Topic 7: Random Variables and Distribution Functions*

September 22 and 27, 2011

1 Introduction

From the universe of possible information, we ask

a question. To address this question, we might col- statistics probability
lect quantitative data and organize it, for example,
using the empirical cumulative distribution func- universe of sample space - ()
tion. With this information, we are able to com- information and probability - P
pute sample means, standard deviations, medians [} [}
and so on. _ . » ask a question and define a random

Similarly, even a fairly simple probability collect data variable X
model can have an enormous number of outcomes.
For example, flip a coin 332 times. Then the num- 4 4
ber of outcomes is more than a google (10!00) organize into the organize into the
— a number 100 quintillion times the number of empirical cumulative cumulative
elementary particles in the known universe. We distribution function | distribution function
may not be interested in an analysis that consid- ) )
ers separately every possible outcome but rather A

: . compute sample compute distributional

some simpler concept like the number of heads or . .
the longest run of tails. To focus our attention on means and variances means and variances
the issues of interest, we take a given outcome and

compute a number. This function is called a ran-

dom variable. Table I: Corresponding notions between statistics and probability. Examining

probabilities models and random variables will lead to strategies for the collection

.e . . f data and inf from these data.
Definition 1. A random variable is a real valued °©' “% 2" mierence trom these data

function from the sample space.
X:Q-—-R.

Generally speaking, we shall use capital letters near the end of the alphabet, e.g., X, Y, Z for random variables.
The range of a random variable is sometimes called the state space.

Exercise 2. Roll a die twice and consider the sample space Q = {(i,7);41,5 = 1,2,3,4,5,6} and give some random
variables on ).

Exercise 3. Flip a coin 10 times and consider the sample space S, the set of 10-tuples of heads and tails, and give
some random variables on ().

We often create new random variables via composition of functions:

w— X(w) = f(X(w))

*(© 2011 Joseph C. Watkins
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Thus, if X is a random variable, then so are

X2 expaX, VX241, tan®’X [X|
and so on. The last of these, rounding down X to the nearest integer, is called the floor function.

Exercise 4. How would we use the floor function to round down a number x to n decimal places.

2 Distribution Functions

Having define a random variable of interest, X, the question typically becomes, “What are the chances that X lands
in some subset of values A?” For example,

A = {odd numbers}, A = {greaterthan 1}, or A = {between 2 and 7}.

We write
{we ;X (w) e A} (1)

to indicate those outcomes w which have X (w), the value of the random variable, in the subset A. We shall often
abbreviate (1) to the shorter statement { X € A}. Thus, for the example above, we may write the events

{X is an odd number}, {X is greater than 1} = {X > 1}, {Xisbetween2and7}={2< X <7}

to correspond to the three choices above for the subset A.

Many of the properties of random variables are not concerned with the specific random variable X given above,
but rather depends on the way X distributes its values. This leads to a definition in the context of random variables
that we saw previously with quantitive data..

Definition 5. A (cumulative) distribution function of a random variable X is defined by
Fx(z) = P{w € Q; X(w) < z}.

Recall that with a data set, we called the analogous notion the empirical cumulative distribution function. Using
the abbreviated notation above, we shall typically write the less explicit expression

Fx(z)=P{X <z}
for the distribution function.
Exercise 6. Show that
1. {XeB}*={X € B}
2. Forsets B1,Bo, ...,
Utx e B} ={x el B}
For the complement of {X < z}, we have the survival function
Fx(r)=P{X >z} =1-P{X <z} =1- Fx(z).
Choose a < b, then the event {X < a} C {X < b}. Their set theoretic difference

(X <B\{X <al={a<X<bl.
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In words, the event that X is less than or equal to b but not less than or equal to a is the event that X is greater than a
and less than or equal to b. Consequently, by the difference rule for probabilities,

Pla< X <b}=P{X <b\ {X <a}) = P{X < b} — P{X < a} = Fx(b) — Fx(a).

