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1 Simple Hypotheses

In the simplest set-up for a statistical hypothesis, we consider two values 6y, 6; € ©, the parameter space.

We write the test as
Hy:0=0¢ versus H;:0=20,.

Hj is called the null hypothesis. H; is called the alternative hypothesis. For this hypothesis test, the
action space A has two points 0 and 1. As before, the decision function

d : data — {0,1}.
The loss function £ must satisfy
L(600,0) < L(0p,1) and L(61,1) < L(64,0).
Without loss of generality, we can take the 0 — 1 — ¢ loss function
L(0p,0) = L(01,1) =0, L(01,0)=1 and L(6p,1) =c.
This gives a risk function
R(bp,d) = Py {d(X) =1}, R(b1,d) = cPp,{d(X) =1}.
Typically, we shall choose ¢ = 1.

e The action a = 1 is called rejecting the hypothesis. Rejecting the hypothesis when it is true is
called a type I error. Its probability a« = Py, {d(X) = 1} is called the size of the test.

e The action a = 0 is called failing to reject the hypothesis. Failiing to reject the hypothesis when
if is false, called a type II error, has probability 8 = Py, {d(X) = 0}. The power of the test
1— 0= Py {d(X)=1}.

Given observations X, the rejection of the hypothesis is based on whether or not X lands in a critical

region C'. Thus,
d(X)=1 ifand onlyif X €C.

Given a choice « for the size of the test, the choice of decision function d or equivalently, critical region C'
is called best or most powerful if for any choice of critical region C* and corresponding decision function,

d*(x) = Io«(x)



for a size « test,
B =Py {d(X) =0} < Py, {d"(X) = 0} = 37
or in terms of the critical regions.

B=1-Pp{XeC}, B*=1-Py{XeC} (1)

and 0 < §*.

2 The Neyman-Pearson Lemma

The Neyman-Pearson lemma tell us that the best test for a simple hypothesis is a likelihood ratio test.

Theorem 1 (Neyman-Pearson Lemma). Let L(0|x) denote the likelihood function for the random variable
X corresponding to the probability measure Py,0 € ©. If there exists a critical region C of size o and a
nonnegative constant k such that

L(61]x)
>
L(90|X)_k forxeC
and L(6, %)
11X
<
L(Go\x)_k forx ¢ C,

then C' is the most powerful critical region of size «.

Proof. Let C* be a critical region of size less than or equal to a. Let § and 8* denote, respectively, the
probability of type II error for the critical regions C' and C* respectively. The theorem is to show that
3 > 8.

Write C' and C* as the disjoint union.

C=(C\CYU(CNCY), and CF = (C\C)U(CNCH.

Thus,

a=FP{XeCl=FP{XecC\C"'}+ P {XecCnC*}.
and

o> PQO{X S C*} = PgO{X S C*\C} + P@D{X S CﬂC*}
Consequently,

Py {X € O\C*} =a — Py {X € CNC*} > Py, {X € O\C*}. (2)

From equation (1), we obtain

*

B~ =Py (X eC} - Pp{XecC)= / L6 x) dx _/ L(6]x) dx.
C
Now subtract from both of the integrals the quantity

Ptheta1 {X eCn C*} - L(e()|X) dx
cnex



to find that

B*=0=P{XeC\C} - P {X e C"\C} = /C\C* L(6:[x) dx — /C*\CL(%X) dx. 3)

For x € C\C* C C, L(61]x) > kL(6y|x) and

/ L(61]x) dx > k L(6p|x) dx. (4)
c\C* c\C*

For x € C*\C C C*, L(0;|x) < kL(fy|x) and

/ L(61]x) dx < k/ L(6y|x) dx. (5)
cr\c

c\C

Apply inequalities (4) and (5) to inequality (3).

* - k L6 dx — k L(6 dx =k L(6 dx — L6 d 0

by inquality (2). O
If T is a sufficient statistic, then the likelihood ratio
L(01|x)  h(x)g(01,T(x)) g(01,T(x))

L(fo|x)  h(x)g(00, T(x))  g(6o,T(z))

depends only on the value of the sufficient statistic and the parameter values.

