1 Discrete Random Variables

Let \(x_1, x_2, \ldots, x_n \) be observations, the empirical mean,

\[
\bar{x} = \frac{1}{n}(x_1 + x_2 \cdots + x_n).
\]

So, for the observations, 0, 1, 3, 2, 4, 1, 2, 4, 1, 1, 2, 0, 3,

\[
\bar{x} = \frac{24}{13}.
\]

We could also organize these observations and taking advantage of the distributive property of the real numbers, compute \(\bar{x} \) as follows:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(n(x))</th>
<th>(xn(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

For \(g(x) = x^2 \), we can perform a similar computation:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(g(x) = x^2)</th>
<th>(n(x))</th>
<th>(g(x)n(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then,

\[
\overline{g(x)} = \frac{1}{n} \sum_x g(x)n(x) = \frac{66}{13}.
\]
One further notational simplification is to write

\[p(x) = \frac{n(x)}{N} \] for the proportion of observations equal to \(x \), then \(\sum_x g(x)p(x) = \frac{66}{13} \).

So, for a finite sample space \(S = \{s_1, s_2, \ldots, s_N\} \), we can define the expectation or the expected value of a random variable \(X \) by

\[EX = \sum_{j=1}^{N} X(s_j)P\{s_j\}. \tag{1} \]

In this case, two properties of expectation are immediate:

1. If \(X(s) \geq 0 \) for every \(s \in S \), then \(EX \geq 0 \)
2. Let \(X_1 \) and \(X_2 \) be two random variables and \(c_1, c_2 \) be two real numbers, then

\[E[c_1X_1 + c_2X_2] = c_1EX_1 + c_2EX_2. \]

Taking these two properties, we say that expectation is a **positive linear functional**. We can generalize the identity in (1) to transformations of \(X \).

\[Eg(X) = \sum_{j=1}^{N} g(X(s_j))P\{s_j\}. \]

Again, we can simplify

\[
Eg(X) = \sum_x \sum_{s: X(s) = x} g(X(s))P\{s\} = \sum_x \sum_{s: X(s) = x} g(x)P\{s\} \\
= \sum_x g(x) \sum_{s: X(s) = x} P\{s\} = \sum_x g(x)P\{X = x\} = \sum_x g(x)f_X(x)
\]

where \(f_X \) is the probability density function for \(X \).

Example 1. Flip a biased coin twice and let \(X \) be the number of heads. Then,

\[
\begin{array}{c|c|c|c}
 x & f_X(x) & xf_X(x) & x^2f_X(x) \\
 \hline
 0 & (1-p)^2 & 0 & 0 \\
 1 & 2p(1-p) & 2p(1-p) & 2p(1-p) \\
 2 & p^2 & 2p^2 & 4p^2 \\
\end{array}
\]

Thus, \(EX = 2p \) and \(EX^2 = 2p + 2p^2 \).

Example 2 (Bernoulli trials). Random variables \(X_1, X_2, \ldots, X_n \) are called a sequence of **Bernoulli trials** provided that:

1. Each \(X_i \) takes on two values 0 and 1. We call the value 1 a **success** and the value 0 a **failure**.
2. \(P\{X_i = 1\} = p \) for each \(i \).

3. The outcomes on each of the trials is independent.

For each \(i \),

\[
EX_i = 0 \cdot P\{X_i = 0\} + 1 \cdot P\{X_i = 1\} = 0 \cdot (1 - p) + 1 \cdot p = p.
\]

Let \(S = X_1 + X_2 + \cdots + X_n \) be the total number of successes. A sequence having \(x \) successes has probability

\[
p^x(1 - p)^{n-x}.
\]

In addition, we have

\[
\binom{n}{x}
\]

mutually exclusive sequences that have \(x \) successes. Thus, we have the mass function

\[
f_S(x) = \binom{n}{x} p^x(1 - p)^{n-x}, \quad x = 0, 1, \ldots
\]

The fact that \(\sum_x f_S(x) = 1 \) follows from the binomial theorem. Consequently, \(S \) is called a \textbf{binomial random variable}.

