
Topic 7: Expected Values

October 1, 2009

1 Discrete Random Variables
Recall for a data set x1, x2, . . . , xn, we can compute the sample average of a function of the data

h(x) =
∑
x

h(x)p(x).

where p(x) is the proportion of observations taking the value x
Analogously, for a finite sample space Ω = {ω1, ω2, . . . , ωN}, we can define the expectation or the expected

value of a random variable X by

EX =
N∑
j=1

X(ωj)P{ωj}. (1)

In this case, two properties of expectation are immediate:

1. If X(ω) ≥ 0 for every ω ∈ Ω, then EX ≥ 0.

2. Let X1 and X2 be two random variables and c1, c2 be two real numbers, then

E[c1X1 + c2X2] = c1EX1 + c2EX2.

Taking these two properties, we say that expectation is a positive linear functional. Another example of a postive
linear functional is the integral

f 7→
∫ b

a

f(x) dx

that takes a positive function and gives the area between the graph of f and the x-axis between the vertical lines x = a
and x = b.

Example 1. Roll one die. Then Ω = {1, 2, 3, 4, 5, 6}. Let X be the value on the die. So, X(ω) = ω. If the die is fair,
P{ω} = 1/6 and

EX = 1 · 1
6

+ 2 · 1
6

+ 3 · 1
6

+ 4 · 1
6

+ 5 · 1
6

+ 6 · 1
6

=
21
6

=
7
2
.

If X1 and X2 are the values on two rolls of a die, then the expected value of the sum

E[X1 +X2] = EX1 + EX2 =
7
2

+
7
2

= 7.

We can generalize the identity in (1) to

Eg(X) =
N∑
j=1

g(X(ωj))P{ωj}.
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As before, we can simplify

Eg(X) =
∑
x

∑
ω;X(ω)=x

g(X(ω))P{ω} =
∑
x

∑
ω;X(ω)=x

g(x)P{ω}

=
∑
x

g(x)
∑

ω;X(ω)=x

P{ω} =
∑
x

g(x)P{X = x} =
∑
x

g(x)fX(x)

where fX is the probability mass function for X .
A similar formula holds if we have a vector of random variables X = (X1, X2, . . . , Xn), fX , the joint probability

mass function and g a real-valued function of x = (x1, x2, . . . , xn).

Example 2. Flip a biased coin twice and let X be the number of heads. Then,

x fX(x) xfX(x) x2fX(x)
0 (1− p)2 0 0
1 2p(1− p) 2p(1− p) 2p(1− p)
2 p2 2p2 4p2

2p 2p+ 2p2

Thus, EX = 2p and EX2 = 2p+ 2p2.

2 Counting
Suppose that two experiments are to be performed.

• Experiment 1 can have n1 possible outdomces and

• for each outcome of experiment 1, experiment 2 has n2 possible outcomes.

Then together there are n1 × n2 possible outcomes.

Exercise 3. Generalize this basic principle of counting to k experiments.

2.1 Permutations
Assume that we have a collection of n objects and we wish to make an ordered arrangement of k of these objects.
Using the generalized principle of counting, the number of possible outcomes is

n× (n− 1)× · · · × (n− k + 1).

We will write this as (n)k and say n falling k.

Example 4 (birthday problem). In a list the birthday of k people, there are 365k possible lists (ignoring leap year
births) and

(365)k

possible lists with no date written twice. Thus, the probability, under equally likely outcomes, that no two people on
the list have the same birthday is

(365)k
365k

and, under equally likely outcomes,

P{at least one pair of individuals share a birthday = 1− (365)k
365k

For example
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k 5 10 15 18 20 22 23 25 30 40 50 100
probability 0.027 0.117 0.253 0.347 0.411 0.476 0.507 0.569 0.706 0.891 0.970 0.994

The R code and output

> prob=rep(1,30)
> for (n in 2:30){prob[n]=prob[n-1]*(365-n+1)/365}
> data.frame(1-prob)

X1...prob
1 0.000000000
2 0.002739726
3 0.008204166
4 0.016355912
5 0.027135574
6 0.040462484
7 0.056235703
8 0.074335292
9 0.094623834
10 0.116948178
11 0.141141378
12 0.167024789
13 0.194410275
14 0.223102512
15 0.252901320
16 0.283604005
17 0.315007665
18 0.346911418
19 0.379118526
20 0.411438384
21 0.443688335
22 0.475695308
23 0.507297234
24 0.538344258
25 0.568699704
26 0.598240820
27 0.626859282
28 0.654461472
29 0.680968537
30 0.706316243

The ordered arrangement of all n objects is

(n)n = n× (n− 1)× · · · × 1 = n!,

n factorial. We take 0! = 1.

