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1 Simple Hypotheses

In the simplest set-up for a statistical hypothesis, we consider two values θ0, θ1 ∈ Θ, the parameter space.
We write the test as

H0 : θ = θ0 versus H1 : θ = θ1.

H0 is called the null hypothesis. H1 is called the alternative hypothesis. For this hypothesis test, the
action space A has two points 0 and 1. As before, the decision function

d : data → {0, 1}.

The loss function L must satisfy

L(θ0, 0) ≤ L(θ0, 1) and L(θ1, 1) ≤ L(θ1, 0).

Without loss of generality, we can take the 0− 1− c loss function

L(θ0, 0) = L(θ1, 1) = 0, L(θ1, 0) = 1 and L(θ0, 1) = c.

This gives a risk function

R(θ0, d) = Pθ0{d(X) = 1}, R(θ1, d) = cPθ1{d(X) = 1}.

Typically, we shall choose c = 1.

• The action a = 1 is called rejecting the hypothesis. Rejecting the hypothesis when it is true is
called a type I error. Its probability α = Pθ0{d(X) = 1} is called the size of the test.

• The action a = 0 is called failing to reject the hypothesis. Failiing to reject the hypothesis when
if is false, called a type II error, has probability β = Pθ1{d(X) = 0}. The power of the test
1− β = Pθ1{d(X) = 1}.

Given observations X, the rejection of the hypothesis is based on whether or not X lands in a critical
region C. Thus,

d(X) = 1 if and only if X ∈ C.

Given a choice α for the size of the test, the choice of decision function d or equivalently, critical region C
is called best or most powerful if for any choice of critical region C∗ and corresponding decision function,

d∗(x) = IC∗(x)
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for a size α test,
β = Pθ1{d(X) = 0} ≤ Pθ1{d∗(X) = 0} = β∗

or in terms of the critical regions.

β = 1− Pθ1{X ∈ C}, β∗ = 1− Pθ1{X ∈ C∗}. (1)

and β ≤ β∗.

2 The Neyman-Pearson Lemma

The Neyman-Pearson lemma tell us that the best test for a simple hypothesis is a likelihood ratio test.

Theorem 1 (Neyman-Pearson Lemma). Let L(θ|x) denote the likelihood function for the random variable
X corresponding to the probability measure Pθ, θ ∈ Θ. If there exists a critical region C of size α and a
nonnegative constant k such that

L(θ1|x)
L(θ0|x)

≥ k for x ∈ C

and
L(θ1|x)
L(θ0|x)

≤ k for x /∈ C,

then C is the most powerful critical region of size α.

Proof. Let C∗ be a critical region of size less than or equal to α. Let β and β∗ denote, respectively, the
probability of type II error for the critical regions C and C∗ respectively. The theorem is to show that
β∗ ≥ β.

Write C and C∗ as the disjoint union.

C = (C\C∗) ∪ (C ∩ C∗), and C∗ = (C∗\C) ∪ (C ∩ C∗).

Thus,
α = Pθ0{X ∈ C} = Pθ0{X ∈ C\C∗}+ Pθ0{X ∈ C ∩ C∗}.

and
α ≥ Pθ0{X ∈ C∗} = Pθ0{X ∈ C∗\C}+ Pθ0{X ∈ C ∩ C∗}.

Consequently,
Pθ0{X ∈ C\C∗} = α− Pθ0{X ∈ C ∩ C∗} ≥ Pθ0{X ∈ C\C∗}. (2)

From equation (1), we obtain

β∗ − β = Pθ1{X ∈ C} − Pθ1{X ∈ C∗} =
∫

C

L(θ1|x) dx−
∫

C∗
L(θ1|x) dx.

Now subtract from both of the integrals the quantity

Ptheta1{X ∈ C ∩ C∗} =
∫

C∩C∗
L(θ0|x) dx
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to find that

β∗ − β = Pθ1{X ∈ C\C∗} − Pθ1{X ∈ C∗\C} =
∫

C\C∗
L(θ1|x) dx−

∫
C∗\C

L(θ1|x) dx. (3)

For x ∈ C\C∗ ⊂ C, L(θ1|x) ≥ kL(θ0|x) and∫
C\C∗

L(θ1|x) dx ≥ k

∫
C\C∗

L(θ0|x) dx. (4)

For x ∈ C∗\C ⊂ C∗, L(θ1|x) ≤ kL(θ0|x) and∫
C∗\C

L(θ1|x) dx ≤ k

∫
C∗\C

L(θ0|x) dx. (5)

Apply inequalities (4) and (5) to inequality (3).

β∗ − β ≥ k

∫
C\C∗

L(θ0|x) dx− k

∫
C∗\C

L(θ0|x) dx = k

(∫
C\C∗

L(θ0|x) dx−
∫

C∗\C
L(θ0|x) dx

)
≥ 0

by inquality (2).