Using the linearity of expectation

\[
ES = E[X_1 + X_2 + \cdots + X_n] = p + p + \cdots + p = np.
\]

1.1 Discrete Calculus

Let \(h \) be a function on whose domain and range are integers. The (positive) \textbf{difference operator}

\[
\Delta_+ h(x) = h(x + 1) - h(x).
\]

If we take, \(h(x) = (x)_k = x(x-1) \cdots (x-k+1) \), then

\[
\Delta_+ (x)_k = (x+1)x \cdots (x-k+2) - x(x-1) \cdots (x-k+1) \\
= ((x+1) - (x-k+1))(x(x-1) \cdots (x-k+1)) = k(x)_{k-1}.
\]

Thus, the falling powers and the difference operator plays a role similar to the power function and the derivative,

\[
\frac{d}{dx} x^k = kx^{k-1}.
\]

To find the analog to the integral, note that

\[
h(n+1) - h(0) = (h(n+1) - h(x)) + (h(x) - h(x-1)) + \cdots + (h(2) - h(1)) + (h(1) - h(0))
\]

\[
= \sum_{x=0}^{n} \Delta_+ h(x).
\]

For example,

\[
\sum_{x=1}^{n} (x)_k = \frac{1}{k+1} \sum_{x=1}^{n} \Delta_+ (x)_{k+1} = \frac{1}{k+1} (n+1)_{k+1}.
\]
Exercise 3. Use the ideas above to find the sum to a geometric series.

Example 4. Let X be a discrete uniform random variable on $S = \{1, 2, \ldots, n\}$, then

$$EX = \frac{1}{n} \sum_{x=1}^{n} x = \frac{1}{n} \sum_{x=1}^{n} (x) = \frac{1}{n} \cdot \frac{(n+1)n}{2} = \frac{n+1}{2}.$$

Using the difference operator, $EX(X-1)$ is usually easier to determine for integer valued random variables than EX^2. In this example,

$$EX(X-1) = \sum_{j=1}^{n} x(x-1) = \frac{1}{n} \sum_{j=2}^{n} (x)_2$$

$$= \frac{1}{3n} \sum_{j=2}^{n} \Delta(x)_3 = \frac{1}{3n} (n+1)_3 = \frac{1}{3n} (n+1)n(n-1) = \frac{n^2-1}{3}$$

We can find $EX^2 = EX(X-1) + EX$ by using the linearity of expectation.

1.2 Geometric Interpretation of Expectation

![Figure 1: Graphical illustration of EX, the expected value of X, as the area above the cumulative distribution function and below the line $y = 1$ computed two ways.](image)

We can realize the computation of expectation for a nonnegative random variable

$$EX = x_1P\{X = x_1\} + x_2P\{X = x_2\} + x_3P\{X = x_3\} + x_4P\{X = x_4\} + \cdots$$
as the area illustrated in Figure 1. Each term in this sum can be seen as a horizontal rectangle of width \(x_j \) and height \(P\{X = x_j\} \). This **summation by parts** is the analog in calculus to integration by parts.

We can also compute this area by looking at the vertical rectangle. The \(j \)-th rectangle has width \(x_{j+1} - x_j \) and height \(P\{X > x_j\} \). Thus,

\[
EX = \sum_{j=0}^{\infty} (x_{j+1} - x_j) P\{X > x_j\}.
\]

If \(X \) take values in the nonnegative integers, then \(x_j = j \) and

\[
EX = \sum_{j=0}^{\infty} P\{X > j\}.
\]

Example 5 (geometric random variable). For a geometric random variable based on the first heads resulting from successive flips of a biased coin, we have that \(\{X > j\} \) precisely when the first \(j \) coin tosses results in tails

\[
P\{X > j\} = (1 - p)^j
\]

and thus

\[
EX = \sum_{j=0}^{\infty} P\{X \geq j\} = \sum_{j=0}^{\infty} (1 - p)^j = \frac{1}{1 - (1 - p)} = \frac{1}{p}.
\]

Exercise 6. Choose \(x_j = (j)_k \) to see that

\[
E(X)_{k+1} = \sum_{j=0}^{\infty} (j)_k P\{X \geq j\}.
\]

2 Continuous Random Variables

For \(X \) a continuous random variable with density \(f_X \), consider the discrete random variable \(\tilde{X} \) obtained from \(X \) by rounding down to the nearest multiple of \(\Delta x \). (\(\Delta \) has a different meaning here than in the previous section). Denoting the mass function of \(\tilde{X} \) by \(f_{\tilde{X}}(\tilde{x}) = P\{\tilde{x} \leq X < \tilde{x} + \Delta x\} \), we have

\[
Eg(\tilde{X}) = \sum_{\tilde{x}} g(\tilde{x}) f_{\tilde{X}}(\tilde{x}) = \sum_{\tilde{x}} g(\tilde{x}) P\{\tilde{x} \leq X < \tilde{x} + \Delta x\}
\]

\[
\approx \sum_{\tilde{x}} g(\tilde{x}) f_x(\tilde{x}) \Delta x \approx \int_{-\infty}^{\infty} g(x) f_X(x) \, dx.
\]