Thus, we can compute the probability that a random variable takes values in an interval by subtracting the distri-
bution function evaluated at the endpoints of the intervals. Care is needed on the issue of the inclusion or exclusion of
the endpoints of the interval.

Example 7. To give the cumulative distribution function for X, the sum of the values for two rolls of a die, we start
with the table

x | 2 3 4 5 6 7 8 9 10 11 12
P{X =z} | 1736 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

and create the graph.

A
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-
-
3/4
-
-
172 4
-
1/4 *
-
-
-
T T T T T T T T T T T T -
I 2 3 4 5 6 7 8 9 10 11 12

Figure 1: Graph of F'x, the cumulative distributtion function for the sum of the values for two rolls of a die.

If we look at the graph of this cumulative distribution function, we see that it is constant in between the possible
values for X and that the jump size at z is equal to P{X = x}. In this example, P{X = 5} = 4/36, the size of the
jump at = 5. In addition,

Fx(5)~ Fx(2) =P{2< X <5} = P{X =3} + P{X =4} + P{X =5} = ) P{X ==z}
2<x<H
2 3 4 9

36 736 736 36

We shall call a random variable discrete if it has a finite or countably infinite state space. Thus, we have in general
that:

Pla<X<b}= > P{X=uz}.

a<z<b
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Exercise 8. Let X be the number of heads on three independent flips of a biased coin that turns ups heads with
probability p. Give the cumulative distribution function F'x for X. Use R to give a plot of Fx.

Exercise 9. Let X be the number of spades in a collection of three cards. Give the cumulative distribution function
for X. Use R to plot this function.

Exercise 10. Find the cumulative distribution function of Y = X3 in terms of Fx, the distribution function for X.

3 Properties of the Distribution Function

A distribution function F'x has the following properties:

1. Fx is nondecreasing.
Let 21 < 2o, then {X < z1} C {X < 2} and by the monotonicity rule for probabilities

P{X <21} < P{X <z}, orwritten in terms of the distribution function, Fx (z1) < Fx(z2)

2. limg 00 Fx(z) = 1.
Let x,, — oo be an increasing sequence. Then z; < zo < - --

(X <m}c{X<m}cC--.

Thus,

For each outcome w, eventually, for some n, X (w) < z,,, and
Ux <z} =0
n=1

Now, use the first continuity property of probabilities.

3. limy— oo Fx(z) = 0.
Let x,, — —oo be a decreasing sequence. Then z1 > x5 > - - -

{(X <z} o{X <z} D+

Thus,
PIX<:}>P{X <wmo} >

For each outcome w, eventually, for some n, X (w) < x,,, and
ﬂ {X <z} =0.
n=1

Now, use the second continuity property of probabilities.

The cumulative distribution function F'x of a discrete random variable X is con-
stant except for jumps. At the jump, F'x is right continuous,

lim Fx(z)= Fx(xo). T oe 05 9 7 o oz 0% o8 05 1
Tt Figure 2: Dartboard.
Exercise 11. Prove the statement concerning the right continuity of the distribution function from the continuity

property of a probability.

Definition 12. A continuous random variable has a cumulative distribution function Fx that is differentiable.
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So, distribution functions for continuous random random vari-
ables increase smoothly. To show how this can occur, we will de-
velop an example of a continuous random variable.

1.0

Example 13. Consider a dartboard having unit radius. Assume that
the dart lands randomly uniformly on the dartboard.
Let X be the distance from the center. For x € [0, 1],

0.6

probability

area inside circle of radius z 722 9

F —P{X<z)= =1z
x (2) (X <} area of circle S E

0.2

Thus, we have the distribution function

0.0

02 lf.%‘ < 0’ 0.0 015 110
Fx(z)=< z* if0<z<1, .
1 ifz>1. Figure 3: Cumulative distribution function for the dart-

board random variable.