Exercise 5.
(n)k =

n!
(n− k)!

.

2.2 Combinations
Write (

n

k

)
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for the number of number of different groups of k objects that can be chosen from a collection of n.

Theorem 6. (
n

k

)
=

(n)k
k!

=
n!

k!(n− k)!
.

Here is an example of a combinatorial proof.

We will form an ordered arrangement of k objects from a collection of n by:

1. First choosing a group of k objects.
The number of possible outcomes for this experiment is

(
n
k

)
.

2. Then, arranging this k objects in order.
The number of possible outcomes for this experiment is k!.

So, by the basic principle of counting,

(n)k =
(
n

k

)
× k!.

Now complete the proof by dividing both sides by k!.

Exercise 7 (binomial theorem).

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k.

Exercise 8.
(
n
1

)
=
(
n
n−1

)
= n.

(
n
k

)
=
(
n

n−k
)
. Thus, we set

(
n
n

)
=
(
n
0

)
= 1

The number of combinations is computed in R using choose. For example,
(
8
5

)
> choose(8,5)
[1] 56

Theorem 9 (Pascal’s triangle). (
n

k

)
=
(
n− 1
k − 1

)
+
(
n− 1
k

)
.

To establish this identity, distinguish one of the n objects in the collection.

1. If the distinguished object is the group, then we must choose k − 1 from the remaining n − 1 objects. Thus,(
n−1
k−1

)
groups have the distinguished object.

2. If the distinguished object is not the group, then we must choose k from the remaining n − 1 objects. Thus,(
n−1
k

)
groups do not have the distinguished object.

3. These choices of groups of no overlap,

Example 10 (Bernoulli trials). Random variables X1, X2, . . . , Xn are called a sequence of Bernoulli trials provided
that:

1. Each Xi takes on two values 0 and 1. We call the value 1 a success and the value 0 a failure.

2. P{Xi = 1} = p for each i.

3. The outcomes on each of the trials is independent.
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For each i,
EXi = 0 · P{Xi = 0}+ 1 · P{Xi = 1} = 0 · (1− p) + 1 · p = p.

Let S = X1 +X2 + · · ·+Xn be the total number of successes. A sequence having x successes has probability

px(1− p)n−x.

In addition, we have (
n

x

)
mutually exclusive sequences that have x successes. Thus, we have the mass function

fS(x) =
(
n

x

)
px(1− p)n−x, x = 0, 1, . . .

The fact that
∑
x fS(x) = 1 follows from the binomial theorem. Consequently, S is called a binomial random

variable.
Using the linearity of expectation

ES = E[X1 +X2 · · ·+Xn] = p+ p+ · · ·+ p = np.

3 Continuous Random Variables
For X a continuous random variable with density fX , consider the discrete random variable X̃ obtained from X by
rounding down to the nearest multiple of ∆x. Denoting the mass function of X̃ by fX̃(x̃) = P{x̃ ≤ X < x̃+ ∆x},
we have

Eg(X̃) =
∑
x̃

g(x̃)fX̃(x̃) =
∑
x̃

g(x̃)P{x̃ ≤ X < x̃+ ∆x}

≈
∑
x̃

g(x̃)fx(x̃)∆x ≈
∫ ∞
−∞

g(x)fX(x) dx.

Taking limits as ∆x→ 0 yields the identity

Eg(X) =
∫ ∞
−∞

g(x)fX(x) dx. (2)

As in the case of discrete random variables, a similar formula holds if we have a vector of random variables X =
(X1, X2, . . . , Xn), fX , the joint probability density function and g a real-valued function of x = (x1, x2, . . . , xn).
The expectation in this case is an n-fold Riemann integral.

Integration by parts give an alternative to computing expectation. Let X be a positive random variable and g an
increasing function.

u(x) = g(x) v(x) = −(1− FX(x))
u′(x) = g′(x) v(x) = fX(x) = F ′X(x).

Then, ∫ b

0

g(x)fX(x) dx = −g(x)(1− FX(x))
∣∣∣b
0

+
∫ b

0

g′(x)(1− FX(x)) dx

Now, substitute FX(0) = 0, then the first term,

g(x)(1− FX(x))
∣∣∣b
0

= g(b)(1− FX(b)) =
∫ ∞
b

g(b)fX(x) dx ≤
∫ ∞
b

g(x)fX(x) dx
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Because,
∫∞
0
g(x)fX(x) dx <∞,

∫∞
b
g(x)fX(x) dx→ 0 as b→∞. Thus,

Eg(X) =
∫ ∞

0

g′(x)P{X > x} dx.

For the case g(x) = x, we obtain

EX =
∫ ∞

0

P{X > x} dx.