Taking limits as \(\Delta x \to 0 \) yields the identity

\[
Eg(X) = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx. \tag{2}
\]

For the case \(g(x) = x \), then \(\tilde{X} \) is a discrete random variable and so the area above the distribution function and below 1 is equal to \(E\tilde{X} \). As \(\Delta x \to 0 \), the distribution function moves up and in the limit the area is equal to \(EX \).
Example 7. One solution to finding $Eg(X)$ is to finding f_y, the density of $Y = g(X)$ and evaluating the integral

$$EY = \int_{-\infty}^{\infty} yf_Y(y) \, dy.$$

However, the direct solution is to evaluate the integral in (2). For $y = g(x) = x^p$ and X, a uniform random variable on $[0, 1]$, we have for $p > -1$,

$$EX^p = \int_0^1 x^p \, dx = \frac{1}{p+1} x^{p+1} \bigg|_0^1 = \frac{1}{p+1}.$$

Integration by parts give an alternative to computing expectation. Let X be a positive random variable and g an increasing function.

$$u(x) = g(x) \quad v(x) = -(1 - F_X(x))$$

$$u'(x) = g'(x) \quad v(x) = f_X(x) = F'_X(x).$$

Then,

$$\int_b^0 g(x)f_X(x) \, dx = -g(x)(1 - F_X(x)) \bigg|_0^b + \int_0^b g'(x)(1 - F_X(x)) \, dx$$

Now, substitute $F_X(0) = 0$, then the first term,

$$g(x)(1 - F_X(x)) \bigg|_0^b = g(b)(1 - F_X(b)) = \int_b^\infty g(b)f_X(x) \, dx \leq \int_b^\infty g(x)f_X(x) \, dx$$

Because, $\int_0^\infty g(x)f_X(x) \, dx < \infty$

$$\int_b^\infty g(x)f_X(x) \, dx \rightarrow 0 \text{ as } b \rightarrow \infty.$$

Thus,

$$Eg(X) = \int_0^\infty g'(x)P\{X > x\} \, dx.$$

For the case $g(x) = x$, we obtain

$$EX = \int_0^\infty P\{X > x\} \, dx.$$

Exercise 8. For the identity above, show that it is sufficient to have $|g(x)| < h(x)$ for some increasing h with $Eh(X)$ finite.

Example 9. Let T be an exponential random variable, then for some β, $P\{T > t\} = \exp(-t/\beta)$. Then

$$ET = \int_0^\infty P\{T > t\} \, dt = \int_0^\infty \exp(-t/\beta) \, dt = -\beta \exp(-t/\beta) \bigg|_0^\infty = 0 - (-\beta) = \beta.$$

Example 10. For a normal random variable

$$EZ = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z \exp(-\frac{z^2}{2}) \, dz = 0$$
because the integrand is an odd function.

\[EZ^2 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z^2 \exp\left(-\frac{z^2}{2}\right) dz \]

To evaluate this integral, integrate by parts

\[
\begin{align*}
 u(z) &= z & v(z) &= -\exp\left(-\frac{z^2}{2}\right) \\
 u'(z) &= 1 & v'(z) &= z \exp\left(-\frac{z^2}{2}\right)
\end{align*}
\]

Thus,

\[EZ^2 = \frac{1}{\sqrt{2\pi}} \left(-z \exp\left(-\frac{z^2}{2}\right) \bigg|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \exp\left(-\frac{z^2}{2}\right) dz \right). \]

Use l'Hôpital’s rule to see that the first term is 0 and the fact that the integral of a probability density function is 1 to see that the second term is 1.

Using the Riemann-Stieltjes integral we can write the expectation in a unified manner.

\[Eg(X) = \int_{-\infty}^{\infty} g(x) dF_X(x). \]

This uses limits of Riemann-Stieltjes sums

\[R(g,F) = \sum_{i=1}^{n} g(x_i) \Delta F_X(x_i) \]

For discrete random variables, \(\Delta F_X(x_i) = F_X(x_{i+1}) - F_X(x_i) = 0 \) if the \(i \)-th interval does not contain a possible value for the random variable \(X \). Thus, the Riemann-Stieltjes sum converges to

\[\sum_{x} g(x) f_X(x) \]

for \(X \) having mass function \(f_X \).

For continuous random variables, \(\Delta F_X(x_i) \approx f_X(x_i) \Delta x \). Thus, the Riemann-Stieltjes sum is approximately a Riemann sum for the product \(g \cdot f_X \) and converges to

\[\int_{-\infty}^{\infty} g(x) f_X(x) dx \]

for \(X \) having mass function \(f_X \).