The first line states that X cannot be negative. The third states that X must be below 1, and the middle lines
describes how X distributes is values between 0 and 1. For example,

1 1
Fx (2> =1
indicates that with probability 1/4, the dart will land within 1/2 unit of the center of the dartboard.

Exercise 14. An exponential random variable X has cumulative distribution function

0 ife <0
= < = -7
Fx(w) = PAX <z} { 1—exp(—Az) ifx>0
for some \ > 0. Show that Fx has the properties of a distribution function.
Its value at  can be computed in R using the command pexp (x, 0.1) for A\ = 1/10 and drawn using

> curve (pexp(x,0.1),0,80)

1.0

0.8

pexp(x, 0.1)
0.6

0.4

0.2
Il

0.0

Figure 4: Cumulative distribution function for afi exponential random variable with A\ = 1/10.

Exercise 15. The time until the next bus arrives is an exponential random variable with \ = 1/10 minutes. A person
waits for a bus at the bus stop until the bus arrives, giving up if when the wait reaches 20 minutes. Give the cumulative
distribution function for T the time that the person remains at the bus station and sketch a graph.
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Even though the cumulative distribution function is defined for every random variable, we will often use other
characterizations, namely, the mass function for discrete random variable and the density function for continuous
random variables. Indeed, we typically will introduce a random variable via one of these two functions. In the next
two sections we introduce these two concepts and develop some of their properties.

4 Mass Functions

Definition 16. The (probability) mass function of a discrete random variable X is
fx(z) = P{X = z}.
The mass function has two basic properties:
e fx(x) > 0 forall z in the state space.

° Zw fx(x)=1.

Example 17. Let’s make tosses of a biased coin whose outcomes are independent . We shall continue tossing until we
obtain a toss of heads. Let X denote the random variable that gives the number of tails before the first head. Let p
denote the probability of heads in any given toss. Then

fx(0) = P{X =0} = P{H} =p

fx(1) = P{X =1} = P{TH} = (1 - p)p
fx(2) = P{X =2} = P{TTH} = (1-p)*p

fx(@)=P{X=z}=P{T---TH} =(1-p)°p

So, the probability mass function fx(x) = (1 — p)*p. Because the terms in this mass function form a geometric
sequence, X is called a geometric random variable. Recall that a geometric sequence c,cr,cr?, ..., cr™ has sum

c(1 —rmth)

Sp=cHerter’ 4 for™ =
1—7r

forr #£ 1. If |r| < 1, then the infinite sum

cter+er’4+ -4+ = lim s, = .
n—o0 —-r

In this situation the ratio r = 1 — p. Consequently, for positive integers a and b,

b

Pla<X<bl= ) (1-pp=0-p)p+-+(1-p)'p
r=a+1

_ (- P)a;ip(zilp; p)"*'p = (1-p)*t! — (1 —p)H!

Exercise 18. Establish the formula above for s,,.

The mass function and the cumulative distribution function for the geometric random variable with parameter
p = 2/3 can be found in R by writing

> x<-c(0:10)
> f<-dgeom(x,1/3)
> F<-pgeom(x,1/3)
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The initial d indicates density and p indicates the probability from the distribution function.

> data.frame(x, f,F)

X f F
1 0 0.333333333 0.3333333
2 1 0.222222222 0.5555556
3 2 0.148148148 0.7037037
4 3 0.098765432 0.8024691
5 4 0.065843621 0.8683128
6 5 0.043895748 0.9122085
7 6 0.029263832 0.9414723
8 7 0.019509221 0.9609816
9 8 0.013006147 0.9739877
10 9 0.008670765 0.9826585
11 10 0.005780510 0.9884390

Exercise 19. Check that the jumps in the cumulative distribution function for the geometric random variable above is
equal to the values of the mass function.