In words, the expected value is the area between the cumulative distribution function and the line y = 1 or the area
under the survival function. For the case of the dart board, we see that the area under the distribution function between
y = 0 and y = 1 is

∫ 1

0
x2dx = 1/3, so the area below the survival function EX = 2/3.
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Example 11. Let T be an exponential random variable, then for some λ, P{T > t} = exp−(λt). Then

ET =
∫ ∞

0

P{T > t} dt =
∫ ∞

0

exp−(λt) dt = − 1
λ

exp−(λt)
∣∣∣∞
0

= 0− (− 1
λ

) =
1
λ
.

Example 12. For a standard normal random variable, the probability density function

φ(z) =
1√
2π

exp(−z
2

2
), z ∈ R.

The expectation

EZ =
1√
2π

∫ ∞
−∞

z exp(−z
2

2
) dz = 0

because the integrand is an odd function.
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EZ2 =
1√
2π

∫ ∞
−∞

z2 exp(−z
2

2
) dz

To evaluate this integral, integrate by parts

u(z) = z v(z) = − exp(− z
2

2 )
u′(z) = 1 v′(z) = z exp(− z

2

2 )

Thus,

EZ2 =
1√
2π

(
−z exp(−z

2

2
)
∣∣∣∞
−∞

+
∫ ∞
−∞

exp(−z
2

2
) dz

)
.

Use l’Hôpoital’s rule to see that the first term is 0 and the fact that the integral of a probability density function is 1 to
see that the second term is 1.

Several choice for g have special names.

1. If g(x) = x, then µ = EX is call variously the mean, and the first moment.

2. If g(x) = xk, then EXk is called the k-th moment.

3. If g(x) = (x)k, where (x)k = x(x− 1) · · · (x− k + 1), then E(X)k is called the k-th factorial moment.

4. If g(x) = (x− µ)k, then E(X − µ)k is called the k-th central moment.

5. The second central moment σ2
X = E(X − µ)2 is called the variance. Note that

Var(X) = E(X − µ)2 = EX2 − 2µEX + µ2 = EX2 − 2µ2 + µ2 = EX2 − µ2.

6. The third moment of the standardized random variable is called the skewness.

7. The fourth moment of the standardized is called the kurtosis.

8. If X is Rd-valued and g(x) = ei〈θ,x〉, where 〈·, ·〉 is the standard inner product, then φ(θ) = Eei〈θ,X〉 is called
the Fourier transform or the characteristic function. The characteristic function receives its name from the
fact that the mapping from the distribution to this function is one-to-one.

9. Similarly, if X is Rd-valued and g(x) = e〈θ,x〉, then m(θ) = Ee〈θ,X〉 is called the Laplace transform or the
moment generating function. The moment generating function also gives a one-to-one mapping. However,
not every distribution has a moment generating function. To justify the name, consider the one-dimensional case
m(θ) = EeθX . Then,

m′(θ) = EXeθX , m′(0) = EX

m′′(θ) = EX2eθX , m′′(0) = EX

...
...

m(k)(θ) = EXkeθX , m(k)(0) = EXk.

10. If X is Z+-valued and g(x) = zx, then ρ(z) = EzX =
∑∞
x=0 P{X = x}zx is called the (probability)

generating function. For N-valued random variable, the probability generating function is used. It allows us to
use ideas from complex variable and power series to perform computations.

Exercise 13. Var(aX + b) = a2Var(X).
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4 Independence
If X1 and X2 are independent discrete random variables and g1 and g2 are real valued functions, then

E[g1(X1)g2(X2)] =
∑
x1

∑
x2

g1(x1)g2(x2)fX1,X2(x1, x2) =
∑
x1

∑
x2

g1(x1)g2(x2)fX1(x1))fX2(x2)

=

(∑
x1

g1(x1)fX1(x1)

)(∑
x2

g2(x2)fX2(x2)

)
= E[g1(X1)] · E[g2(X2)]

A similar identity that the expectation of the product of two independent random variables equals to the product of the
expectation holds for continuous random variables.

For example, if X1 and X2 are random variables with respective means µ1 and µ2, then

Var(X1 +X2) = E[((X1 +X2)− (µ1 + µ2))2] = E[((X1 − µ1) + (X2 − µ2))2]
= E[(X1 − µ1)2] + 2E[(X1 − µ1)(X2 − µ2)] + E[(X2 − µ2)2]
= Var(X1) + 2Cov(X,Y ) + Var(X2).

where the covariance Cov(X,Y ) = E[(X1 − µ1)(X2 − µ2)].
If X1 and X2 are independent, then Cov(X,Y ) = E[(X1−µ1)] ·E[(X2−µ2)] and the variance of the sum is the

sum of the variances.
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