3 Examples
Example 2. Let X = (X1,...,X,) be independent normal observations with unknown mean and known
variance o2. The hypothesis is

Hy:p=po wversus Hy:p=p.
The likelihood ratio

L _@mom)® _(@n—m)?

M _ V2ro? €xXp 202 V2mo? €xXp 202
= A S
L(polx) \/2;7 exp — (“2(7‘;0) ... \/2;02 exp — (:cn%/;l)

exp — 5oz Yoy (T — pn)?
exp — 5oz Yoy (i — po)?
n

1 2 2
= exXp—g 2 (@ — p1)? = (i — po)?)
_ Ho — M1 -
= exp-—0—3 ;_1(2% — p1 — po)



The likelihood test is equivalent to
—(po — 1) Y wi > ki,

i=1
or for some k,
T > ko when pg < py; or & < ko when pg > py.

To determine ko, note that under the null hypothesis, X is N(ug,0?/n) and
X - Ho
Z =
a/vn

is a standard normal. Set z, so that P{Z > z,} = «. Then, for uo < u1,

X > o = ka.

L0
—z
N
For py < pg, we have X < —k,.

The power should

e increase as a function of |1 — o,

e decrease as a function of 02, and

e increase as a function of n.

In this situation, the type II error probability,

B = Pu{X¢C)=P,{X <puo+ %}

X —m 1 — pol 11 — pol
P, ol (1, I Hol
“{UO/\/E<Z& oo/v/n T oo/

For po =10 and py =5 and o = 3. Consider the 16 observations and choose a level a = 0.05 test, then

> X
[1] 8.887753 2.353184 12.123175 10.020566 9.247956 3.711350
[7] 13.907150 9.079790 8.826202 6.288765 12.120783 10.994228
[13] 12.522522 4.529421 8.191806 10.195854
> mean(x)
[1] 8.937532

Then
_8.937-10

Z 375

= —1.417.

> gnorm(0.05)
[1] -1.644854



ko = —1.645 > —1.417 and we fail to reject the null hypothesis.
To compute the probability of a type II error, note that for a = 0.05,

|1 — o _
oo/V/n

1.645 — = —5.022

5
Zo — =
3/v/16
>> pnorm(-5.022)
[1] 2.556809e-07

This is called the z-test. If n is sufficiently large, the even if the data are not normally distributed, X is
well approzimated by a normal distribution and, as long as the variance o? is known, the z-test is used in
this case.

Example 3 (Bernoulli trials). Here X = (X1,...,X,,) is a sequence of Bernoulli trials with unknown success
probability 6, the likelihood
9 1+ +Tn
LOx)=1-0)" | — .
o0 = (1= 0" (125
For the test
Hy:0=0¢ wersus H;:0 =10

L _ (1) (0 ()

Consequently, the test is to reject Hy whenever

the likelihood ratio

Zmi > ko when 0y < 607 or le < ko when 6y > 6.
i=1 =1

Note that under Hy, >+ X; has a Bin(n,0) distribution. Thus, in the case 6y < 01, we choose ko so that

> (Z) 05(1—00)" " < a. (6)

k=kao

In genreal, we cannot choose ko to obtain the sum «. Thus, we take the minimum value of ko to achieve
the inequality in (6).
If nby is sufficiently large, then, by the central limit theorem, > | X; has a normal distribution. If we
standardize _
X -6

\/90(1 — 6‘0)/“

is approzimately a standard normal random variable and we perform the z-test as in the previous exercise.
For example, if we take 8y = 1/2 and 61 > 1/2 and o = 0.05, then with 60 heads in 100 coin tosses

7 0.60 — 0.50 _
0.05

> gqnorm(0.95)
[1] 1.644854

Thus, ko.os = 1.645 < 2 and we reject the null hypothesis.