We can simulate 100 geometric random variables with parameter p = 1/3 using rgeom (100, 1/3).
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Figure 5: Histogram of 100 and 10,000 simulated geometric random variables with p = 1/3. Note that the histogram looks much more like a
geometric series for 10,000 simulations. We shall see later how this relates to the law of large numbers.

5 Density Functions
Definition 20. For X a random variable whose distribution function F'x has a derivative. The function fx satisfying
FX (’JS) = / fx(t) dt

is called the probability density function and X is called a continuous random variable.

By the fundamental theorem of calculus, the density function is the derivative of the distribution function.

fr(z) = Tim Fx(z + Ax) — Fx(x)

= [} .
Az—0 Ax x(#)
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In other words,
Fx(x+ Az) — Fx(x) = fx(x)Az.

We can compute probabilities by evaluating definite integrals

b
P{G<X Sb}:Fx(b)—Fx(a) :/ fx(t) dt.

The density function has two basic properties that mirror the prop-
erties of the mass function:

e fx(z) > 0for all x in the state space.

o [T [fx(z)dz=1.

Return to the dart board example, letting X be the distance from
the center of a dartboard having unit radius. Then, °

| . L L L .
3 b

Plr < X < 24Az) = Fy(z+Az)—Fx (2) ~ 2 Ar = 2rAx Figure 6: The probability P{a < X < b} is the area
{ < St } X( T ) X( ) fX( ) under the density function, above the = axis between y =

. aandy = b.
and X has density
0 ifz <0,
fx(@)=<¢2z if0<z<l,
0 ifz > 1.

Exercise 21. Let fx be the density for a random variable X and pick a number xo. Explain why P{X = x¢} = 0.

Example 22. Density functions do not need to be bounded, for example, if we take

0 if x <0,
0 if 1 <.

Then, to find the value of the constant ¢, we compute the integral

1, . \[1
1: _— t:26 t) :26.
[ =2,
Soc=1/2.

For0<a<b<l,

P{a<X§b}=/b1dt=\/ib:\/5—\/5.

a 2Vt

Exercise 23. Give the cumulative distribution function for the random variable in the previous example.

Exercise 24. Let X be a continuous random variable with density fx, then the random variable Y = aX + b has
denisty
1 y—>
)= —fx|—
|al a
(Hint: Begin with the definition of the cumulative distribution function Fy for'Y. Consider the cases a > 0 and a < 0
separately.)
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6 Joint Distributions

Because we will collect data on several observations, we must, as well, consider more than one random variable at a
time in order to model our experimental procedures. Consequently, we will expand on the concepts above to the case
of multiple random variables and their joint distribution. For the case of two random variables, this means looking at
the probability of

P{Xl S Al,XQ S Ag}

For discrete random variables take A; = {21} and Ay = {x2} and define the joint probability mass function
fx1.x, (21, 22) = P{X1 = 21, Xo = 72}

For continuous random variables, we consider A; = (x1,z1 + Axq] and Ay = (z2, 22 + Axs] and ask that for
some function fx, x,, the joint probability density function to satisfy

P{Il <Xi <z + Axhl'g < Xo <z9+ A$2} ~ fX17X2(I1,I2)AI1AI2.

Example 25. Generalize the notion of mass and density functions to more than two random variables.

6.1 Independent Random Variables

Many of our experimental protocols will be designed so that observations are independent. More precisely, we will
say that two random variables X; and X5 are independent if any two events associated to them are independent, i.e.,

P{X; € A1, X5 € Ay} = P{X; € A1} P{X5 € As}.
For discrete random variables,
Ixix, (w1, 22) = P{X1 =21, Xo = 22} = P{X1 = 21} P{ X2 = 22} = fx, (71) fx,(w2).
The joint probability mass function is the product of the marginal mass functions. For continuous random variables,

fx1,x, (@1, x2) Ar1 Azg = P{x; < X1 <21+ Az, 29 < X9 < 20+ Ay}
= P{z; < X1 <21 + Az JP{ry < Xo < 2o + Axo} =~ fx, (x1) Az fx, (22)Azs
= fx (xl)fX2 ($2)AI1ALE2.

