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1 Deriving the Governing Equation

We being with Newton’s second law

F = ma = m
d2y

dt2
= my′′.

Hooke’s law is a principle of physics that states that the force F needed to extend or compress a spring
by some distance y is proportional to that distance and opposes the direction of the force.

Fspring = −ky.

The constant of proportionality k is called the spring constant.
Practically all mechanical systems also experience friction. Here, the force is typically modeled by a term

proportional to velocity and again and opposes the direction of the force.

Ffriction = −bdy
dt

= −by′

The constant of proportionality b is called the damping constant.
Finally the spring may be subject to external forces like gravity or direct forcing. We will indicate this

by Fexternal. Taken together, we have a second order linear ordinary differential equation

my′′ + by′ + ky = Fext.

This is the differential equation that governs the motion of a mass-spring oscillator.

2 Behavior without Friction

To start, we consider on external force and no friction,

my′′ + ky = 0.

Because this is meant to model the action of a spring, so we look for a solution of the form y(t) = A cosωt
and look to determine the angular frequency, ω. Then,

mAω2 cosωt− kA cosωt = (mω2 − k)cosωt.

Thus,
ω2 = k/m, ω =

√
k/m.

So the angular frequency,
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• increases with k. Stiffer spring oscillate faster.

• decreases with m. More massive springs oscillate slower.

3 Behavior with Friction

3.1 Damped Oscillatory Behavior

If we add damping, then we have the differential equation.

my′′ + by′ + ky = 0. (1)

If we assume that damping results in an exponential damping to the oscillator.

y(t) = Ae−t cos t. (2)

y′(t) = A(e−t(− sin t) + (−e−t cos t) = Ae−t(− sin t− cos t)

y′′(t) = Ae−t((− cos t+ sin t)− (− sin t− cos t)) = Ae−t(2 sin t)

Take m = 1, b = 2, and k = 2.

y′′ = Ae−t (2 sin t))
2y′ = Ae−t ((−2 cos t)+ (−2 sin t))
2y = Ae−t (−2 cos t)

and, consequently,
y′′ + 2y′ + 2y = 0. (3)

Thus, (2) is a solution to (3).
Notice that for the case of no damping (b = 0), a solution has frequency ω0 =

√
k/m =

√
2. This is

greater that the frequency of the damped oscillator ω = 1.

3.2 Overdamped Behavior

If we take y(t) = Ae−t, then
y′′ = Ae−t

2y′ = −2Ae−t

y = Ae−t

and, we have a solution to (1) with m = 1, b = 2, and k = 1 that does not have any oscillatory behavior.
Thus, in reducing the stiffness of the spring from k = 2 to k = 1, the friction force in more dominating and
the spring no longer oscillates.

4 External Force

Let’s return to the equation that models damped oscillatory behavior subject to a sinusoidal forcing, fre-
quency γ
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Figure 1: A (in black) and B (in red) as a function of γ.

y′′ + 2y′ + 2y = sin γt

and look for a solution
y = A sin γt+B cos γt

Then,
2y(t) = 2A sin γt+ 2B cos γt

2y′(t) = 2Aγ cos γt− 2Bγ sin γt
y′′(t) = −Aγ2 sin γt−Bγ2 cos γt

Adding, we obtain
(2A− 2Bγ −Aγ2) sin γt+ (2B + 2Aγ −Bγ2) cos γt = sin γt

Thus,
A(2− γ2)− 2Bγ = 1 and B(2− γ2) + 2Aγ = 0

Exercise 1. Show that

A =
2− γ2

(2− γ2)2 + 4γ2
and B =

−2γ

(2− γ2)2 + 4γ2

We will spend some time look at the behavior of second order linear ordinary differential equation with
constant coefficients and then return to a more detailed analysis of the mass-spring oscillator.
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