The Mass-Spring Oscillator

June 14, 2016

1 Deriving the Governing Equation

We being with Newton's second law

$$
F=m a=m \frac{d^{2} y}{d t^{2}}=m y^{\prime \prime} .
$$

Hooke's law is a principle of physics that states that the force F needed to extend or compress a spring by some distance y is proportional to that distance and opposes the direction of the force.

$$
F_{\text {spring }}=-k y .
$$

The constant of proportionality k is called the spring constant.
Practically all mechanical systems also experience friction. Here, the force is typically modeled by a term proportional to velocity and again and opposes the direction of the force.

$$
F_{\text {friction }}=-b \frac{d y}{d t}=-b y^{\prime}
$$

The constant of proportionality b is called the damping constant.
Finally the spring may be subject to external forces like gravity or direct forcing. We will indicate this by $F_{\text {external }}$. Taken together, we have a second order linear ordinary differential equation

$$
m y^{\prime \prime}+b y^{\prime}+k y=F_{\mathrm{ext}} .
$$

This is the differential equation that governs the motion of a mass-spring oscillator.

2 Behavior without Friction

To start, we consider on external force and no friction,

$$
m y^{\prime \prime}+k y=0 .
$$

Because this is meant to model the action of a spring, so we look for a solution of the form $y(t)=A \cos \omega t$ and look to determine the angular frequency, ω. Then,

$$
m A \omega^{2} \cos \omega t-k A \cos \omega t=\left(m \omega^{2}-k\right) \cos \omega t .
$$

Thus,

$$
\omega^{2}=k / m, \quad \omega=\sqrt{k / m} .
$$

So the angular frequency,

- increases with k. Stiffer spring oscillate faster.
- decreases with m. More massive springs oscillate slower.

3 Behavior with Friction

3.1 Damped Oscillatory Behavior

If we add damping, then we have the differential equation.

$$
\begin{equation*}
m y^{\prime \prime}+b y^{\prime}+k y=0 \tag{1}
\end{equation*}
$$

If we assume that damping results in an exponential damping to the oscillator.

$$
\begin{align*}
y(t) & =A e^{-t} \cos t \tag{2}\\
y^{\prime}(t) & =A\left(e^{-t}(-\sin t)+\left(-e^{-t} \cos t\right)=A e^{-t}(-\sin t-\cos t)\right. \\
y^{\prime \prime}(t) & =A e^{-t}((-\cos t+\sin t)-(-\sin t-\cos t))=A e^{-t}(2 \sin t)
\end{align*}
$$

Take $m=1, b=2$, and $k=2$.

$$
\begin{aligned}
y^{\prime \prime} & =A e^{-t} & & (2 \sin t)) \\
2 y^{\prime} & =A e^{-t} & ((-2 \cos t)+ & (-2 \sin t)) \\
2 y & =A e^{-t} & (-2 \cos t) &
\end{aligned}
$$

and, consequently,

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+2 y=0 \tag{3}
\end{equation*}
$$

Thus, (2) is a solution to (3).
Notice that for the case of no damping $(b=0)$, a solution has frequency $\omega_{0}=\sqrt{k / m}=\sqrt{2}$. This is greater that the frequency of the damped oscillator $\omega=1$.

3.2 Overdamped Behavior

If we take $y(t)=A e^{-t}$, then

$$
\begin{aligned}
y^{\prime \prime} & =A e^{-t} \\
2 y^{\prime} & =-2 A e^{-t} \\
y & =A e^{-t}
\end{aligned}
$$

and, we have a solution to (1) with $m=1, b=2$, and $k=1$ that does not have any oscillatory behavior. Thus, in reducing the stiffness of the spring from $k=2$ to $k=1$, the friction force in more dominating and the spring no longer oscillates.

4 External Force

Let's return to the equation that models damped oscillatory behavior subject to a sinusoidal forcing, frequency γ

Figure 1: A (in black) and B (in red) as a function of γ.

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin \gamma t
$$

and look for a solution

$$
y=A \sin \gamma t+B \cos \gamma t
$$

Then,

$$
\begin{aligned}
2 y(t) & =2 A \sin \gamma t+2 B \cos \gamma t \\
2 y^{\prime}(t) & =2 A \gamma \cos \gamma t-2 B \gamma \sin \gamma t \\
y^{\prime \prime}(t) & =-A \gamma^{2} \sin \gamma t-B \gamma^{2} \cos \gamma t
\end{aligned}
$$

Adding, we obtain

$$
\left(2 A-2 B \gamma-A \gamma^{2}\right) \sin \gamma t+\left(2 B+2 A \gamma-B \gamma^{2}\right) \cos \gamma t=\sin \gamma t
$$

Thus,

$$
A\left(2-\gamma^{2}\right)-2 B \gamma=1 \quad \text { and } \quad B\left(2-\gamma^{2}\right)+2 A \gamma=0
$$

Exercise 1. Show that

$$
A=\frac{2-\gamma^{2}}{\left(2-\gamma^{2}\right)^{2}+4 \gamma^{2}} \quad \text { and } \quad B=\frac{-2 \gamma}{\left(2-\gamma^{2}\right)^{2}+4 \gamma^{2}}
$$

We will spend some time look at the behavior of second order linear ordinary differential equation with constant coefficients and then return to a more detailed analysis of the mass-spring oscillator.