The joint probability density function

Ixi,x (@1, 22) = fx, (1) fx, (22)
is the product of the marginal density functions.
Exercise 26. Generalize the notion of independent mass and density functions to more than two random variables.

Soon, we will be looking at n independent observations x1, 2, . . ., £, arising from an unknown density or mass
function f. Thus, the joint density is

flx)f(z2) - f(xn).

Generally speaking, the density function f will depend on the choice of a parameter value §. (For example, the
unknown parameter in the density function for an exponential random variable that describes the waiting time for a
bus.) Given the data arising from the n observations, the likelihood function arises by consider this joint density as a
function of the variable §. We shall learn how the study of the likelihood plays a major role in parameter estimation
and in the testing of hypotheses.

Often we will explore the properties of the data through simulation. Thus, we present methods for simulating first
discrete and then continuous random variables.
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7 Simulating Discrete Random Variables in R

One goal for this course is to provide the tools needed to design inferential procedures based on sound principles of
statistical science. Thus, one of the very important uses of statistical software is the ability to generate pseudo-data to
simulate the actual data. This provides the opportunity to test and refine methods of analysis in advance of the need to
use these methods on genuine data.

The sample command is used to create simple and stratified random samples. This is using the default R com-
mand of sampling without replacement. We can use this command to simulate discrete random variables. To do this,
we need to give the state space in a vector x and a mass function £. Then to give a sample of n independent random
variables we use sample (x, n, replace=TRUE, prob=f)

Example 27. Let X be described by the mass function
| 1234
fx(z) [ 0.1]02]03]04

Then to simulate 50 independent observations from this mass function:

> x<-c(1,2,3,4)
> f<-c(0.1,0.2,0.3,0.4)
> sum (f)

(11 1
> data<-sample (x, 50, replace=TRUE, prob=f)
> data

[11 2 4 3 3

1 41333434123 44443444412 4443344124
[42] 3 4 4 3 4

32 42
2 343
Notice that 1 is the least represented value and 4 is the most represented. If the command prob=f is omitted, then
sample will choose uniformly from the values in the vector x..

8 Probability Transform

For X a continuous random variable with a density fx that is positive everywhere in its domain, the distribution
function F'x is strictly increasing. In this case F'x has a inverse function Fgl, called the quantile function.
Exercise 28. Fy(z) < wifand only if v < F*(u).
The probability transform follows from an analysis of the random variable
U= Fx(X)

Note that F'x has range from O to 1. It cannot take values below 0 or above 1. Thus, the cumulative distribution
function
Fy(u)=0foru <0 and Fy(u)=1foru>1.

For values of u between 0 and 1, note that
P{Fx(X) <u} = P{X < Fx'(u)} = Fx(Fx'(u)) = u.

Thus, the distribution function for the random variable U,

0 u<0,
Fyluy=<u 0<u<l1
1 1<u

Thus, if we can simulate U, we can simulate a random variable with distribution F’y via the quantile function

X =Fg'(U). 2
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Figure 7: Illustrating the Probability Transsform. First simulate uniform random variables w1, u2, . .

09
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0.8

1
X

., Un, on the interval [0, 1]. About 10% of

the random numbers should be in the interval [0.3, 0.4]. This corresponds to the 10% of the simulations on the interval [0.28, 0.38] for a random
variable with distribution function F'x shown. Similarly, about 10% of the random numbers should be in the interval [0.7, 0.8] which corresponds
to the 10% of the simulations on the interval [0.96, 1.51] for a random variable with distribution function F'x, These values on the x-axis can be
obtained from taking the inverse function of Fx,i.e., z; = Fy 1 (ug).

