20% to 0.04. Since most people do not have the flu, improving the test for those without the disease will have a bigger impact.
- 3. (a) The mean is of \bar{F} 440 Hertz and standard deviation of \bar{F} is $2/\sqrt{10}$.
 - (b) For $g(F) = v/\bar{F}$, $g'(F) = -v/F^2$. So, the mean is 343/440 = 0.780 m. $\sigma_{\hat{\lambda}} = (v/F^2) \times \sigma_{\lambda}/\sqrt{10} = (343/440^2) \times 2/\sqrt{10} = 0.00112$. Square this to obtain the variance.
 - (c) Increase the denominator in the expression above decreases.
- 4. (a) area is a trapezoid left is x = 0, right is x = 1/2, bottom is y = 1 and top is y = 1/2 + x
 - (b) 3/8
 - (c) $EX = 1/2 + \theta/12$
 - (d) $\hat{\theta} = 12\bar{X} 6$
 - (e) 1.2
- 5. (a) 0.885. The z score is -1.2. Shade the area to the right of z = -1.2 below the standard normal density curve.
 - (b) The 40% quantile is z = -0.2533. So diameters greater than 12.33.
 - (c) The mean of \bar{X} is 14. The variance is 25/50 = 1/2.
- 6. (a) For p the fraction of of teen girls in Arizona became mothers in a year,

$$H_0: p \ge 0.062$$
 $H_0: p < 0..062$.

- (b) \hat{p} has mean $p_0 = 0.062$ and standard deviation $\sqrt{p_0(1-p_0)/1600} = 0.00607$
- (c) z = -0.2623. The *p*-value is 0.396, too high to reject.
- 7. (a) For μ_w and μ_r the mean weight of wren and robin eggs, respectively,

$$H_0: \mu_r = \mu_w \quad H_0: \mu_r \neq \mu_w$$

- (b) $t = (21.063 22.575)/\sqrt{0.776^2/17 + 0.685^2/16} = -5.942$. This is strong evidence against H_0 .
- (c) No. For the 98% confidence interval, $t^* = 2.467$
- 8. (a) Let p_t be the fraction of the population having blood type t = A, B, AB, O

 $H_0: p_A=0.42, p_B=0.10, p_{AB}=0.04, p_O=0.44, \quad H_1: \text{at least one of the } p_t \text{ differs from these values.}$

(c) The chi-square statistics is 7.7219. The p-value is just above 0.05.