If T is a sufficient statistic, then the likelihood ratio

L(θ1|x)
L(θ0|x)

=
h(x)g(θ1, T (x))
h(x)g(θ0, T (x))

=
g(θ1, T (x))
g(θ0, T (x))

depends only on the value of the sufficient statistic and the parameter values.

3 Examples

Example 2. Let X = (X1, . . . , Xn) be independent normal observations with unknown mean and known
variance σ2. The hypothesis is

H0 : µ = µ0 versus H1 : µ = µ1.

The likelihood ratio

L(µ1|x)
L(µ0|x)

=
1√

2πσ2 exp− (x1−µ1)
2

2σ2 · · · 1√
2πσ2 exp− (xn−µ1)

2

2σ2

1√
2πσ2 exp− (x1−µ0)2

2σ2 · · · 1√
2πσ2 exp− (xn−µ1)2

2σ2

=
exp− 1

2σ2

∑n
i=1(xi − µ1)2

exp− 1
2σ2

∑n
i=1(xi − µ0)2

= exp− 1
2σ2

n∑
i=1

(
(xi − µ1)2 − (xi − µ0)2

)
= exp−µ0 − µ1

2σ2

n∑
i=1

(2xi − µ1 − µ0)
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The likelihood test is equivalent to

−(µ0 − µ1)
n∑

i=1

xi ≥ k1,

or for some kα

x̄ ≥ kα when µ0 < µ1 or x̄ ≤ kα when µ0 > µ1.

To determine kα, note that under the null hypothesis, X̄ is N(µ0, σ
2/n) and

Z =
X̄ − µ0

σ/
√

n

is a standard normal. Set zα so that P{Z ≥ zα} = α. Then, for µ0 < µ1,

X̄ ≥ µ0 +
σ√
n

zα = kα.

For µ1 < µ0, we have X̄ ≤ −kα.
The power should

• increase as a function of |µ1 − µ0|,

• decrease as a function of σ2, and

• increase as a function of n.

In this situation, the type II error probability,

β = Pµ1{X /∈ C} = Pµ1{X̄ < µ0 +
σ0√
n

zα}

= Pµ1

{
X̄ − µ1

σ0/
√

n
< zα −

|µ1 − µ0|
σ0/

√
n

}
= Φ

(
zα −

|µ1 − µ0|
σ0/

√
n

)
For µ0 = 10 and µ1 = 5 and σ = 3. Consider the 16 observations and choose a level α = 0.05 test, then

> x
[1] 8.887753 2.353184 12.123175 10.020566 9.247956 3.711350
[7] 13.907150 9.079790 8.826202 6.288765 12.120783 10.994228
[13] 12.522522 4.529421 8.191806 10.195854
> mean(x)
[1] 8.937532

Then
Z =

8.937− 10
3/
√

16
= −1.417.

> qnorm(0.05)
[1] -1.644854
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kα = −1.645 > −1.417 and we fail to reject the null hypothesis.
To compute the probability of a type II error, note that for α = 0.05,

zα −
|µ1 − µ0|
σ0/

√
n

= 1.645− 5
3/
√

16
= −5.022

>> pnorm(-5.022)
[1] 2.556809e-07

This is called the z-test. If n is sufficiently large, the even if the data are not normally distributed, X̄ is
well approximated by a normal distribution and, as long as the variance σ2 is known, the z-test is used in
this case.

Example 3 (Bernoulli trials). Here X = (X1, . . . , Xn) is a sequence of Bernoulli trials with unknown success
probability θ, the likelihood

L(θ|x) = (1− θ)n

(
θ

1− θ

)x1+···+xn

.

For the test
H0 : θ = θ0 versus H1 : θ = θ1

the likelihood ratio
L(θ1|x)
L(θ0|x)

=
(

1− θ1

1− θ0

)n((
θ1

1− θ1

)/( θ0

1− θ0

))x1+···+xn

Consequently, the test is to reject H0 whenever
n∑

i=1

xi ≥ kα when θ0 < θ1 or
n∑

i=1

xi ≤ kα when θ0 > θ1.

Note that under H0,
∑n

i=1 Xi has a Bin(n, θ) distribution. Thus, in the case θ0 < θ1, we choose kα so that

n∑
k=kα

(
n

k

)
θk
0 (1− θ0)n−k ≤ α. (6)

In genreal, we cannot choose kα to obtain the sum α. Thus, we take the minimum value of kα to achieve
the inequality in (6).

If nθ0 is sufficiently large, then, by the central limit theorem,
∑n

i=1 Xi has a normal distribution. If we
standardize

Z =
X̄ − θ0√

θ0(1− θ0)/n

is approximately a standard normal random variable and we perform the z-test as in the previous exercise.
For example, if we take θ0 = 1/2 and θ1 > 1/2 and α = 0.05, then with 60 heads in 100 coin tosses

Z =
0.60− 0.50

0.05
= 2.

> qnorm(0.95)
[1] 1.644854

Thus, k0.05 = 1.645 < 2 and we reject the null hypothesis.
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