Take a derivative to see that the density

0 u<O,
fU(u): 1
0 1<u

Because the random variable U has a constant density over the interval
of its possible values, it is called uniform on the interval [0, 1] and the
identity (2) is called the probability transform. This transform is illus-
trated in Figure 7. It accomplished in R via the runi f command. We can
see how this works in the following example.

Example 29. For the dart board,

2

u= Fx(z) =x° and thus

0<u<l1

r=F3!

(u) = V.

We can simulate independent observations of the distance from the center X1, Xo, ...

=]

0.8

probability
06
L

0.4
L

0.2

0.0

T T T T T T
0.0 0.2 04 06 0.8 1.0

Figure 8: The distribution *function (red) and the
empirical cumulative distribution function (black)
based on 100 simulations of the dart board distri-
bution. R commands given below.

, Xy, of the dart by simulating

independent uniform random variables Uy, Us, . .. U, and taking the transform

vV V + VvV V VvV V

Exercise 30. If U is uniform on [0,1], then soisV =1 —U.

u<-runif (100)
x<-sqgrt (u)
xd<-seq(0,1,0.01)

X; =/U..

plot (sort (x),1l:1length(x)/length(x),type="s",xlim=c(0,1),ylim=c(0,1),

xlab="x",ylab="probability")
par (new=TRUE)

plot (xd,xd"2,type="1",xlim=c (0, 1),ylim=c (0, 1), xlab="",ylab="", col="red")

Sometimes, it is easier to simulate X using F5; ' (V).
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Example 31. For an exponential random variable, set
1
u=Fx(x)=1—exp(—Az), andthus z = Y In(1 — u)

Consequently, we can simulate independent exponential random variables X1, Xo, ..., X, by simulating independent
uniform random variables V1, Vs, ...V, and taking the transform

X, = —%hﬂ/;.

Example 32.

9 Answers to Selected Exercises

2. The sum, the maximum, the minimum, the difference, the value on the first die, the product.

3. The roll with the first H, the number of T, the longest run of H, the number of T's after the first H.

4. 10"z /10"

6. A common way to show that two events A; and As are equal is to pick an element w € A; and show that it is in

As. This proves A; C As. Then pick an element w € A, and show that it is in Ay, proving that A, C A;. Taken

together, we have that the events are equal, A; = As. Sometimes the logic needed in showing A; C Ay consist now

just of implications, but rather of equivalent statements. (We can indicate this with the symbol <=>.) In this case we

can combine the two parts of the argument. For this exercise, as the lines below show, this is a successful strategy.
We follow an arbitrary outcome w € €2

lLwe{XeBlf << w¢g{X e€B} — Xw) ¢ B+ Xw) € B < w e {X € B°}. Thus,
{X e B}*={X € B}

2.weUf{X € B} <= w e {X € B;} forsome i <= X (w) € B; forsome i <= X (w) € |J, Bi <=
we{X ey, B} Thus, J{X € B;} ={X e |, B}.
8. For three tosses of a biased coin, we have

:c |0 1 2 3
P{X =z} | (1-p? 3pd-p? 3p*0-p) p°

Thus, the cumulative distribution function,

0 forz < 0,
(1-p)? for0 <z <1,
(1=p?+3p(1=p)®=(1-p°(1+2p) forl<z<?2,
(1—-p)2(1+2p)+3p*(1—p)=1-p° for2 <z <3,
1 for3 <=z

S

Fx (z)

9. From the example in the section Basics of Probability, we know that

x |0 1 2 3
P{X =z} | 041353 0.43588 0.13765 0.01294

To plot the distribution function, we use,

> f<—choose (13, hearts) xchoose (39, 3—hearts) /choose (52, 3)
> F<-cumsum (f)
> plot (hearts,F,ylim=c(0,1),type="s")

95



Introduction to Statistical Methodology Random Variables and Distribution Functions

1.0

Thus, the cumulative distribution function,

0.8
|

0 for z < 0,
0.41353 for0 < z < 1, S

Fx(z) =< 084941 forl <z <2,
0.98706 for2 < z < 3,
1 for3 <z

0.4

0.2
|

0.0
|

10. The cumulative distribution function for Y, 0.0 05 10 15 2.0

Fy(y) = P{Y <y} = P{X? <y} = P{X < ¥y} = Fx (V).

11. Let z,, — x( be a decreasing sequence. Then 1 > z9 > - --

{X <z} o{X <a}D--, ﬁ{Xﬁxn}:{ngo}.

(Check this last equality.) Then P{X < z1} > P{X < z3} > ---. Now, use the second continuity property of

probabilities to obtain lim,, oo Fix (z,) = lim, oo P{X < ,} = P{X <20} = Fx(z0).

14. We use the fact that the exponential function is increasing, and that lim,,_, . exp(—u) = 0. Using the numbering

of the properties above

1. For < 0, Fx is constant, Fix(0) = 0 and exp(—Ax) is decreasing. Thus, 1 — exp(—Az) is increasing for

x> 0.
2. limg 00 exp(—Az) = 0. Thus, lim, o, 1 — exp(—Az) = 1.

3. Because F'x(z) = 0forall z < 0, lim,_, o Fx(z) =0.

15. The distribution function has the graph shown in Figure 5.

The formula
0 if x <0,
Fr(z)=P{X <z} =< 1—exp(—z/10) if0 <z <20,
1 if 20 < x.

18. For r # 1, write the expressions for s,, and 7s,, and subtract.

Sp=cter +er?4 4o
rs, = cr +er’4 -+ er™ fer™tt
(1-r)s,=c —er™tl = ¢(1 — Tl
Now divide by 1 — r to obtain the formula.
21. Let fx be the density. Then

zo+AT
0<P{X=xz9}<Plrg—Az< X <z+ Az} = fx(x) dx.

To—Ax

Now the integral goes to 0 as Az — 0. So, we must have P{X + z¢} = 0.

23. Because the density is non-negative on the interval [0, 1], F'x(z) = 0ifx < 0 and Fx(z) = 1ifz < 1. For z

between 0 and 1,

/OwZ\l/idt:\/Z’z:\/:E.
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Figure 9: Cumulative distribution function for an exponential random variable with A = 1/10 and a jump at z = 20.

Thus,
0 if x <0,
Fx(z) =< vz if0<z<l,
1 ifl1 <ux.

24. The random variable Y has distribution function

Fy(y) =P{Y <y} =P{aX +b<y}=P{aX <y—b}.

Fy(y)P{ngb}FX <yab>

a

Fora >0

Now take a derivative and use the chain rule to find the density

Fr(y) = Fy(y) = fx (y‘b) 1L, (y"’> |

a

Fora < 0

Now the derivative

fr(y) =Fy(y) = —fx (y_ b) % =L (y_ b) .

a

26. The joint density (mass function) for X7, Xo, ..., X,

X100 x, (T1, @2, 20) = fxy (w1) X, (22) - fx, ()
is the product of the marginal densities (mass functions).

28. Fx is increasing and continuous, so the set {z; Fx (x) < u} is the interval (—oo, Fy'! (u)]. In addition, z is in
this inverval precisely when z < Fy.! (u).
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30. Let’s find Fy . If v < 0, then
O0<P{V<u}<P{VL<0}=P{1-U<0}=P{1<U}=0
because U is never greater than 1. Thus, Fy (v) = 0 Similarly, if v > 1,
1>P{V<u}>P{V<1}=P{1-U<1}=P{0<U} =1
because U is always greater than 0. Thus, Fy (v) = 1 For 0 < v < 1,
Fy(v)=P{V<ov}=P{1-U<v}=P{1l-v<U}=1-P{U<l—-v}=1—-(1—-v)=w.

This matches the distribution function of a uniform random variable on [0, 1].
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